[1] Diolaiti E, Ragazzoni R, Pedichini F, et al. Blue and red channels of LBC:a status report on the optics and mechanics[C]//Astronomical Telescopes & Instrumentation. International Society for Optics and Photonics, 2003.
[2] Doel P, Abbott T, Antonik M, et al. Design and status of the optical corrector for the DES survey instrument[C]//Ground-based and Airborne Instrumentation for Astronomy Ⅱ. International Society for Optics and Photonics, 2008.
[3] Barto A, Winters S, Burge J, et al. Design and component test results of the LSST Camera L1-L2 lens assembly[C]//Society of Photo-Optical Instrumentation Engineers(SPIE)Conference Series, 2017, 104010N:2274808.
[4] Fabricant D. Flexure mounts for high-performance astronomical lenses[C]//Proc SPIE, 2006, 6269:672634.
[5] Peterson J R, Jernigan J G, Kahn S M, et al. Simulation of astronomical images from optical survey telescopes using a comprehensive photon Monte Carlo approach[J]. Astrophysical Journal Supplement, 2015, 218(1):1-24.
[6] Peterson J R, Peng E, Burke C J, et al. Deformation of optics for photon Monte Carlo simulations[J]. The Astrophysical Journal, 2019, 873(1):1-14.
[7] An Qichang, Zhang Jingxu, Yang Fei, et al. Evaluation of the performance of large telescope based on normalized point source sensitivity[J]. Infrared and Laser Engineering, 2016, 45(12):1218001. (in Chinese)安其昌, 张景旭, 杨飞,等. PSSn在大口径望远镜误差评估中的应用[J]. 红外与激光工程, 2016, 45(12):1218001.
[8] Zhang Jiaming, Chen Yu, Tan Haiqi, et al. Optical system of bionic compound eye with large field of view[J]. Optics and Precision Engineering, 2020, 28(5):1012-1020. (in Chinese)张家铭, 陈宇, 覃海琪, 等. 大视场并列型仿生复眼光学系统[J]. 光学精密工程, 2020, 28(5):1012-1020.
[9] An Qichang, Zhang Jingxu, Yang Fei, et al. Normalized point source sensitivity analysis of large sparse telescopes[J]. Chinese Optics, 2019, 12(3):567-574. (in Chinese)安其昌, 张景旭, 杨飞, 等. 大型合成孔径望远镜标准化点源敏感性分析[J]. 中国光学, 2019, 12(3):567-574.
[10] Seo B J, Nissly C, Angeli G Z, et al. Analysis of normalized point source sensitivity as a performance metric for the thirty meter telescope[C]//SPIE Astronomical Telescopes+Instrumentation. International Society for Optics and Photonics, 2008, 7017:7017T.
[11] An Qichang, Zhang Jingxu, Yang Fei, et al. On middle frequency error distribution of large telescope based on structure function[J]. Optics and Precision Engineering, 2017, 25(2):433-440. (in Chinese)安其昌, 张景旭, 杨飞, 等.基于结构函数的大口径望远镜中频误差分配研究[J]. 光学精密工程, 2017, 25(2):433-440.
[12] Fata R G, Kradinov V, Fabricant D. Mounting large lenses for the MMT's f/5 wide-field corrector:lessons learned[C]//Ground-based Instrumentation for Astronomy. International Society for Optics and Photonics, 2004, 5492:553F.
[13] Gao Zechao, Hao Liang, Wang Fuguo, et al. Design and optimization of active adjusting lateral support mechanism for 2 m telescope[J]. Infrared and Laser Engineering, 2019, 48(8):0814001. (in Chinese)高则超, 郝亮, 王富国, 等. 2 m级望远镜主动调节侧向支撑机构设计与优化[J]. 红外与激光工程, 2019, 48(8):0814001.
[14] Zhang Limin, Han Xida, Lv Tianyu, et al. Topological optimization design for SM system of large aperture telescope[J]. Infrared and Laser Engineering, 2018, 47(8):0818008. (in Chinese)张丽敏, 韩西达, 吕天宇, 等. 大口径望远镜次镜系统的拓扑优化设计[J]. 红外与激光工程, 2018, 47(8):0818008.
[15] Liu Xiangyi, Wang Fuguo, Zhang Jingxu, et al. Study on moment correction method of primary mirror semi-active support[J]. Infrared and Laser Engineering, 2019, 48(5):0518003. (in Chinese)刘祥意, 王富国, 张景旭, 等. 主镜半主动支撑的力矩校正方法研究[J]. 红外与激光工程, 2019, 48(5):0518003.