[1] Gapontsev V, Fomin V, Ferin A, et al. Diffraction limited ultra-high-power fiber lasers[C]//Advanced Solid-State Photonics, OSA Technical Digest Series, OSA, 2010:paper AWA1.
[2] Michalis N Z, Christophe A C. High power fiber lasers:a review[J]. IEEE Journal of Select Topics in Quantum Electronics, 2014, 20(5):0904123.
[3] Bourdon P, Lombard L, Durecu A, et al. Coherent combining of fiber lasers[C]//SPIE, 2017, 10254:1025402-1-10.
[4] Shcherbakov E A, Fomin V V, Abramov A A,et al. Industrial grade 100 kW power CW fiber laser[C]//Advanced Solid-State Lasers Congress Technical Digest, OSA, 2013:ATh4A.
[5] Madasamy P, Loftus T, Thomas P, et al. Comparison of spectral beam combining approaches for high power fiber laser systems[C]//SPIE, 2008, 6952:695207-1-10.
[6] Schmidt O, Wirth C, Nodop D, et al. Spectral beam combination of fiber amplified ns-pulses by means of interference filter[J]. Optics Express, 2009, 17(25):22974-22982.
[7] Andrusyak O, Ciapurin I, Smirnov V, et al. External and common-cavity high spectral density beam combining of high power fiber lasers[C]//SPIE, 2008, 6873:687314-1-8.
[8] Andrusyak O, Smirnov V, Venus G, et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings[J]. IEEE Journal of Select Topics in Quantum Electronics, 2009, 15(2):344-353.
[9] Ott D, Divliansky I, Anderson B, et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating[J]. Optics Express, 2013, 21(24):29620-29627.
[10] Drachenberg D R, Andrusyak O, Venus G, et al. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers[J]. Applied Optics, 2014, 53(6):1242-1246.
[11] Pu Shibing, Jiang Zongfu, Xu Xiaojun. Numerical analysis of spectral beam combining by volume Bragg grating[J]. High Power Laser and Particle Beams, 2008, 20(5):721-724. (in Chinese)蒲世兵, 姜宗福, 许晓军. 基于体布拉格光栅的光谱合成的数值分析[J]. 强激光与粒子束, 2008, 20(5):721-724.
[12] Wang Junzhen, Wang Yuefeng, Bai Huijun. Study on multi-channel spectral beam combined characteristics based on volume Bragg gratings[J]. Laser Technology, 2012, 36(5):593-596. (in Chinese)王军阵, 汪岳峰, 白慧君. 多路激光体布喇格光栅光谱合成特性研究[J]. 激光技术, 2012, 36(5):593-596.
[13] Liang Xiaobao, Chen Liangming, Li Chao, et al. High average power spectral beam combining employing volume Bragg gratings[J]. High Power Laser and Particle Beams, 2015, 27(7):071012. (in Chinese)梁小宝, 陈良明, 李超, 等. 体布拉格光栅用于高功率光谱组束的研究[J]. 强激光与粒子束, 2015, 27(7):071012.
[14] Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Select Topics in Quantum Electronics, 2007, 13(3):487-497.
[15] Wirth C, Schmidt O, Tsybin L I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 2011, 36(16):3118-3120.
[16] Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency and brightness[C]//SPIE, 2013, 8601:8601115-1-5.
[17] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//SPIE, 2015, 9730:97300Y.
[18] Liu A, Mead R, Vatter T, et al. Spectral beam combining of high power fiber lasers[C]//SPIE, 2004, 5335:81-88.
[19] Madasamy P, Jander D, Brooks C, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE Journal of Select Topics in Quantum Electronics, 2009, 15(2):337-343.
[20] Tian Fei, Yan Hong, Chen Li,et al. Investigation on the influence of spectral linewidth broadening on beam quality in spectral beam combination[C]//SPIE, 2014, 9255:92553N.
[21] Ma Yi, Yan Hong, Tian Fei, et al. Common apertures spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle Beams, 2015, 27(4):040101. (in Chinese)马毅, 颜宏, 田飞, 等. 光纤激光共孔径光谱合成实现5kW高效优质输出[J]. 强激光与粒子束, 2015, 27(4):040101.
[22] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese J Lasers, 2016, 43(9):0901009. (in Chinese)马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43(9):0901009.
[23] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 2014, 39(3):666-669.
[24] Huang L, Wu H, Li R, et al. 414 W near-diffraction-limited all-fiberized single frequency polarization-maintained fiber amplifier[J]. Optics Letters, 2017, 42(1):1-4.
[25] Khitrov V, Farley K, Leveille R, et al. kW level narrow linewidth Yb fiber amplifiers for beam combining[C]//SPIE, 2010, 7686:76860A.
[26] Engin D, Lu W, Akbulut M,et al. 1 kW CW Yb-fiber-amplifier with 0.5 GHz linewidth and near diffraction limited beam-quality, for coherent combining application[C]//SPIE, 2011, 7914:791407-1-7.
[27] Flores A, Robin C, Lanari A,et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 2014, 22(15):17735-17744.
[28] Huang Z, Liang X, Li C, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2):297-302.
[29] Sun Yihong, Feng Yujun, Li Tenglong, et al. 1.06 kW 13 GHz linewidth all fiber laser[J]. High Power Laser and Particle Beams, 2015, 27(7):071013. (in Chinese)孙殷宏, 冯昱骏, 李腾龙, 等. 1.06 kW 13 GHz线宽全光纤激光器[J]. 强激光与粒子束, 2015, 27(7):071013.
[30] Ma P, Tao R, Su R, et al. 1.89 kW all-fiberized and polarization maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4):4187-4195.
