[1] 央视315晚会幕后: 揭秘人脸识别破解始末[EB/OL]. [2020-01-09]. http://science.china.com.cn/2017-03/15/content_9390265.htm.
[2] CIS 2019 网络安全创新大会[EB/OL]. [2020-01-09]. https://cis.freebuf.com/.
[3] Woodham R J. Photometric method for determining surface orientation from multiple images [J]. Optical Engineering, 1980, 19(1): 191139.
[4] Christensen P H, Shapiro L G. Three-dimensional shape from color photometric stereo [J]. International Journal of Computer Vision, 1994, 13(2): 213−227. doi:  10.1007/BF01427152
[5] Deresiewicz H, Skalak R. On uniqueness in dynamic poroelasticity [J]. Bulletin of the Seismological Society of America, 1963, 53(4): 783−788.
[6] Coleman Jr E N, Jain R. Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry [J]. Computer Graphics and Image Processing, 1982, 18(4): 309−328. doi:  10.1016/0146-664X(82)90001-6
[7] Park J S, Tou J T. Highlight separation and surface orientations for 3-D specular objects[C]//10th International Conference on Pattern Recognition. IEEE, 1990, 1: 331–335.
[8] Ikeuchi K. Determining surface orientations of specular surfaces by using the photometric stereo method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981(6): 661−669.
[9] Wu T P, Tang C K. Dense photometric stereo using a mirror sphere and graph cut[C] //2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005, 1: 140–147.
[10] Mozerov M G, van de Weijer J. Accurate stereo matching by two-step energy minimization [J]. IEEE Transactions on Image Processing, 2015, 24(3): 1153−1163. doi:  10.1109/TIP.2015.2395820
[11] Geiger A, Roser M, Urtasun R. Efficient large-scale stereo matching[C]//Asian Conference on Computer Vision, 2010: 25–38.
[12] Tan X, Sun C, Wang D, et al. Soft cost aggregation with multi-resolution fusion[C]//European Conference on Computer Vision, 2014: 17–32.
[13] Yang Q, Yang R, Davis J, et al. Spatial-depth super resolution for range images[C]// 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1–8.
[14] Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006(4): 650−656.
[15] Hosni A, Rhemann C, Bleyer M, et al. Fast cost-volume filtering for visual correspondence and beyond [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(2): 504−511.
[16] Yang Q, Wang L, Yang R, et al. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(3): 492−504.
[17] Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]//18th International Conference on Pattern Recognition (ICPR’06), 2006, 3: 15–18.
[18] Bertozzi M, Broggi A. GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection [J]. IEEE Transactions on Image Processing, 1998, 7(1): 62−81. doi:  10.1109/83.650851
[19] Loop C, Zhang Z. Computing rectifying homographies for stereo vision[C]//1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), 1999, 1: 125–131.
[20] Gehrig S K, Eberli F, Meyer T. A real-time low-power stereo vision engine using semi-global matching[C]//International Conference on Computer Vision Systems, 2009: 134–143.
[21] Dorrington A A, Kelly C D B, McClure S H, et al. Advantages of 3D time-of-flight range imaging cameras in machine vision applications[C]//16th New Zealand Conference (ENZCon), 2009: 18–20.
[22] Ganapathi V, Plagemann C, Koller D, et al. Real time motion capture using a single time-of-flight camera[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 755–762.
[23] Hsu S, Acharya S, Rafii A, et al. Advanced Microsystems for Automotive Applications 2006[M]. Berlin: Springer, 2006: 205–219.
[24] Shim H, Lee S. Performance evaluation of time-of-flight and structured light depth sensors in radiometric/geometric variations [J]. Optical Engineering, 2012, 51(9): 094401.
[25] Hahne U, Alexa M. Depth imaging by combining time-of-flight and on-demand stereo[C]//Workshop on Dynamic 3D Imaging, 2009: 70–83.
[26] Schuon S, Theobalt C, Davis J, et al. High-quality scanning using time-of-flight depth superresolution[C]//2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008: 1–7.
[27] Cui Y, Schuon S, Thrun S, et al. Algorithms for 3d shape scanning with a depth camera [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(5): 1039−1050.
[28] Zhang Zuxun, Zhang Jianqing. Solutions and core techniques of city modeling[D]. Wuhan: Wuhan University, 2003. (in Chinese)
[29] Wang Jizhou, Li Chengming, Lin Zongjian. A survey on the technology of three dimensional spatial data acquisition[D]. Beijing: Chinese Academy of Surveying and Mapping, 2004. (in Chinese)
[30] Yu Lewen, Zhang Da, Yu Bin, et al. Research of 3D laser scanning measurement system for mining [J]. Metal Mine, 2012, 436: 101−103. (in Chinese)
[31] Gao Zhiguo. The research of terrestrial laser scanning data processing and modeling[D]. Xi'an: Chang'an University, 2010. (in Chinese)
[32] Fang Wei. Research on automatic texture mapping of terrestrial laser scanning data combining photogrammetry techniques[D]. Wuhan: Wuhan University. (in Chinese)
[33] Nayar S K, Watanabe M, Noguchi M. Real-time focus range sensor [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(12): 1186−1198. doi:  10.1109/34.546256
[34] Watanabe M, Nayar S K. Rational filters for passive depth from defocus [J]. International Journal of Computer Vision, 1998, 27(3): 203−225. doi:  10.1023/A:1007905828438
[35] Kou L, Zhang L, Zhang K, et al. A multi-focus image fusion method via region mosaicking on Laplacian pyramids [J]. PloS One, 2018, 13(5): e0191085. doi:  10.1371/journal.pone.0191085
[36] Bailey S W, Echevarria J I, Bodenheimer B, et al. Fast depth from defocus from focal stacks [J]. The Visual Computer, 2015, 31(12): 1697−1708. doi:  10.1007/s00371-014-1050-2
[37] Geng J. Structured-light 3D surface imaging: a tutorial [J]. Advances in Optics and Photonics, 2011, 3(2): 128−160. doi:  10.1364/AOP.3.000128
[38] Zuo C, Feng S, Huang L, et al. Phase shifting algorithms for fringe projection profilometry: A review [J]. Optics and Lasers in Engineering, 2018, 109: 23−59. doi:  10.1016/j.optlaseng.2018.04.019
[39] Boyer K L, Kak A C. Color-encoded structured light for rapid active ranging [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987(1): 14−28.
