留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于视网膜扫描的头戴显示器研究现状

呼新荣 刘英 王健 李淳 孙强 李晶 刘兵

呼新荣, 刘英, 王健, 李淳, 孙强, 李晶, 刘兵. 基于视网膜扫描的头戴显示器研究现状[J]. 红外与激光工程, 2014, 43(3): 871-878.
引用本文: 呼新荣, 刘英, 王健, 李淳, 孙强, 李晶, 刘兵. 基于视网膜扫描的头戴显示器研究现状[J]. 红外与激光工程, 2014, 43(3): 871-878.
Hu Xinrong, Liu Ying, Wang Jian, Li Chun, Sun Qiang, Li Jing, Liu Bing. Current progress in head-mounted display based on retinal scanning[J]. Infrared and Laser Engineering, 2014, 43(3): 871-878.
Citation: Hu Xinrong, Liu Ying, Wang Jian, Li Chun, Sun Qiang, Li Jing, Liu Bing. Current progress in head-mounted display based on retinal scanning[J]. Infrared and Laser Engineering, 2014, 43(3): 871-878.

基于视网膜扫描的头戴显示器研究现状

基金项目: 

国家自然科学基金(60977001);吉林省与中国科学院合作长吉图开发开放先导区科技创新合作专项(2011CJT0004);吉林省科技厅项目(20100615,20100310)

详细信息
    作者简介:

    呼新荣(1988-),男,博士生,主要从事光学系统设计等方面的研究。Email:huxr062768@126.com;孙强(1971-),男,研究员,博士生导师,博士,主要从事现代红外光学仪器、二元光学、红外系统仿真等方面的研究。Email:sunq@ciomp.an.cn

    呼新荣(1988-),男,博士生,主要从事光学系统设计等方面的研究。Email:huxr062768@126.com;孙强(1971-),男,研究员,博士生导师,博士,主要从事现代红外光学仪器、二元光学、红外系统仿真等方面的研究。Email:sunq@ciomp.an.cn

