Design of triple-cladding photonic crystal fiber with near-zero flattened dispersion
-
摘要: 为了使光子晶体光纤(PCF)在钛宝石飞秒激光器的工作波长0.80 m 和光通信窗口1.55 m 处获得宽的近零超平坦色散,使用了三包层六角空气孔环结构设计来代替普通的单包层结构。应用了改进的有效折射率法对该三包层PCF 进行了数值模拟。结果表明:三包层PCF 的色散随结构参数的微小变化而有较大的变化,因此通过对PCF 结构参数的合理调节,分别实现了在0.800.02 m 和1.550.15 m 波长范围内近零、平坦色散(色散范围0.5 ps/(kmnm),色散斜率范围0.02 ps/(kmnm2)的结构设计。这对于光通信系统及研究飞秒激光在PCF 中的传输特性,拓展飞秒激光的研究和应用都具有重要意义。Abstract: In order to obtain the near-zero flattened dispersion at the wavelengths of 0.80 m and 1.55 m, at which the Ti: Sapphire femtosecond laser working wavelength and the optical communication window center, respectively, for the photon crystal fiber (PCF), we used the structural design of a triple-cladding PCF with the hexangular air-hole loop arrangement instead of the general mono-cladding one. Using the improved effective refraction index method on this triple-cladding PCF to perform the numerical simulation, we achieved satisfying results. The numerical simulation shows that the dispersion of this type of PCF changes apparently with small variations of the structural parameters, and therefore the structural designing, that leads to a near-zero(the dispersion range of 0.5 ps/(kmnm) and flattened (the dispersion slope range of 0.02 ps/(kmnm2) dispersion property at the wavelength ranges of 0.80 0.02 m and 1.550.15 m, respectively, is actualized through adjusting reasonably the PCF structural parameters. This result may play an important role on studying the optical communication system and femtosecond laser transmission characteristics in the PCFs to extend its applications.
-
Key words:
- photonic crystal fiber /
- multi-cladding /
- effective index method /
- chromatic dispersion
-
[1] [2] Russell P. Photonic crystal fibers [J]. Science, 2003, 299 (5605): 358-362. [3] [4] Shen Yan, Wang Liwen, Lou Shuqin. Improved method for fast evaluating optical properties of actual photonic crystal fibers [J]. Infrared and Laser Engineering, 2012, 41 (4): 1041-1046. (in Chinese) 申艳, 王立文, 娄淑琴. 改进的快速评估实际光子晶体光 纤特性的方法[J]. 红外与激光工程, 2012, 41(4): 1041-1046. [5] [6] Li Bin, Fang Xiaohui, Liu Bowen, et al. Research on 7.45 W supercontinuum generation by femtosecond laser [J]. Infrared and Laser Engineering, 2012, 41(8): 2012-2016. (in Chinese)李斌, 方晓惠, 刘博文, 等. 飞秒激光产生7.45 W 超连续 光谱实验[J]. 红外与激光工程, 2012, 41(8): 2012-2016. [7] [8] Ma Lingfang, Liu Min, Dong Chuanpei, et al. Dual-core photonic crystal fiber with zero inter-modal dispersion [J]. Infrared and Laser Engineering, 2012, 41(7): 1831-1835. (in Chinese) 马玲芳, 刘敏, 董传培, 等. 模间色散为零的双芯光子晶体 光纤[J]. 红外与激光工程, 2012, 41(7): 1831-1835. [9] Liu Jia, Wang Sijia, Gu Chenglin, et al. Generating square picosecond pulse with photonic crystal fiber amplification system [J]. Infrared and Laser Engineering, 2012, 41 (8): 2023-2026. (in Chinese) 刘佳, 王思佳, 顾澄琳, 等. 基于光子晶体光纤放大系统的 皮秒方波产生[J]. 红外与激光工程, 2012, 41(8): 2023-2026. [10] [11] [12] Zhang Jianxin, Liu Lei, Chen Wei, et al. Modulating lateral modes of semiconductor laser by photonic crystal structures[J]. Infrared and Laser Engineering, 2013, 42(1): 69-72. (in Chinese) 张建心, 刘磊, 陈微, 等. 光子晶体调制半导体激光器侧模[J]. 红外与激光工程, 2013, 42(1): 69-72. [13] Reeves W H, Knight J C, P St J Russell. Demonstration of ultra-flattened dispersion in photonic crystal fibers[J]. Optics Express, 2002, 10(14): 609-613. [14] [15] [16] Wu T L, Chao C H. A novel ultraflattened dispersion photonic crystal fiber [J]. IEEE Photon Technol Lett, 2005, 17(1): 67-69. [17] Zhao Xingtao, Hou Lantian, Liu Zhaolun, et al. Dispersion analysis of photonic crystal fiber using improved full- vectorial effective index method [J]. Acta Physica Sinica, 2007, 56(5): 2275-2279. (in Chinese) 赵兴涛, 侯蓝田, 刘兆伦, 等. 改进的全矢量有效折射率方 法分析光子晶体光纤的色散特性[J]. 物理学报, 2007, 56(5): 2275-2279. [18] [19] Wei Dongbin, Zhou Guiyao, Zhao Xingtao, et al. A new analysis method of multi-cladding photonic crystal fibers [J]. Acta Physica Sinica, 2008, 57(5): 3011-3015. (in Chinese) 魏东宾, 周桂耀, 赵兴涛, 等. 一种新型的多包层光子晶体 光纤的分析方法[J]. 物理学报, 2008, 57(5): 3011-3015. -

计量
- 文章访问数: 267
- HTML全文浏览量: 31
- PDF下载量: 137
- 被引次数: 0