[40] Zhang L, Curless B, Seitz S M. Rapid shape acquisition using color structured light and multi-pass dynamic programming[C]//First International Symposium on 3D Data Processing Visualization and Transmission, 2002: 24–36.
[41] Pages J, Salvi J, Collewet C, et al. Optimised De Bruijn patterns for one-shot shape acquisition [J]. Image and Vision Computing, 2005, 23(8): 707−720. doi:  10.1016/j.imavis.2005.05.007
[42] Ito M, Ishii A. A three-level checkerboard pattern (TCP) projection method for curved surface measurement [J]. Pattern Recognition, 1995, 28(1): 27−40. doi:  10.1016/0031-3203(94)E0047-O
[43] Maruyama M, Abe S. Range sensing by projecting multiple slits with random cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(6): 647−651. doi:  10.1109/34.216735
[44] Morita H, Yajima K, Sakata S. Reconstruction of surfaces of 3d objects by m-array pattern projection method[C]//Second International Conference on Computer Vision, 1988: 468–473.
[45] Posdamer J L, Altschuler M. Surface measurement by space-encoded projected beam systems [J]. Computer Graphics and Image Processing, 1982, 18(1): 1−17. doi:  10.1016/0146-664X(82)90096-X
[46] Caspi D, Kiryati N, Shamir J. Range imaging with adaptive color structured light [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(5): 470−480. doi:  10.1109/34.682177
[47] Sansoni G, Corini S, Lazzari S, et al. Three-dimensional imaging based on gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications [J]. Applied Optics, 1997, 36(19): 4463−4472. doi:  10.1364/AO.36.004463
[48] Zhang Z. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques [J]. Optics and Lasers in Engineering, 2012, 50(8): 1097−1106. doi:  10.1016/j.optlaseng.2012.01.007
[49] Je C, Lee S W, Park R-H. High-contrast color-stripe pattern for rapid structured-light range imaging[C]//European Conference on Computer Vision, 2004: 95–107.
[50] Geng Z J. Rainbow three-dimensional camera: new concept of high-speed three-dimensional vision systems [J]. Optical Engineering, 1996, 35(2): 376−384. doi:  10.1117/1.601023
[51] Salvi J, Pagès J, Batlle J. Pattern codification strategies in structured light systems [J]. Pattern Recognition, 2004, 37(4): 827−849. doi:  10.1016/j.patcog.2003.10.002
[52] Gorthi S S, Rastogi P. Fringe projection techniques: Whither we are? [J]. Optics & Lasers in Engineering, 2010, 48(2): 133−140.
[53] Reich C, Ritter R, Thesing J. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection [J]. Optical Engineering, 2000, 39(1): 224−232. doi:  10.1117/1.602356
[54] Huang P S, Zhang C, Chiang F-P. High-speed 3-D shape measurement based on digital fringe projection [J]. Optical Engineering, 2003, 42(1): 163−169. doi:  10.1117/1.1525272
[55] Pan B, Kemao Q, Huang L, et al. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry [J]. Optics Letters, 2009, 34(4): 416−418. doi:  10.1364/OL.34.000416
[56] Quan C, He X, Wang C, et al. Shape measurement of small objects using LCD fringe projection with phase shifting [J]. Optics Communications, 2001, 189(1-3): 21−29. doi:  10.1016/S0030-4018(01)01038-0
[57] Zhang Z, Towers C E, Towers D P. Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection [J]. Optics Express, 2006, 14(14): 6444−6455. doi:  10.1364/OE.14.006444
[58] Wang Z, Nguyen D A, Barnes J C. Some practical considerations in fringe projection profilometry [J]. Optics & Lasers in Engineering, 2010, 48(2): 218−225.
[59] Pan J, Huang P S, Chiang F-P. Color-coded binary fringe projection technique for 3-D shape measurement [J]. Optical Engineering, 2005, 44(2): 023606. doi:  10.1117/1.1840973
[60] Kühmstedt P, Munckelt C, Heinze M, et al. 3D shape measurement with phase correlation based fringe projection[C]//SPIE, 2007, 6616: 66160B.
[61] Liu H C, Halioua M, Srinivasan V. Automated phase-measuring profilometry of 3-D diffuse objects [J]. Applied Optics, 1984, 23(18): 3105. doi:  10.1364/AO.23.003105
[62] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry [J]. JOSA, 1982, 72(1): 156−160. doi:  10.1364/JOSA.72.000156
[63] Su X, Chen W. Fourier transform profilometry: a review [J]. Optics and Lasers in Engineering, 2001, 35(5): 263−284. doi:  10.1016/S0143-8166(01)00023-9
[64] Su X, Zhang Q. Dynamic 3-D shape measurement method: A review [J]. Optics and Lasers in Engineering, 2010, 48(2): 191−204.
[65] Kemao Q. Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations [J]. Optics and Lasers in Engineering, 2007, 45(2): 304−317. doi:  10.1016/j.optlaseng.2005.10.012
[66] Kemao Q. Windowed Fourier transform for fringe pattern analysis [J]. Applied Optics, 2004, 43(13): 2695−2702. doi:  10.1364/AO.43.002695
[67] Zhong J, Weng J. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry [J]. Applied Optics, 2004, 43(26): 4993−4998. doi:  10.1364/AO.43.004993
[68] Malacara D. Optical Shop Testing[M]. New York: John Wiley & Sons, 2007.