  • 中图分类号: TN141;TN27

Current progress in head-mounted display based on retinal scanning

  • 摘要: 随着头戴显示器的轻小型化发展,基于视网膜扫描的头戴显示器逐渐成为近年来虚拟现实领域和头戴显示器领域的一个研究热点。此类显示器通过扫描装置控制激光束进行二维扫描,扫描图像经成像后可直接在观察者的视网膜上进行显示,具有大视场、高亮度、结构紧凑等独特优势,也被称为视网膜扫描显示器。鉴于国内该方向的研究较为薄弱,结合国外视网膜扫描显示器的研究基础,阐述了视网膜扫描显示器的工作原理,论述了该领域的技术发展及关键技术研究现状,总结了视网膜扫描显示器的技术发展趋势和应用前景,为国内相关领域的研究和发展指出了方向。
  • [1] Sutherland I E. A head-mounted three dimensional display[C]//Fall Joint Computer Conference, 1968, 33: 757-764.
    [2]
    [3]
    [4] Johnson R B, Driggers R G. Encyclopedia of Optical Engineering[M]. New York: Marcel Dekker, 2005.
    [5]
    [6] Foote B. Design guidelines for advanced air-to-air helmet- mounted display systems [C]//SPIE, Helmet-and Head- Mounted Displays III, 1998, 3362: 94-102.
    [7]
    [8] Ferrin F J. Update on optical systems for military head- mounted displays [C]//SPIE, Helmet-and Head-Mounted Displays IV, 1999, 3689: 178-185.
    [9]
    [10] Ferrin F J. Current issues in helmet-mounted display systems for military applications [C]//SPIE, Helmet-and Head- Mounted Displays III, 1998, 3362: 71-79.
    [11] De Wit G C. Retinal scanning display for virtual reality [D]. Delft: Delft University of Technology, 1997.
    [12]
    [13]
    [14] Tidwell M, Johnston R, Melville D, et al. The virtual retinal display-a retinal scanning imaging system[C]//Proceedings of Virtual Reality World'95, 1995, 325-333.
    [15] Urey H. Optical advantages of retinal scanning displays[C]// SPIE, Helmet-and Head-Mounted Displays V, 2000, 4021: 20-26.
    [16]
    [17]
    [18] Johnston R, Willey S. Development of a commercial retinal scanning display [C]//SPIE, Helmet-and Head-Mounted Displays and Symbology Design Requirements II, 1995, 2465: 2-13.
    [19] Webb R H, Hughes G W, Pomerantzeff O. Flying spot TV ophthalmoscope[J]. Appl Opt, 1980, 19(17): 2991-2997.
    [20]
    [21] Webb R H, Hughes G W, Delori F C. Confocal scanning laser ophthalmoscope[J]. Appl Opt, 1987, 26(8): 1492-1499.
    [22]
    [23]
    [24] Yoshinaka K. Display Device, Japanese Patent: 61198892[P]. 1986-09-03.
    [25] Ashizaki K, Yamamoto M, Miyaoka S, et al. Direct Viewing Picture Image Display Apparatus, European Patent: 0473343[P]. 1991-03-14.
    [26]
    [27]
    [28] Kollin J S, Tidwell M R. Op tical engineering challenges of the Virtual Retinal Display[C]//SPIE, Novel Optical Systems Design and Optimization, 1995, 2537: 48-60.
    [29] Jacobs R J, Bailey I L, Bullimore M A. Artificial pupils and Maxwellian view[J]. Appl Opt, 1992, 31(19): 3668-3677.
    [30]
    [31] Kollin J S. A retinal display for virtual-environment applications [C]//Proceedings of Society for Information Display, 1993, 24: 827-830.
    [32]
    [33] Tauscher J, Davis W O, Brown D, et al. Evolution of MEMS scanning mirrors for laser projection in compact consumer electronics [C]//SPIE, MOEMS and Miniaturized Systems IX, 2010, 7594: 75940A-1-75940A-12.
    [34]
    [35] Urey H, Nestorovic N, Ng B, et al. Optical designs and system MTF for laser scanning displays [C]//SPIE, Helmetand Head-Mounted Displays IV, 1999, 3689: 238-248.
    [36]
    [37] Cakmakci O, Rolland J. Head-worn displays: a review [J]. Journal of Display Technology, 2006, 2(3): 199-216.
    [38]
    [39]
    [40] Belt R A, Knowles G R, Lange E H, et al. Miniature flat panels in rotary wing head mounted displays [C]//SPIE, Head-Mounted Displays II, 1997, 3058: 125-136.
    [41] Niesten M, Masood T, Miller J, et al. Scanning laser beam displays based on 2-D MEMS [C]//SPIE, Optics, Photonics, and Digital Technologies for Multimedia Applications, 2010, 7723: 77230U-1-77230U-10.
