[1] Qun Feng, Hong Chen. The safety-level gap between China and the US in view of the interaction between coal production and safety management [J]. Safety Science, 2013, 54: 80-86. doi:  10.1016/j.ssci.2012.12.001
[2] Qi Qingjie, Zhao Xiaoliang, Song Baichao. Pre-evaluation method of coal mine safety based on continental distance model with varying weight [J]. Procedia Earth and Planetary Science, 2009, 1(1): 180-185. doi:  10.1016/j.proeps.2009.09.030
[3] Song Weihua, Zhang Hongwei. Regional prediction of coal and gas outburst hazard based on multi-factor pattern recognition [J]. Procedia Earth and Planetary Science, 2009, 1(1): 347-353. doi:  10.1016/j.proeps.2009.09.055
[4] Khatik V M, Nandi A K. A generic method for rock mass classification [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(1): 106-120.
[5] Weidner L, Walton G, Kromer R A. Classification methods for point clouds in rock slope monitoring: A novel machine learning approach and comparative analysis [J]. Engineering Geology, 2019, 263: 105326. doi:  10.1016/j.enggeo.2019.105326
[6] Ryan A K, D Jean H, Lato M J, et al. Identifying rock slope failure precursors using LiDAR for transportation corridor hazard management [J]. Engineering Geology, 2015, 195: 93-103. doi:  10.1016/j.enggeo.2015.05.012
[7] Hartzell P, Glennie C, Biber K, et al. Application of multispectral LiDAR to automated virtual outcrop geology [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88: 147-155.
[8] Chen Yuwei, Jiang Changhui, Hyyppa Juha, et al. Feasibility study of ore classification using active hyperspectral LiDAR [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1785-1789. doi:  10.1109/LGRS.2018.2854358
[9] Liu Bingyi, Zhuang Quanfeng, Qin Shengguang, et al. Aerosol classification method based on high spectral resolution lidar [J]. Infrared and Laser Engineering, 2017, 46(4): 0411001. (in Chinese) doi:  10.3788/IRLA201746.0411001
[10] Dong Junfa, Liu Jiqiao, Zhu Xiaolei, et al. Splitting ratio optimization of spaceborne high spectral resolution lidar [J]. Infrared and Laser Engineering, 2019, 48(S2): S205001. (in Chinese) doi:  10.3788/IRLA201948.S205001
[11] Xu Junjie, Bu Lingbing, Liu Jiqiao, et al. Airborne high-spectral-resolution lidar for atmospheric aerosol detection [J]. Chinese Journal of Lasers, 2020, 47(7): 0710003. doi:  10.3788/CJL202047.0710003
[12] Morsdorf, Nichol, Malthus, et al. Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling [J]. Remote Sensing of Environment, 2009, 113(10): 2152-2163. doi:  10.1016/j.rse.2009.05.019
[13] Chen Yuwei, Räikkönen E, Kaasalainen S, et al. Two-channel hyperspectral LiDAR with a supercontinuum laser source [J]. Sensors, 2010, 10(7): 7057-7066. doi:  10.3390/s100707057
[14] Sanna K, Anttoni J, Mikko K, et al. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods [J]. Remote Sensing, 2011, 3(10): 2207-2221. doi:  10.3390/rs3102207
[15] Balduzzi M A F, Dimitry V D Z, Stuckens J, et al. The properties of terrestrial laser system intensity for measuring leaf geometries: A case study with conference pear trees (Pyrus Communis) [J]. Sensors, 2011, 11(2): 1657-1681. doi:  10.3390/s110201657
[16] Hoefle B, Pfeifer N. Correction of laser scanning intensity data: Data and model-driven approaches [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(6): 415-433. doi:  10.1016/j.isprsjprs.2007.05.008
[17] Yan W Y, Shaker A, Habib A, et al. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 35-44.
[18] Shao Hui, Chen Yuwei, Yang Zhirong, et al. A 91-channel hyperspectral LiDAR for coal/rock classification [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 1052-1056. doi:  10.1109/LGRS.2019.2937720
[19] Chen Yuwei, Li Wei, Juha H, et al. A 10-nm spectral resolution hyperspectral LiDAR system based on an acousto-optic tunable filter [J]. Sensors, 2019, 19(7): 1620. doi:  10.3390/s19071620
[20] CoifmanR R, Wickerhauser M V. Entropy-based algorithms for best basis selection [J]. IEEE Transactions on Information Theory, 1992, 38(2): 713-718. doi:  10.1109/18.119732
[21] Diner D J, Xu F, GarayM J, et al. The Airborne Multiangle Spectro Polarimetric Imager (AirMSPI): A new tool for aerosol and cloud remote sensing [J]. Atmospheric Measurement Techniques, 2013, 6(8): 2007-2025. doi:  10.5194/amt-6-2007-2013
[22] Chen Jikai, Li Guoqing. Tsallis wavelet entropy and its application in power signal analysis [J]. Entropy, 2014, 16(6): 3009-3025. doi:  10.3390/e16063009
[23] Hovi A, Korhonen L, Vauhkonen J, et al. LiDAR waveform features for tree species classification and their sensitivity to tree- and acquisition related parameters [J]. Remote Sensing of Environment, 2016, 173: 224-237. doi:  10.1016/j.rse.2015.08.019
[24] Su Dianpeng, Yang Fanlin, Ma Yue, et al. Classification of coral reefs in the south China sea by combining airborne LiDAR bathymetry bottom waveforms and bathymetric features [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 815-828. doi:  10.1109/TGRS.2018.2860931
[25] Gu Zhujun, Cao Sen, Sanchez-Azofeifa G A. Using LiDAR waveform metrics to describe and identify successional stages of tropical dry forests [J]. ITC Journal, 2018, 73: 482-492.
[26] Guo Lei, Chang Weiwei, Fu Chaoyang. Band selection of optimal for hyperspectral image fusion [J]. Journal of Astronautics, 2011, 32(2): 374-379.
[27] Chan C W, Desiré P. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery [J]. Remote Sensing of Environment, 2008, 112(6): 2999-3011. doi:  10.1016/j.rse.2008.02.011
[28] Ghasemian N, Akhoondzadeh M. Introducing two Random Forest based methods for cloud detection in remote sensing images [J]. Advances in Space Research, 2018, 62(2): 288-303. doi:  10.1016/j.asr.2018.04.030
[29] Zhao Chunhui, Gao Bing, Zhang Lejun, et al. Classification of hyperspectral imagery based on spectral gradient, SVM and spatial random forest [J]. Infrared Physics and Technology, 2018, 95: 61-69.
[30] Emma I V, Raúl Z M. An evaluation of guided regularized random forest for classification and regression tasks in remote sensing [J]. International Journal of Applied Earth Observations and Geoinformation, 2020, 88: 102051. doi:  10.1016/j.jag.2020.102051
[31] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in python [J]. Journal of Machine Learning Research, 2011, 12: 2825-2830.
[32] Shao Hui, Chen Yuwei, Li Wei, et al. An investigation of spectral band selection for hyperspectral LiDAR technique [J]. Electronics, 2020, 9(9): 148.
[33] Yan Shouxun, Zhang Bing, Zhao Yongchao, et al. Summarizing the VIS-NIR spectra of minerals and rocks [J]. Remote Sensing Technology and Application, 2003, 18(4): 191-201.