[69] Bruning J H, Herriott D R, Gallagher J, et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses [J]. Applied Optics, 1974, 13(11): 2693−2703. doi:  10.1364/AO.13.002693
[70] Su X Y, Bally G V, Vukicevic D. Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation [J]. Optics Communications, 1993, 98(1-3): 141−150. doi:  10.1016/0030-4018(93)90773-X
[71] Li J, Hassebrook L G, Guan C. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity [J]. Journal of the Optical Society of America A , 2003, 20(1): 106−15.
[72] Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques [J]. Optics and Lasers in Engineering, 2010, 48(2): 149−158.
[73] Van der Jeught S, Dirckx J J. Real-time structured light profilometry: a review [J]. Optics and Lasers in Engineering, 2016, 87: 18−31. doi:  10.1016/j.optlaseng.2016.01.011
[74] Su X, Chen W. Reliability-guided phase unwrapping algorithm: a review [J]. Optics and Lasers in Engineering, 2004, 42(3): 245−261. doi:  10.1016/j.optlaseng.2003.11.002
[75] Gutmann B, Weber H. Phase unwrapping with the branch-cut method: role of phase-field direction [J]. Applied Optics, 2000, 39(26): 4802−4816. doi:  10.1364/AO.39.004802
[76] Zappa E, Busca G. Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry [J]. Optics and Lasers in Engineering, 2008, 46(2): 106−116. doi:  10.1016/j.optlaseng.2007.09.002
[77] Ghiglia D C, Romero L A. Minimum Lp-norm two-dimensional phase unwrapping [J]. JOSA A, 1996, 13(10): 1999−2013. doi:  10.1364/JOSAA.13.001999
[78] Trouve E, Nicolas J-M, Maitre H. Improving phase unwrapping techniques by the use of local frequency estimates [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1963−1972. doi:  10.1109/36.729368
[79] Zebker H A, Lu Y. Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms [J]. JOSA A, 1998, 15(3): 586−598. doi:  10.1364/JOSAA.15.000586
[80] Huntley J M, Saldner H. Temporal phase-unwrapping algorithm for automated interferogram analysis [J]. Applied Optics, 1993, 32(17): 3047−3052. doi:  10.1364/AO.32.003047
[81] Gushov V, Solodkin Y N. Automatic processing of fringe patterns in integer interferometers [J]. Optics and Lasers in Engineering, 1991, 14(4-5): 311−324. doi:  10.1016/0143-8166(91)90055-X
[82] Sansoni G, Carocci M, Rodella R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors [J]. Appl Opt, 1999, 38(31): 6565−6573. doi:  10.1364/AO.38.006565
[83] Zhao H, Chen W, Tan Y. Phase-unwrapping algorithm for the measurement of three-dimensional object shapes [J]. Applied Optics, 1994, 33(20): 4497−4500. doi:  10.1364/AO.33.004497
[84] Cheng Y-Y, Wyant J C. Two-wavelength phase shifting interferometry [J]. Applied Optics, 1984, 23(24): 4539−4543. doi:  10.1364/AO.23.004539
[85] Creath K, Cheng Y Y, Wyant J C. Contouring aspheric surfaces using two-wavelength phase-shifting interferometry [J]. Optica Acta: International Journal of Optics, 1985, 32(12): 1455−1464. doi:  10.1080/713821689
[86] Burke J, Bothe T, Osten W, et al. Reverse engineering by fringe projection[C]// SPIE, 2002, 4778: 312–325.
[87] Ding Y, Xi J, Yu Y, et al. Recovering the absolute phase maps of two fringe patterns with selected frequencies [J]. Optics Letters, 2011, 36(13): 2518−2520. doi:  10.1364/OL.36.002518
[88] Falaggis K, Towers D P, Towers C E. Algebraic solution for phase unwrapping problems in multiwavelength interferometry [J]. Applied Optics, 2014, 53(17): 3737−3747. doi:  10.1364/AO.53.003737
[89] Petković T, Pribanić T, Jonlić M. Temporal phase unwrapping using orthographic projection [J]. Optics and Lasers in Engineering, 2017, 90: 34−47. doi:  10.1016/j.optlaseng.2016.09.006
[90] Xing S, Guo H. Temporal phase unwrapping for fringe projection profilometry aided by recursion of Chebyshev polynomials [J]. Applied Optics, 2017, 56(6): 1591−1602. doi:  10.1364/AO.56.001591
[91] Li Z, Shi Y, Wang C, et al. Accurate calibration method for a structured light system [J]. Optical Engineering, 2008, 47(5): 053604. doi:  10.1117/1.2931517
[92] Saldner H O, Huntley J M. Temporal phase unwrapping: application to surface profiling of discontinuous objects [J]. Applied Optics, 1997, 36(13): 2770−2775. doi:  10.1364/AO.36.002770
[93] Martinez-Celorio R A, Davila A, Kaufmann G H, et al. Extension of the displacement measurement range for electronic speckle-shearing pattern interferometry using carrier fringes and a temporal-phase-unwrapping method [J]. Optical Engineering, 2000, 39(3): 751−758. doi:  10.1117/1.602423
[94] Huang L, Asundi A K. Phase invalidity identification framework with the temporal phase unwrapping method [J]. Measurement Science and Technology, 2011, 22(3): 035304. doi:  10.1088/0957-0233/22/3/035304
[95] Tian J, Peng X, Zhao X. A generalized temporal phase unwrapping algorithm for three-dimensional profilometry [J]. Optics and Lasers in Engineering, 2008, 46(4): 336−342. doi:  10.1016/j.optlaseng.2007.11.002
[96] Pedrini G, Alexeenko I, Osten W, et al. Temporal phase unwrapping of digital hologram sequences [J]. Applied Optics, 2003, 42(29): 5846−5854. doi:  10.1364/AO.42.005846
[97] Zuo C, Huang L, Zhang M, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review [J]. Optics and Lasers in Engineering, 2016, 85: 84−103.