    [42]
    [43]
    [44] Holmgren D, Robinett W. Scanned laser displays for head mounted displays [R]. University of North Carolina, Department of Computer Science, Technical Report TR92- 029, 1992, WWW. home page.
    [45] Niesten M, Sprague R, Miller J. Scanning laser beam displays [C]//SPIE, Photonics in Multimedia II, 2008, 7001: 70010E-1-70010E-10.
    [46]
    [47] Holmgren D, Robinett W. Scanned laser displays for virtual reality: a feasibility study [J]. Presence: Teleoperators and Virtual Environments, 1993, 2: 171-184.
    [48]
    [49]
    [50] Yalcinkaya A, Urey H, Brown D, et al. Two-axis electromagnetic microscanner for high resolution displays [J]. Journal of Microelectromechanical Systems, 2006, 15 (4): 786-794.
    [51] Davis W, Sprague R, Miller J. MEMS-based pico projector display[C]//IEEE, 2008, 4244: 31-32.
    [52]
    [53]
    [54] Sprague R, Montague T, Brown D. Bi-axial magnetic drive for scanned beam display mirrors [C]//SPIE, MOEMS Display and Imaging Systems III, 2005, 5701: 1-13.
    [55]
    [56] Miao Yongping, Liu Yongzhi. Investigation on laws of 2-D laser scanning [J]. Journal of Applied Optics, 2005, 26 (2): 27-30. (in Chinese)
    [57]
    [58] Urey H, Dewitt F, Lopez P, et al. MEMS raster correction scanner for SXGA resolution retinal scanning display [C]// SPIE, MOEMS Display and Imaging Systems, 2003, 4985: 106-114.
    [59]
    [60] Urey H, Wine D W, Osborne T D. Optical performance requirements for MEMS-scanner based microdisplays [C]// SPIE, MOEMS and Miniaturized Systems X, 2000, 4178: 176-185.
    [61]
    [62] Urey H. Spot size, depth of focus, and diffraction ring intensity formulas for truncated Gaussian beams [J]. Appl Opt, 2004, 43(3): 620-625.
    [63] Beiser L, Johnson R B. Handbook of Optics [M]. 2nd ed. New York: McGraw-Hill, 1995.
    [64]
    [65]
    [66] Urey H. Torsional MEMS scanner design for high-resolution display systems [C]//SPIE, Optical Scanning II, 2002, 4773: 27-37.
    [67] Urey H, Wine D W, Lewis J R. Scanner design and resolution trade-offs for miniature scanning displays [C]// SPIE, Flat Panel Display Technology and Display Metrology, 1999, 3636: 60-68.
    [68]
    [69] Patterson P, Hah D, Fujino M, et al. Scanning micromirrors: an overview [C]//SPIE, Optomechatronic Micro/Nano Components, Devices, and Systems, 2004, 5604: 195-207.
    [70]
    [71] Urey H. Diffraction limited resolution and maximum contrast for scanning displays [Z]. Society for Information Display Digest of Technical Papers, 2000, 31(1): 866-869.
    [72]
    [73]
    [74] Stoll D. Retinal scanning leads HMD race [Z]. Photonics online, 1998.
    [75]
    [76] Bayer M. Retinal scanning display: a novel HMD approach for army aviation [C]//SPIE, Helmet-and Head-Mounted Displays VII, 2002, 4711: 202-213.
    [77]
    [78] Tidwell M. A virtual retinal display for augmenting ambient visual environments [D]. Seattle, Washington: University of Washington, 1995.
    [79]
    [80] Bai Yu, Xing Tingwen, Jiang Yadong, et al. Design of head- mounted display optical system with DOE [J]. Infrared and Laser Engineering, 2012, 41(10): 2753-2757. (in Chinese)
    [81]
    [82] Jones R J M. Direct retinal imaging and virtual displays[C]//RTO HFM Specialists'Meeting on Human Factors in the 21st Century, Paris, France, 2001, 077: 6-1-6-8.
    [83]
    [84] Rash C E, Mclean W E, Mora J C, et al. Helmet-Mounted Displays: Design Issues for Rotary-Wing Aircraft [M]. Bellingham, Washington: SPIE Press, 2001.
    [85]
