留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极轴式望远镜主镜支撑结构对镜面变形的影响

范李立 张景旭 杨飞 吴小霞 孙敬伟 王槐 明名

范李立, 张景旭, 杨飞, 吴小霞, 孙敬伟, 王槐, 明名. 极轴式望远镜主镜支撑结构对镜面变形的影响[J]. 红外与激光工程, 2012, 41(1): 173-177.
引用本文: 范李立, 张景旭, 杨飞, 吴小霞, 孙敬伟, 王槐, 明名. 极轴式望远镜主镜支撑结构对镜面变形的影响[J]. 红外与激光工程, 2012, 41(1): 173-177.
FAN Li-Li, ZHANG Jing-Xu, YANG Fei, WU Xiao-Xia, SUN Jing-Wei, WANG Huai, MING Ming. Impact of the supports of primary mirror in equatorial telescope on its surface deformation[J]. Infrared and Laser Engineering, 2012, 41(1): 173-177.
Citation: FAN Li-Li, ZHANG Jing-Xu, YANG Fei, WU Xiao-Xia, SUN Jing-Wei, WANG Huai, MING Ming. Impact of the supports of primary mirror in equatorial telescope on its surface deformation[J]. Infrared and Laser Engineering, 2012, 41(1): 173-177.

极轴式望远镜主镜支撑结构对镜面变形的影响

Impact of the supports of primary mirror in equatorial telescope on its surface deformation