[98] wii_百度百科[EB/OL]. [2020-01-10]. https://baike.baidu.com/item/wii/2285107?fr=aladdin.
[99] 便携Wii概念-芭蕾体感掌机激发游戏潮[EB/OL]. [2020-01-12]. http://tech.hexun.com/2011-02-20/127427010.html.
[100] Kinect[J]. Wikipedia, 2019.
[101] Kinect销量60天破800万应用范围超越游戏[EB/OL]. [2020-01-08]. http://it.sohu.com/20110117/n278914946.shtml.
[102] Techweb. 鲍尔默: Kinect上市60天销量达800万台[EB/OL]. [2020-01-08]. http://www.techweb.com.cn/world/2011-01-06/736155.shtml.
[103] 家用游戏机越走越近[EB/OL]. [2020-01-12]. http://games.ifeng.com/pcgame/detail_2012_11/21/19381973_2.shtml.
[104] Xbox | 官方网站[EB/OL]. [2020-01-10]. https://www.xbox.com/zh-CN.
[105] Kinect终于停产了: 它是怎样最终失败的?[EB/OL]. [2020-01-10]. www.sohu.com/a/200412330_624619.
[106] iPhoneX和三星Note8哪个值得买?[EB/OL]. [2020-01-12]. https://www.jb51.net/shouji/576894_3.html.
[107] 买不起 iPhone X?你还可以选择 iPhone X ”青春版“[EB/OL]. [2020-01-12]. www.sohu.com/a/223349103_114837.
[108] 支付宝刷脸设备补贴30亿取消, 新政策“不设上限上不封顶[EB/OL]. [2020-01-08]. https://weibo.com/ttarticle/p/show?id=2309404425892335058965#related.
[109] 三维视觉终于火了!两年内从Face ID到刷脸支付, 下一个风口到了[EB/OL]. [2020-01-10]. https://xueqiu.com/9919963656/132900079.
[110] 刷脸支付发展史, 微信、支付宝两大巨头的重金力推[EB/OL]. [2020-01-12]. www.sohu.com/a/341173479_120295819.
[111] 坐地铁、取快递、领养老金……刷脸时代真的来了[EB/OL]. [2020-01-08]. www.sohu.com/a/308339470_395108.
[112] “刷脸”时代来临: 坐地铁、取快递、领养老金[EB/OL]. [2020-01-08]. http://muji.bandao.cn/a/228954.html.
[113] 双眼视觉和立体视觉[EB/OL]. [2020-01-10]. http://amuseum.cdstm.cn/AMuseum/perceptive/page_3_eye/page_3_2b-16.htm.
[114] Snavely N, Seitz S M, Szeliski R. Photo tourism: exploring photo collections in 3D[C]//ACM SIGGRAPH 2006 Proceedings, Association for Computing Machinery, 2006: 835-846.
[115] Snavely N, Seitz S M, Szeliski R. Modeling the world from internet photo collections [J]. International Journal of Computer Vision, 2008, 80(2): 189−210. doi:  10.1007/s11263-007-0107-3
[116] Westoby M J, Brasington J, Glasser N F, et al. 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications [J]. Geomorphology, 2012, 179: 300−314. doi:  10.1016/j.geomorph.2012.08.021
[117] 想了解3D结构光, 看这份拆解就对了![EB/OL]. [2020-01-10]. https://www.jianshu.com/p/4365145add77.
[118] 蚂里奥发布全新毫米级3D人脸感知解决方案[EB/OL]. [2020-01-12]. http://www.eepw.com.cn/article/201903/398768.htm.
[119] Su X Y, Zhou W S, von Bally G, et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating [J]. Optics Communications, 1992, 94(6): 561−573. doi:  10.1016/0030-4018(92)90606-R
[120] Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature [J]. Science, 2002, 295(5553): 301−305. doi:  10.1126/science.1066408
[121] OSA | Recent Advances of VCSEL Photonics[EB/OL]. [2020-01-08]. https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-24-12-4502.
[122] Swanson G J, Veldkamp W B. Diffractive optical elements for use in infrared systems [J]. Optical Engineering, 1989, 28(6): 286605.
[123] Wyrowski F. Diffractive optical elements: iterative calculation of quantized, blazed phase structures [J]. JOSA A, 1990, 7(6): 961−969. doi:  10.1364/JOSAA.7.000961
[124] Wiedenmann D, Grabherr M, Jäger R, et al. High volume production of single-mode VCSELs[C]//SPIE, 2006, 6132: 613202.
[125] VCSEL amplifier dot projector with folded-path slow-light waveguide for 3D depth sensing[EB/OL]. [2020-01-08]. https://ieeexplore.ieee.org/abstract/document/8516183.
[126] Morinaga M, Gu X, Shimura K, et al. Compact dot projector based on folded path VCSEL amplifier for structured light sensing[C]//Conference on Lasers and Electro-Optics (2019), Optical Society of America, 2019: SM4N. 4.
[127] VCSEL为何突然火了?[EB/OL]. [2020-01-10]. http://www.sohu.com/a/295863707_256868.
[128] 前置3D成像将以结构光为主流四大部件难度各异[EB/OL]. [2020-01-10]. www.sohu.com/a/154077271_99935473.
[129] Durdle N G, Thayyoor J, Raso V J. An improved structured light technique for surface reconstruction of the human trunk[C]//Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No. 98TH8341), 1998, 2: 874–877.
