Analysis and test on the response of primary mirror flexure under random vibration
-
摘要: 大口径主反射镜是空间光学遥感器的关键部件,其动态结构刚度与强度直接关系到光学系统的成像质量.在结构设计初期,为保证Ф750 mm口径主反射镜组件在动力学载荷作用下不发生破坏,对其进行了随机振动下的峰值应力分析与试验.首先,论述了空间光学遥感器经历的动力学环境条件,并阐述了随机振动响应的峰值等效原则;之后建立了主镜组件的有限元模型,进行了基于上述准则的动力学仿真分析;最后,对主镜组件力学模拟件进行了动力学环境试验与应变的动态采集分析.分析与试验结果表明:柔性环节在X向、Y向、Z向随机振动激励下响应的峰值应力分别为102.3 MPa、99.5 MPa、104.3 MPa,与仿真结果最大相对误差为10.8%.试验结果验证了上述分析的准确性,说明主镜组件柔性环节设计可靠,安全系数为2.07,满足使用要求.Abstract: The large aperture primary mirror(PM) is the key component of space remote sensor. The mirror's stiffness and strength effect on the image quality crucially. In the early days of structural design, FEM analysis and dynamic test were performed on a Ф750 mm primary mirror assembly(PMA) to predict its maximum stress response under random vibration for safety margin. Firstly, the dynamic environment undergone was discussed by the space remote sensor and the equivalent sinusoidal load for random vibration. Then, the FEM model of PMA was built up to simulate the dynamic response using the equivalent loadcriterion. Finally, the dummy primary mirror made of Al alloy was manufactured and dynamic test was performed to acquire the stress response. The analysis and experiment results show that the maximum stress of PMA flexure under random vibrationare is 102.3 MPa、99.5 MPa、104.3 MPa, differ from the analysis result by 10.8%. The analysis accuracy is verified by test results, indicating that the flexure design is reliable to have a safety factor of 2.07, and the PMA can satisfy the design demands.
-
Key words:
- primary mirror /
- flexure /
- random vibration /
- finite element method /
- dynamic test
-
[1] Ke Shouquan. Environmental Engineering ad Simulation Test of Satellite(II)[M]. Beijing: China Astronautic Press, 1996. (in Chinese) 柯受全. 卫星环境工程和模拟试验(下)[M]. 北京: 宇航出版社, 1996. [2] [3] [4] Tom Irvine. Equivalent staticloadsforrandomvibration[EB/OL]. http: //www. vibrationdata. com, 2012. [5] [6] Dave S Steinberg. Vibration Analysis for Electronic Equipment[M]. New York: John Wiley Sons, 2000. [7] [8] John W Miles. On structural fatigue under random loading[J]. Journal of Aeronautic Sciences, 1954, 21(11): 753-762. [9] Yang Baoning. Engineering methods for determining quasi-static limit load for structures under random vibration[J]. Spacecraft Engineering, 2006, 15(3): 33-37. (in Chinese) 杨宝宁. 随机振动条件下设计载荷的确定方法[J]. 航天器工程, 2006, 15(3): 33-37. [10] [11] [12] Zhang Yumei, Han Zengyao, Zou Yuanjie. An overview of structural strength designmethods for spacecrafts in random vibration environment[J]. Advances in Mechanics, 2012, 42(4): 464-471. (in Chinese) 张玉梅, 韩增尧, 邹元杰. 随机振动环境下航天器结构强度设计方法综述[J]. 力学进展, 2012, 42(4): 464-471. [13] Ryan Simmons. Miles' equation[EB/OL]. http: //femci. gsfc. nasa. gov/random/MilesEqn. html, 1997. [14] [15] Tian Lisi. Guide to Dynamic Analysis Using MSC Nastran[M]. Beijing: China Water Power Press, 2012. (in Chinese) 田利思. MSC Nastran动力分析指南[M]. 北京: 中国水利水电出版社, 2012. [16] [17] Jaap Wijker. Random Vibration in Spacecraft Structures Design: Theory and Applications[M]. Dordrecht: Springer Press, 2009. [18] [19] Dong Deyi, Xin Hongwei, Yang Liwei. Random vibration analysis and its verification for large aperture mirror component[J]. Journal of Vibration and Shock, 2011, 30(11): 74-78. (in Chinese) 董得义, 辛宏伟, 杨利伟. 大孔径反射镜组件随机振动响应分析与试验[J]. 振动与冲击, 2011, 30(11): 74-78. [20] [21] [22] Zou Yan, Wu Qingwen, Dong Deyi. Analysis and tests of the peak value of stress in broadband random vibration[J]. Mechanics and Practice, 2009, 31(5): 45-50. (in Chinese) 邹艳, 吴清文, 董得义. 宽带随机振动峰值应力分析与试验研究[J]. 力学与实践, 2009, 31(5): 45-50. (in Chinese) [23] Guo Wancun, Wu Qingwen, Liu Hongwei. Engineering method based on static strengththeory for random vibration[J]. Journal of Mechanical Strength, 2012, 34(1): 31-36. (in Chinese) 郭万存, 吴清文, 刘宏伟. 用静强度理论考查结构随机振动响应的工程分析方法[J]. 机械强度, 2012, 34(1): 31-36. -

计量
- 文章访问数: 278
- HTML全文浏览量: 33
- PDF下载量: 183
- 被引次数: 0