[1] Yi lmaz A, Javed O, Shah M. Object tracking[J.] ACM Comput Surv, 2006, 38(4):13.
[2] Bao C, Wu Y, Ling H, et al. Real time robust L1 tracker using accelerated proximal gradient approach[J]. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, 2012, 157(10):1830-1837.
[3] Bertinetto L, Valmadre J, Golodetz S, et al. Staple:Complementary Learners for Real-Time Tracking[M]. Oxford:University of Oxford, 2015:1401-1409.
[4] Luo J, Konofagou E. A fast normalized cross-correlation calculation method for motion estimation[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2010, 57(6):1347-1357.
[5] Chang C, Ansari R. Kernel particle filter for visual tracking[J]. IEEE Signal Process Lett, 2005,12(3):242-245.
[6] Amiaz T, Lubetzky E, Kiryati N. Coarse to over-fine optical flow estimation[J]. Pattern Recognit, 2007, 40(9):2496-2503.
[7] Comaniciu D, Meer P, Member S. Mean Shift:a robust approach toward feature space analysis[J]. IEEE Transaction on Pattern Analasys and Machine Intelligence, 2002, 24(5):603-619.
[8] Shi Zelin, Wang Junqing, Huang Shabai. Tracking of deformable objects in complex scene[J]. Opto-Electronic Engineering, 2005, 32(1):2-6.
[9] Zhang T, Bibi A, Ghanem B. In defense of sparse tracking:circulant sparse tracker[C]//CVPR, 2016, 3:1-8.
[10] Tao R, Gavves E, Smeulders A W M. Siamese Instance Search for Tracking[C]//CVPR, 2016:1420-1429.
[11] Kala l Z, Mikolajczyk K, Matas J. Tracking-Learning-Detection[J]. IEEE Transaction on Pattern Analasys and Machine Intelligence, 2010, 6(1):1-14.
[12] Hare S, Saffari A, Torr P H S. Struck_Structured output tracking with kernels[C]//2011 IEEE International Conference on Computer Vision, 2011:263-270.
[13] Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. EEE Trans Pattern Anal Mach Intell, 2015, 37(3):583-596.
[14] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networksr[J]//Science, 2006, 313(5786):504-507.
[15] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
[16] Held D, Thrun S, Savarese S. Learning to track at 100 FPS with deep regression networks[C]//ECCV, 2016, 9905:749-765.
[17] Wang N, Yeung D Y. Learning a deep compact image representation for visual tracking[C]//Adv Neural Inf Process Syst, 2013:1-9.
[18] Danelljan M, Robinson A, Khan F S, et al. Felsberg, Beyond correlation filters:Learning continuous convolution operators for visual tracking[C]//ECCV 2016, 2016, 9909:472-488.
[19] Qi Y, Zhang S, Qin L, et al. Hedged Deep Tracking[C]//CVPR, 2016:4303-4311.
[20] Wang L, Ouyan g W, Wang X, et al. Stct:Sequentially training convolutional networks for visual tracking[C]//IEEE Conf Comput Vis Pattern Recognit, 2016:1373-1381.
[21] Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking[J]. Computer Science, 2015:4293-4302.
[22] Nam H, Baek M, Han B. Modeling and propagating CNNs in a tree structure for visual tracking[C]//European Conference on Computer Vision, 2016:1-10.
[23] Cui Z, Xiao S, Feng J, et al. Recurrently target-attending tracking[J]. IEEE Conf Comput Vis Pattern Recognit, 2016:1449-1458.
[24] Ning Guanghan, Zhang Zhi, Huang Chen, et al. Spatially supervised recurrent convolutional neural networks for visual object tracking[C]//CVPR 2016, 2016.