[130] Chen C S, Hung Y P, Chiang C C, et al. Range data acquisition using color structured lighting and stereo vision [J]. Image and Vision Computing, 1997, 15(6): 445−456. doi:  10.1016/S0262-8856(96)01148-1
[131] MacWilliams F J, Sloane N J A. Pseudo-random sequences and arrays [J]. Proceedings of the IEEE, 1976, 64(12): 1715−1729. doi:  10.1109/PROC.1976.10411
[132] Salvi J, Batlle J, Mouaddib E. A robust-coded pattern projection for dynamic 3D scene measurement [J]. Pattern Recognition Letters, 1998, 19(11): 1055−1065. doi:  10.1016/S0167-8655(98)00085-3
[133] Pan B, Qian K, Xie H, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review [J]. Measurement Science and Technology, 2009, 20(6): 062001. doi:  10.1088/0957-0233/20/6/062001
[134] Mei X, Sun X, Zhou M, et al. On building an accurate stereo matching system on graphics hardware[C]// 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011: 467–474.
[135] Zhang Ke, Lu Jiangbo, Lafruit G. Cross-based local stereo matching using orthogonal integral images [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(7): 1073−1079. doi:  10.1109/TCSVT.2009.2020478
[136] Hirschmuller H. Accurate and efficient stereo processing by semi-global matching and mutual information[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005, 2: 807–814.
[137] Zhou P, Zhu J, Jing H. Optical 3-D surface reconstruction with color binary speckle pattern encoding [J]. Optics Express, 2018, 26(3): 3452. doi:  10.1364/OE.26.003452
[138] Pan B, Xie H, Wang Z, et al. Study on subset size selection in digital image correlation for speckle patterns [J]. Optics Express, 2008, 16(10): 7037. doi:  10.1364/OE.16.007037
[139] Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222−1239. doi:  10.1109/34.969114
[140] Sun J, Zheng N N, Shum H Y. Stereo matching using belief propagation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7): 14.
[141] Jae Chul Kim, Kyoung Mu Lee, Byoung Tae Choi, et al. A dense stereo matching using two-pass dynamic programming with generalized ground control points[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005, 2: 1075–1082.
[142] Forstmann S, Kanou Y, Jun Ohya, et al. Real-time stereo by using dynamic programming[C]// 2004 Conference on Computer Vision and Pattern Recognition Workshop, IEEE, 2004: 29–29.
[143] 体感设备-北京华捷艾米科技有限公司[EB/OL]. [2020-01-12]. http://www.hjimi.com/?pro/tgsb/.
[144] 产品参数信息 – 图漾科技-存在即被感知[EB/OL]. [2020-01-12]. https://www.percipio.xyz/dev_detail/?model_id=276.
[145] 电子行业智能手机走向存量时代, 关注新技术渗透带来的投资机会系列十: TOF, 海外市场发展迅速, 国内产业链机会来临[R]. 广州: 广发证券, 2016.
[146] 电子行业深度研究报告: 科技红利大时代8~3D摄像创新十年最夯, VCSEL引领激光应用里程碑[R]. 贵州: 华创证券, 2017.
[147] 电子元器件行业: 为什么现在需要重视脸部识别[R]. 深圳: 安信证券, 2016 .
[148] 技术剖解: 人脸识别三大优势与前景分析[EB/OL]. [2020-01-12]. http://tech.sina.com.cn/roll/2013-04-25/00592729625.shtml.
[149] 2017百家VR公司巡礼[EB/OL]. [2020-01-12]. www.sohu.com/a/195441916_104421.
[150] 佚名. 跑步进入未来?谈Leap Motion与人机交互[EB/OL]. [2020-01-12]. https://acc.pconline.com.cn/437/4375916.html.
[151] 微软Hololens_百度百科[EB/OL]. [2020-01-10]. https://baike.baidu.com/item/%E5%BE%AE%E8%BD%AFHololens/16690972?fromtitle=Microsoft%20HoloLens&fromid=16630317.
[152] 手势识别也是香饽饽[EB/OL]. [2020-01-10]. https://yq.aliyun.com/articles/599214.
[153] 2018年全球VR/AR行业投资现状分析中国是重要投资目的地[EB/OL]. [2020-01-10]. https://www.qianzhan.com/analyst/detail/220/180606-41ef69ab.html.
[154] 众趣科技只需90分钟就能为你克隆3D实景[EB/OL]. [2020-01-10]. www.sohu.com/a/228724895_99985415.
[155] 美国公司制作3D面具成功骗过微信支付宝等人脸支付[EB/OL]. [2020-01-12]. https://www.shangyexinzhi.com/article/details/id-387726/.
[156] 全球首款TOF手机来袭[EB/OL]. [2020-01-10]. www.sohu.com/a/247788268_115037.
[157] Liu K, Wang Y, Lau D L, et al. Dual-frequency pattern scheme for high-speed 3-D shape measurement [J]. Optics Express, 2010, 18(5): 5229−5244. doi:  10.1364/OE.18.005229
[158] Zuo C, Chen Q, Gu G, et al. High-speed three-dimensional profilometry for multiple objects with complex shapes [J]. Optics Express, 2012, 20(17): 19493−19510. doi:  10.1364/OE.20.019493
[159] Weise T, Leibe B, Van Gool L. Fast 3D Scanning with automatic motion compensation[C]//Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, 2007: 1–8.
[160] Li Z, Zhong K, Li Y F, et al. Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects [J]. Optics Letters, 2013, 38(9): 1389−1391. doi:  10.1364/OL.38.001389
[161] Tao T, Chen Q, Da J, et al. Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system [J]. Optics Express, 2016, 24(18): 20253−20269. doi:  10.1364/OE.24.020253
[162] Qian J, Tao T, Feng S, et al. Motion-artifact-free dynamic 3D shape measurement with hybrid Fourier-transform phase-shifting profilometry [J]. Optics Express, 2019, 27(3): 2713. doi:  10.1364/OE.27.002713
[163] Tao T, Chen Q, Feng S, et al. High-precision real-time 3D shape measurement based on a quad-camera system [J]. Journal of Optics, 2018, 20(1): 014009. doi:  10.1088/2040-8986/aa9e0f
[164] Liu Z, Zibley P C, Zhang S. Motion-induced error compensation for phase shifting profilometry [J]. Optics Express, 2018, 26(10): 12632−12637. doi:  10.1364/OE.26.012632
[165] Feng S, Zuo C, Tao T, et al. Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry [J]. Optics and Lasers in Engineering, 2018, 103: 127−138. doi:  10.1016/j.optlaseng.2017.12.001
[166] Zhang Y, Xiong Z, Yang Z, et al. Real-time scalable depth sensing with hybrid structured light illumination [J]. IEEE Transactions on Image Processing, 2013, 23(1): 97−109.