  • 摘要: 根据极轴式望远镜的工作特点,以口径为700 mm的极轴式望远镜主镜室系统为例,确定了一套主镜支撑方案。借助于有限元分析软件MSC.Patran详细地建立了系统的有限元模型,选取多种工况,分析了系统在自重作用下的镜面变形情况,绘制了镜面变形误差PV值和RMS值的变化曲线。结果表明:镜面变形主要受角的影响,随着的增大而减小,径向支撑效果优于轴向支撑效果,镜面变形误差满足设计指标要求。在主镜室系统竖直放置时,利用Zygo干涉仪测得带支撑结构的镜面变形误差RMS值为28.48 nm,表明主镜在该支撑结构作用下的面形接近于加工检测时的状态,同时也验证了有限元模型的准确性。
  • [1] Cheng Jingquan. Principles of astronomical Telescope Design[M]. Beijing: China Science Technology Press, 2003: 61-68, 84-93. (in Chinese)
    [2] Zhang Linbo, Ren Ge, Chen Hongbin. Finite element analysis for the large- aperture telescope[J]. Optical Technique, 2007, 29(5): 565-567. (in Chinese)
    [3] Yoder J R, Paul R. Opto-Mechanical Systems Design [M]. New York: Marcel Dekker, Inc, 1993: 407-470.
    [4] Bely P Y. The Design and Construction of Large Optical Telescopes[M]. New York: Springer-Verlag, Inc, 2003: 219-223.
    [5] Wang Fuguo, Yang Hongbo, Zhao Wenxing, et al. Lightweight design and analysis of a 1.2 m SiC primary mirror[J]. Opt Precision Engineering,2009, 17(1): 85-91. (in Chinese)
    [6] Wu Xiaoxia, Yang Hongbo, Zhang Jingxu, et al. Optimal design of support system for the large aperture sphere mirror[J]. Acta Photonica Sinica, 2009, 38(1): 129-132. (in Chinese)
    [7] Wang Fuguo, Yang Hongbo, Yang Fei, et al. Optimization and analysis for the axis support points position of the large aperture mirrors[J]. Infrared and Laser Engineering, 2007, 36(6): 877-880. (in Chinese)
    [8] Tan Fanjiao, Qiao Yanfeng, Li Yaobin, et al. New technology for lightweight large primary mirror of theodolite [J]. Opt Precision Engineering, 2008, 16(1): 22-28. (in Chinese)
    [9] Yan Yong, Jin Guang, Yang Hongbo. Lightweight structural design of space mirror[J]. Infrared and Laser Engineering, 2008, 37(6): 97-102. (in Chinese)
    [10] Myung K C. Optimization strategy of axial and lateral supports for large primary mirrors[C]//SPIE, 1994, 2119: 841-851.
    [11] Wang Jun, Lu E, Wang Jiaqi.A study on the simplifying method of ball bearing in structural analysis[J].Opt Precision Engineering, 1999, 7(2): 110-115. (in Chinese)
    [12] Yang Dehua, Gu Bozhong, Cui Xiangqun.Stiffness calculation and application of self-Aligning ball bearing[J]. Mechanical Science and Technology, 2003, 22(S): 114-117. (in Chinese)
  • [1] 祝汉旺, 薛向尧, 邵明振, 张文豹, 李赏, 王秀硕, 王广义, 杨欣宇.  地基光电成像系统中单芯轴的设计与优化 . 红外与激光工程, 2024, 53(3): 20230629-1-20230629-13. doi: 10.3788/IRLA20230629
    [2] 关洪宇, 王蕾, 冯琨程, 许艳军, 江帆, 韩诚山.  Hα太阳空间望远镜热设计 . 红外与激光工程, 2023, 52(1): 20221395-1-20221395-7. doi: 10.3788/IRLA20221395
    [3] 何鑫, 姜翔, 顾伯忠, 叶宇, 乐中宇.  丽江2.4 m望远镜耐焦卡焦切换系统的设计与分析 . 红外与激光工程, 2022, 51(5): 20210881-1-20210881-9. doi: 10.3788/IRLA20210881
    [4] 刘小涵, 李双成, 李美萱, 张容嘉, 张元.  离轴三反光学系统主三反射镜支撑结构设计 . 红外与激光工程, 2021, 50(8): 20210025-1-20210025-9. doi: 10.3788/IRLA20210025
    [5] 唐境, 张景旭, 安其昌, 李洪文.  大口径巡天望远镜校正镜弹性体支撑 . 红外与激光工程, 2020, 49(S1): 20200124-20200124. doi: 10.3788/IRLA20200124
    [6] 杨勋, 徐抒岩, 李晓波, 张旭升, 马宏财.  温度梯度对大口径反射镜热稳定性公差的影响 . 红外与激光工程, 2019, 48(9): 916003-0916003(10). doi: 10.3788/IRLA201948.0916003
    [7] 刘祥意, 王富国, 张景旭, 范磊, 王文攀.  主镜半主动支撑的力矩校正方法研究 . 红外与激光工程, 2019, 48(5): 518003-0518003(8). doi: 10.3788/IRLA201948.0518003
    [8] 兰硕, 李新南, 武春风, 李梦庆, 韩西萌.  快反镜在高功率连续激光辐照下的热性能分析 . 红外与激光工程, 2018, 47(10): 1020003-1020003(6). doi: 10.3788/IRLA201847.1020003
    [9] 穆永吉, 万渊, 刘继桥, 侯霞, 陈卫标.  星载激光雷达望远镜主镜光机分析与优化 . 红外与激光工程, 2018, 47(7): 718002-0718002(7). doi: 10.3788/IRLA201847.0718002
    [10] 李响, 张立中, 姜会林.  星载激光通信载荷高体分SiC/Al主镜及支撑结构设计 . 红外与激光工程, 2017, 46(12): 1218003-1218003(7). doi: 10.3788/IRLA201746.1218003
    [11] 赵勇志, 邵亮, 明名, 吕天宇, 刘昌华.  大口径望远镜主镜支撑系统装调 . 红外与激光工程, 2017, 46(9): 918003-0918003(8). doi: 10.3788/IRLA201746.0918003
    [12] Sekou Singare, 陈盛贵, 钟欢欢.  激光透射焊接聚碳酸酯的有限元分析 . 红外与激光工程, 2016, 45(2): 206005-0206005(6). doi: 10.3788/IRLA201645.0206005
    [13] 张耀平, 樊峻棋, 龙国云.  变形镜在激光辐照下热畸变有限元模拟 . 红外与激光工程, 2016, 45(11): 1136002-1136002(5). doi: 10.3788/IRLA201645.1136002
    [14] 付世欣, 周超, 曹玉岩, 范磊, 韩西达.  基于拓扑优化的4 m 望远镜底座结构设计 . 红外与激光工程, 2015, 44(8): 2441-2447.
    [15] 孙敬伟, 吴小霞, 陈宝刚, 李剑锋.  4m口径的SiC主镜翻转装置结构设计与分析 . 红外与激光工程, 2015, 44(11): 3358-3365.
    [16] 齐光, 许艳军, 刘炳强.  空间相机反射镜SiC/Al 支撑板轻量化结构优化设计 . 红外与激光工程, 2014, 43(7): 2214-2218.
    [17] 孙敬伟, 吴小霞, 吕天宇, 李剑锋.  400 mm跟踪望远镜结构设计和分析 . 红外与激光工程, 2014, 43(8): 2568-2575.
    [18] 孙敬伟, 吴小霞, 李剑锋, 吕天宇, 刘杰.  4mSiC主镜起吊装置结构设计与分析 . 红外与激光工程, 2013, 42(10): 2753-2759.
    [19] 范磊, 张景旭, 邵亮, 赵勇志.  采用液压Whiffle-tree的大口径主镜轴向支撑 . 红外与激光工程, 2013, 42(8): 2126-2131.
    [20] 柳华, 刘伟奇, 冯睿, 魏忠伦, 张健.  新型全柔性动镜机构的设计与分析 . 红外与激光工程, 2012, 41(1): 184-189.
  • 加载中
计量
  • 文章访问数:  399
  • HTML全文浏览量:  70
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 刊出日期:  2012-01-25

极轴式望远镜主镜支撑结构对镜面变形的影响

摘要: 根据极轴式望远镜的工作特点,以口径为700 mm的极轴式望远镜主镜室系统为例,确定了一套主镜支撑方案。借助于有限元分析软件MSC.Patran详细地建立了系统的有限元模型,选取多种工况,分析了系统在自重作用下的镜面变形情况,绘制了镜面变形误差PV值和RMS值的变化曲线。结果表明:镜面变形主要受角的影响,随着的增大而减小,径向支撑效果优于轴向支撑效果,镜面变形误差满足设计指标要求。在主镜室系统竖直放置时,利用Zygo干涉仪测得带支撑结构的镜面变形误差RMS值为28.48 nm,表明主镜在该支撑结构作用下的面形接近于加工检测时的状态,同时也验证了有限元模型的准确性。

English Abstract

参考文献 (12)

目录

    /

    返回文章
    返回