[31] Su R, Tao R, Wang X, et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Phys Lett, 2017, 14(8):085102.
[32] Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbiumdoped low NA fiber amplifier[J]. Optics Express, 2016, 24(6):6011-6020.
[33] Platonov N, Yagodkin R, Cruz J, et al. 1.5 kW linear polarized on PM fiber and 2kW on non-PM fiber narrow linewidth CW diffraction-limited fiber amplifier[C]//SPIE, 2017, 10085:100850M.
[34] 杨依枫, 沈辉, 陈晓龙, 等. 全光纤化高效率、窄线宽光纤激光器实现2.5 kW近衍射极限输出[J]. 中国激光, 2016, 43(4):0419004.
[35] Xu J, Liu W, Leng J, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW[J]. Optics Letters, 2015, 40(13):2973-2976.
[36] Du X, Zhang H, Ma P,et al.Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser[J]. Optics Letters, 2015, 40(22):5311-5314.
[37] Li Tenglong, Li Yang, Peng Wanjing,et al. 1.1 kW narrowband spectra random fiber laser amplifier[J]. Chinese J Lasers, 2017, 44(2):0202015. (in Chinese)李腾龙, 李阳, 彭万敬, 等. 1.1 kW窄光谱随机光纤激光放大[J]. 中国激光, 2017, 44(2):0202015.
[38] Smith A, Smith J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11):10180-10912.
[39] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. A novel theoretical model for mode instability in high power fiber lasers[C]//Advanced Solid State Laser, 2014:AM5A.20.
[40] Li Zebiao, Huang Zhihua, Xiang Xiaoyu. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser[J]. Photonics Research, 2017, 5(2):77-81.
[41] Wang Yanshan, Liu Qinyong, Ma Yi, et al. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers[J]. Ann Phys, 2017, 529(8):1600398.
[42] Huang Y, Edgecumbe J, Ding Jianwu, et al. Performance of kW class fiber amplifiers spanning a broad range of wavelengths:1028-1100 nm[C]//SPIE, 2014, 8961:89612K.
[43] Yagodkin R, Platonov N, Yusim A, et al. 1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[C]//SPIE, 2015, 9728:972807-1-6.
[44] Sun Yinhong, Ke Weiwei, Feng Yujun, et al. 1030 nm kilowatt-level ytterbium-doped narrow linewidth fiber amplifier[J]. Chinese J Lasers, 2016, 43(6):0601003. (in Chinese)孙殷宏, 柯伟伟, 冯昱骏, 等. 1030 nm千瓦级掺镱光纤窄线宽激光放大器[J]. 中国激光, 2016, 43(6):0601003.
[45] Naderi A, Dajani I, Flores A. High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 2016, 41(5):1018-1021.
[46] Chen Hui, Guan Heyuan, Zeng Lijiang, et al.Fabrication of broadband, high-efficiency, metal-multilayer-dielectric gratings[J]. Optics Communications, 2014, 329(2014):103-108.
[47] Hu Anduo, Zhou Changhe, Cao Hongchao, et al. Polarization-independent wideband mixed metal dielectric reflective gratings[J]. Applied Optics, 2012, 51(20):4902-4906.
[48] Naderi A, Dajani I, Flores A. High-efficiency multilayer dielectric diffraction gratings[J]. Optics Letters, 1995, 20(8):940-942.
[49] Clausnitzer T, Limpert J, Zollner K, et al. Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems[J]. Applied Optics, 2003, 42(34):6934-6938.
[50] Rumpel M, Moeller M, Moormann C, et al. Broadband pulse compression gratings with measured 99.7% diffraction efficiency[J]. Optics Letters, 2014, 39(2):323-326.
[51] Kemme S A,Scrymgeour D A,Peter D W. High-efficiency diffractive optical eements for spectral beam combining[C]//SPIE, 2012, 8381:83810Q.
[52] Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11):12063-12071.
[53] Cho H, Kim H, Lee Y. Design and fabrication of multilayer dielectric gratings for spectral beam combining[C]//SPIE, 2015, 9556:955615-1-6.
[54] Shen Biyao, Zeng Lijiang, Li Lifeng, et al. Fabrication of polarization independent gratings made on multilayer dielectric thin film substrates[J]. High Power Laser and Particle Beams, 2015, 27(11):111013. (in Chinese)申碧瑶, 曾理江, 李立峰, 等. 多层介质膜偏振无关光栅的研制[J].强激光与粒子束, 2015, 27(11):111013.
[55] Beresnev L, Motes R, Townes K, et al. Design of a noncooled fiber collimator for compact, high-efficiency fiber laser arrays[J]. Applied Optics, 2017, 56(3):B169-B178.
[56] 李腾龙, 查从文, 彭万敬, 等. 2 kW窄光谱随机光纤激光放大输出[J]. 中国激光, 2017, 44(4):0415003.
[57] Sun Yinhong. Theory and experiment study on fiber laser with high power and narrow linewidth[D]. Mianyang:China Academy of Engineering Physics, 2016:51-53. (in Chinese)孙殷宏. 高功率窄线宽光纤激光器理论和实验研究[D]. 绵阳:中国工程物理研究院, 2016:51-53.
[58] Cheung E, Ho J, Goodno G, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Opt Lett, 2008, 33(4):354-356.
[59] Thielen P, Ho J, Burchman D, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Opt Lett, 2012, 37(18):3741-3743.
[60] Redmond S M, Fan T Y, Ripin D J, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Opt Lett, 2012, 37(14):2832-2834.
[61] Flores A, Ehrenreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//SPIE, 2015, 9728:97281Y.
[62] Goodno G, Shih C, Rothenberg, et al. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 2010, 18(24):25403-25414.