[167] Li B, Liu Z, Zhang S. Motion-induced error reduction by combining Fourier transform profilometry with phase-shifting profilometry [J]. Optics Express, 2016, 24(20): 23289. doi:  10.1364/OE.24.023289
[168] Liu X, Peng X, Chen H, et al. Strategy for automatic and complete three-dimensional optical digitization [J]. Optics Letters, 2012, 37(15): 3126. doi:  10.1364/OL.37.003126
[169] Song L, Ru Y, Yang Y, et al. Full-view three-dimensional measurement of complex surfaces [J]. Optical Engineering, 2018, 57(10): 1.
[170] Nießner M, Zollhöfer M, Izadi S, et al. Real-time 3D reconstruction at scale using voxel hashing [J]. ACM Transactions on Graphics, 2013, 32(6): 1−11.
[171] Epstein E, Granger-Piche M, Poulin P. Exploiting mirrors in interactive reconstruction with structured light[C]//Vision, Modeling, and Visualization, 2004: 125-132.
[172] Lanman D, Crispell D, Taubin G. Surround structured lighting: 3-D scanning with orthographic illumination [J]. Computer Vision and Image Understanding, 2009, 113(11): 1107−1117. doi:  10.1016/j.cviu.2009.03.016
[173] Chen B, Pan B. Mirror-assisted panoramic-digital image correlation for full-surface 360-deg deformation measurement [J]. Measurement, 2019, 132: 350−358. doi:  10.1016/j.measurement.2018.09.046
[174] Holz D, Ichim A E, Tombari F, et al. Registration with the point cloud library: A modular framework for aligning in 3-D [J]. IEEE Robotics & Automation Magazine, 2015, 22(4): 110−124.
[175] Mohammadzade H, Hatzinakos D. Iterative closest normal point for 3D face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 381−397. doi:  10.1109/TPAMI.2012.107
[176] Qian J, Feng S, Tao T, et al. High-resolution real-time 360° 3D model reconstruction of a handheld object with fringe projection profilometry [J]. Optics Letters, 2019, 44(23): 5751. doi:  10.1364/OL.44.005751
[177] Mariottini G L, Scheggi S, Morbidi F, et al. Planar mirrors for image-based robot localization and 3-D reconstruction [J]. Mechatronics, 2012, 22(4): 398−409. doi:  10.1016/j.mechatronics.2011.09.004
[178] Wang P, Wang J, Xu J, et al. Calibration method for a large-scale structured light measurement system [J]. Applied Optics, 2017, 56(14): 3995. doi:  10.1364/AO.56.003995
[179] Yin W, Feng S, Tao T, et al. Calibration method for panoramic 3D shape measurement with plane mirrors [J]. Optics Express, 2019, 27(25): 36538. doi:  10.1364/OE.27.036538
[180] Feng S, Chen Q, Zuo C, et al. Automatic identification and removal of outliers for high-speed fringe projection profilometry [J]. Optical Engineering, 2013, 52(1): 013605−013605. doi:  10.1117/1.OE.52.1.013605
[181] Lu J, Mo R, Sun H, et al. Invalid phase values removal method for absolute phase recovery [J]. Applied Optics, 2016, 55(2): 387−394. doi:  10.1364/AO.55.000387
[182] Lu J, Mo R, Sun H, et al. Simplified absolute phase retrieval of dual-frequency fringe patterns in fringe projection profilometry [J]. Optics Communications, 2016, 364: 101−109. doi:  10.1016/j.optcom.2015.11.022
[183] Wang H, Kemao Q, Soon S H. Valid point detection in fringe projection profilometry [J]. Optics Express, 2015, 23(6): 7535−7549. doi:  10.1364/OE.23.007535
[184] Yau S T. High dynamic range scanning technique [J]. Optical Engineering, 2009, 48(3): 033604. doi:  10.1117/1.3099720
[185] Qi Z, Wang Z, Huang J, et al. Improving the quality of stripes in structured-light three-dimensional profile measurement [J]. Optical Engineering, 2016, 56(3): 031208. doi:  10.1117/1.OE.56.3.031208
[186] Long Y, Wang S, Wu W, et al. Accurate identification of saturated pixels for high dynamic range measurement [J]. Optical Engineering, 2015, 54(4): 043106. doi:  10.1117/1.OE.54.4.043106
[187] Zhang B, Ouyang Y, Zhang S. High dynamic range saturation intelligence avoidance for three-dimensional shape measurement[C]//IEEE, 2015: 981–990.
[188] Ekstrand L. Autoexposure for three-dimensional shape measurement using a digital-light-processing projector [J]. Optical Engineering, 2011, 50(12): 123603. doi:  10.1117/1.3662387
[189] Zhong K, Li Z, Zhou X, et al. Enhanced phase measurement profilometry for industrial 3D inspection automation [J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9-12): 1563−1574. doi:  10.1007/s00170-014-6360-z
[190] Rao L, Da F. High dynamic range 3D shape determination based on automatic exposure selection [J]. Journal of Visual Communication and Image Representation, 2018, 50: 217−226. doi:  10.1016/j.jvcir.2017.12.003
[191] Song Z, Jiang H, Lin H, et al. A high dynamic range structured light means for the 3D measurement of specular surface [J]. Optics and Lasers in Engineering, 2017, 95: 8−16. doi:  10.1016/j.optlaseng.2017.03.008
[192] Feng S, Chen Q, Zuo C, et al. Fast three-dimensional measurements for dynamic scenes with shiny surfaces [J]. Optics Communications, 2017, 382: 18−27. doi:  10.1016/j.optcom.2016.07.057
[193] Waddington C, Kofman J. Saturation avoidance by adaptive fringe projection in phase-shifting 3D surface-shape measurement[C]// IEEE, 2010: 1–4.
[194] Waddington C, Kofman J. Modified sinusoidal fringe-pattern projection for variable illuminance in phase-shifting three-dimensional surface-shape metrology [J]. Optical Engineering, 2014, 53(8): 084109. doi:  10.1117/1.OE.53.8.084109
[195] Zhang L, Chen Q, Zuo C, et al. High dynamic range 3D shape measurement based on the intensity response function of a camera [J]. Applied Optics, 2018, 57(6): 1378. doi:  10.1364/AO.57.001378
[196] Li D, Kofman J. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement [J]. Optics Express, 2014, 22(8): 9887. doi:  10.1364/OE.22.009887
[197] Chen C, Gao N, Wang X, et al. Adaptive pixel-to-pixel projection intensity adjustment for measuring a shiny surface using orthogonal color fringe pattern projection [J]. Measurement Science and Technology, 2018, 29(5): 055203. doi:  10.1088/1361-6501/aab07a
[198] Lin H, Gao J, Mei Q, et al. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement [J]. Optics Express, 2016, 24(7): 7703. doi:  10.1364/OE.24.007703
[199] Lin H, Gao J, Mei Q, et al. Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment [J]. Optics and Lasers in Engineering, 2017, 91: 206−215. doi:  10.1016/j.optlaseng.2016.11.015
[200] Chen S, Xia R, Zhao J, et al. Analysis and reduction of phase errors caused by nonuniform surface reflectivity in a phase-shifting measurement system [J]. Optical Engineering, 2017, 56(3): 033102. doi:  10.1117/1.OE.56.3.033102
[201] Babaie G, Abolbashari M, Farahi F. Dynamics range enhancement in digital fringe projection technique [J]. Precision Engineering, 2015, 39: 243−251. doi:  10.1016/j.precisioneng.2014.06.007
[202] Sheng H, Xu J, Zhang S. Dynamic projection theory for fringe projection profilometry [J]. Applied Optics, 2017, 56(30): 8452. doi:  10.1364/AO.56.008452
[203] Qi Z, Wang Z. Highlight removal based on the regional-projection fringe projection method [J]. Optical Engineering, 2018, 57(04): 1.
[204] Ri S, Fujigaki M, Morimoto Y. Intensity range extension method for three-dimensional shape measurement in phase-measuring profilometry using a digital micromirror device camera [J]. Applied Optics, 2008, 47(29): 5400. doi:  10.1364/AO.47.005400
[205] Chen T, Lensch H P A, Fuchs C, et al. Polarization and phase-shifting for 3D scanning of translucent objects[C]// IEEE, 2007: 1–8.
[206] Salahieh B, Chen Z, Rodriguez J J, et al. Multi-polarization fringe projection imaging for high dynamic range objects [J]. Optics Express, 2014, 22(8): 10064. doi:  10.1364/OE.22.010064
[207] Cai Z, Liu X, Peng X, et al. Structured light field 3D imaging[J]. Optics Express, 2016, 24(18): 20324-20334.
[208] Feng S, Zhang Y, Chen Q, et al. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique [J]. Optics and Lasers in Engineering, 2014, 59: 56−71. doi:  10.1016/j.optlaseng.2014.03.003
[209] Liu G, Liu X Y, Feng Q Y. 3D shape measurement of objects with high dynamic range of surface reflectivity [J]. Applied Optics, 2011, 50(23): 4557. doi:  10.1364/AO.50.004557
[210] Jiang H, Zhao H, Li X. High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces [J]. Optics and Lasers in Engineering, 2012, 50(10): 1484−1493. doi:  10.1016/j.optlaseng.2011.11.021
[211] Zhao H, Liang X, Diao X, et al. Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector [J]. Optics and Lasers in Engineering, 2014, 54: 170−174. doi:  10.1016/j.optlaseng.2013.08.002
[212] Yin Y, Cai Z, Jiang H, et al. High dynamic range imaging for fringe projection profilometry with single-shot raw data of the color camera [J]. Optics and Lasers in Engineering, 2017, 89: 138−144. doi:  10.1016/j.optlaseng.2016.08.019
[213] Jiang C, Bell T, Zhang S. High dynamic range real-time 3D shape measurement [J]. Optics Express, 2016, 24(7): 7337. doi:  10.1364/OE.24.007337
[214] Wang M, Du G, Zhou C, et al. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm [J]. Optics Communications, 2017, 385: 43−53. doi:  10.1016/j.optcom.2016.10.023
[215] Chen Y, He Y, Hu E. Phase deviation analysis and phase retrieval for partial intensity saturation in phase-shifting projected fringe profilometry [J]. Optics Communications, 2008, 281(11): 3087−3090. doi:  10.1016/j.optcom.2008.01.070
[216] Hu E, He Y, Chen Y. Study on a novel phase-recovering algorithm for partial intensity saturation in digital projection grating phase-shifting profilometry [J]. Optik-International Journal for Light and Electron Optics, 2010, 121(1): 23−28. doi:  10.1016/j.ijleo.2008.05.010
[217] Chen B, Zhang S. High-quality 3D shape measurement using saturated fringe patterns [J]. Optics and Lasers in Engineering, 2016, 87: 83−89. doi:  10.1016/j.optlaseng.2016.04.012
[218] Qi Z, Wang Z, Huang J, et al. Error of image saturation in the structured-light method [J]. Applied Optics, 2018, 57(1): A181−A188. doi:  10.1364/AO.57.00A181
[219] Zhang L, Chen Q, Zuo C, et al. High dynamic range 3D shape measurement based on time domain superposition [J]. Measurement Science and Technology, 2019, 30(6): 065004.
[220] Feng S, Zhang L, Zuo C, et al. High dynamic range 3D measurements with fringe projection profilometry: a review [J]. Measurement Science and Technology, 2018, 29(12): 122001. doi:  10.1088/1361-6501/aae4fb
[221] Feng S, Chen Q, Gu G, et al. Fringe pattern analysis using deep learning [J]. Advanced Photonics, 2019, 1(2): 025001.
[222] Feng S, Zuo C, Yin W, et al. Micro deep learning profilometry for high-speed 3D surface imaging [J]. Optics and Lasers in Engineering, 2019, 121: 416−427. doi:  10.1016/j.optlaseng.2019.04.020
[223] Lei S, Zhang S. Flexible 3-D shape measurement using projector defocusing [J]. Optics Letters, 2009, 34(20): 3080−3082. doi:  10.1364/OL.34.003080
[224] Ayubi G A, Ayubi J A, Di Martino J M, et al. Pulse-width modulation in defocused three-dimensional fringe projection [J]. Optics Letters, 2010, 35(21): 3682−3684. doi:  10.1364/OL.35.003682
[225] Zuo C, Chen Q, Feng S, et al. Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing [J]. Applied Optics, 2012, 51(19): 4477−4490. doi:  10.1364/AO.51.004477
[226] Zuo C, Chen Q, Gu G, et al. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection [J]. Optics and Lasers in Engineering, 2013, 51(8): 953−960. doi:  10.1016/j.optlaseng.2013.02.012
[227] Wang Y, Zhang S. Superfast multifrequency phase-shifting technique with optimal pulse width modulation [J]. Optics Express, 2011, 19(6): 5149−5155. doi:  10.1364/OE.19.005149
[228] Wang Y, Zhang S. Three-dimensional shape measurement with binary dithered patterns [J]. Applied Optics, 2012, 51(27): 6631−6636. doi:  10.1364/AO.51.006631
[229] Dai J, Zhang S. Phase-optimized dithering technique for high-quality 3D shape measurement [J]. Optics and Lasers in Engineering, 2013, 51(6): 790−795. doi:  10.1016/j.optlaseng.2013.02.003
[230] Dai J, Li B, Zhang S. High-quality fringe pattern generation using binary pattern optimization through symmetry and periodicity [J]. Optics and Lasers in Engineering, 2014, 52: 195−200. doi:  10.1016/j.optlaseng.2013.06.010
[231] Sun J, Zuo C, Feng S, et al. Improved intensity-optimized dithering technique for 3D shape measurement [J]. Optics and Lasers in Engineering, 2015, 66: 158−164. doi:  10.1016/j.optlaseng.2014.09.008
[232] Dai J, Li B, Zhang S. Intensity-optimized dithering technique for three-dimensional shape measurement with projector defocusing [J]. Optics and Lasers in Engineering, 2014, 53: 79−85. doi:  10.1016/j.optlaseng.2013.08.015
[233] Zhang S, Van D W D, Oliver J. Superfast phase-shifting method for 3-D shape measurement [J]. Optics Express, 2010, 18(9): 9684. doi:  10.1364/OE.18.009684
[234] Gong Y, Zhang S. Ultrafast 3-D shape measurement with an off-the-shelf DLP projector [J]. Optics Express, 2010, 18(19): 19743−19754. doi:  10.1364/OE.18.019743
[235] Zuo C, Tao T, Feng S, et al. Micro Fourier Transform Profilometry (μ FTP): 3D shape measurement at 10, 000 frames per second [J]. Optics and Lasers in Engineering, 2018, 102: 70−91. doi:  10.1016/j.optlaseng.2017.10.013
[236] Zhang Q, Su X, Cao Y, et al. Optical 3-D shape and deformation measurement of rotating blades using stroboscopic structured illumination [J]. Optical Engineering, 2005, 44(11): 113601. doi:  10.1117/1.2127927
[237] Schaffer M, Grosse M, Harendt B, et al. High-speed optical 3-d measurements for shape representation [J]. Optics and Photonics News, 2011, 22(12): 49−49. doi:  10.1364/OPN.22.12.000049
[238] Schaffer M, Grosse M, Harendt B, et al. High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection [J]. Optics Letters, 2011, 36(16): 3097−3099. doi:  10.1364/OL.36.003097
[239] Schaffer M, Grosse M, Harendt B, et al. Statistical patterns: an approach for high-speed and high-accuracy shape measurements [J]. Optical Engineering, 2014, 53(11): 112205. doi:  10.1117/1.OE.53.11.112205
[240] Grosse M, Schaffer M, Harendt B, et al. Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding [J]. Optical Engineering, 2011, 50(10): 100503. doi:  10.1117/1.3646100
[241] Fujigaki M, Sakaguchi T, Murata Y. Development of a compact 3D shape measurement unit using the light-source-stepping method [J]. Optics and Lasers in Engineering, 2016, 85: 9−17. doi:  10.1016/j.optlaseng.2016.04.016
[242] Heist S, Mann A, Kühmstedt P, et al. Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement [J]. Optical Engineering, 2014, 53(11): 112208. doi:  10.1117/1.OE.53.11.112208
[243] Heist S, Lutzke P, Schmidt I, et al. High-speed three-dimensional shape measurement using GOBO projection [J]. Optics and Lasers in Engineering, 2016, 87: 90−96. doi:  10.1016/j.optlaseng.2016.02.017
[244] Heist S. 5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light [J]. Optics Express, 2018: 14.
[245] Landmann M, Heist S, Dietrich P, et al. High-speed 3D thermography [J]. Optics and Lasers in Engineering, 2019, 121: 448−455. doi:  10.1016/j.optlaseng.2019.05.009
[246] Zhang M, Chen Q, Tao T, et al. Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection [J]. Optics Express, 2017, 25(17): 20381. doi:  10.1364/OE.25.020381