    [86] Urey H. Diffractive exit-pupil expander for display applications[J]. Appl Opt, 2001, 40(32): 5840-5851.
    [87] Urey H, Powell K. Microlens array-based exit pupil expander for full color display applications [C]//SPIE, Photon Management, 2004, 5456: 227-236.
    [88]
    [89] Kollin J S, Johnston R S, Melville C D. Virtual retinal display with expanded exit pupil, United States patent: 5701132[P]. 1997-12-23.
    [90]
    [91]
    [92] Powell K, Urey H. A novel approach to exit pupil expansion for wearable displays [C]//SPIE, Helmet-and Head-Mounted Displays VII, 2002, 4711: 235-248.
    [93] Powell K, Lopez P, Malik A. Exit pupil expander: image quality performance enhancements and environmental testing results [C]//SPIE, Helmet-and Head-Mounted Displays VIII, 2003, 5079: 308-320.
    [94]
    [95] Urey H, Powell K. Microlens-array-based exit-pupil expander for full-color displays[J]. Appl Opt, 2005, 44(23): 4930-4936.
    [96]
    [97] JrvenpT, Aaltonen V. Compact near to eye display with integrated gaze tracker[C]//SPIE, Photonics in Multimedia II, 2008, 7001: 700106-1-700106-8.
    [98]
    [99]
    [100] Hua Hong, Gao Chunyu. A compact eyetracked optical see- through head mounted display [C]//SPIE, Stereoscopic Displays and Applications XXIII, 2012, 8288: 82881F-1- 82881F-9.
    [101] Delori F C, Webb R H, Sliney D H. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices [J]. Journal of the Optical Society of America A, 2007, 24(5): 1250-1265.
    [102]
    [103] Wallhead I, Ocana R, Quinza P. Designing a laser scanning picoprojector. Part2: laser safety related issues [J]. Appl Opt, 2012, 51(23): 5619-5626.
    [104]
    [105] Chellappan K V, Erden E, Urey H. Laser-based displays: a review[J]. Appl Opt, 2010, 49(25): F79-F98.
    [106]
    [107] Buckley E. Detailed eye-safety analysis of laser-based scanned-beam projection systems [J]. Journal of Display Technology, 2012, 8(3): 166-173.
    [108]
    [109] Buckley E. Eye-safety analysis of current laser-based LCOS projection systems [J]. Journal of the Society for Information Display, 2010: 1021-1057.
    [110]
    [111]
    [112] Klingbeil U. Safety aspects of laser scanning ophthalmoscopes[J]. Health Physics, 1986, 51(1): 81-93.
    [113] Viirre E, Johnston R, Pryor H, et al. Laser safety analysis of a retinal scanning display system [J]. Journal of Laser Applications, 1997, 9(4): 253-260.
  • [1] 吕沛桐, 宋凯文, 孙铭阳, 王浩然, 陈晨, 张天瑜.  近红外波长扫描激光高精度FBG解调系统 . 红外与激光工程, 2022, 51(4): 20210230-1-20210230-7. doi: 10.3788/IRLA20210230
    [2] 芮丛珊, 曾春梅, 冯志强, 夏成樑, 洪洋.  离轴反射式头戴显示光学系统的自由曲面设计方法 . 红外与激光工程, 2022, 51(10): 20211119-1-20211119-11. doi: 10.3788/IRLA20211119
    [3] 胡文彬, 吴丰, 甘维兵, 李盛, 陈钢, 艾凌云.  基于二维激光扫描技术的罐道检测算法 . 红外与激光工程, 2021, 50(10): 20200480-1-20200480-7. doi: 10.3788/IRLA20200480
    [4] 钟昆, 苏伟, 彭波, 黄莎玲.  水下激光周视扫描4f发射光学系统设计 . 红外与激光工程, 2021, 50(3): 20200277-1-20200277-12. doi: 10.3788/IRLA20200277
    [5] 王志奇.  蓝牙控制的OLED显示器件研制 . 红外与激光工程, 2020, 49(S1): 20200195-20200195. doi: 10.3788/IRLA20200195
    [6] 钟昆, 苏伟, 彭波, 黄莎玲, 李中云.  基于脱靶量的水下目标激光扫描探测模型 . 红外与激光工程, 2020, 49(2): 0203004-0203004. doi: 10.3788/IRLA202049.0203004
    [7] 杨正伟, 谢星宇, 李胤, 张炜, 田干.  激光扫描热成像无损检测关键参数影响分析 . 红外与激光工程, 2019, 48(11): 1105008-1105008(11). doi: 10.3788/IRLA201948.1105008
    [8] 王焕捷, 王续跃.  金属扇形层合板激光圆弧扫描变形特征研究 . 红外与激光工程, 2019, 48(S1): 27-34. doi: 10.3788/IRLA201948.S106005
    [9] 谢绍禹, 赵毅强, 王永乐, 吕华, 贾晓东.  基于盖革APD阵列的微扫描激光成像技术 . 红外与激光工程, 2018, 47(12): 1206010-1206010(5). doi: 10.3788/IRLA201847.1206010
    [10] 王晓娜, 姚行洲, 侯德鑫, 叶树亮.  圆柱铁氧体微裂纹的激光扫描热成像检测 . 红外与激光工程, 2018, 47(11): 1106005-1106005(7). doi: 10.3788/IRLA201847.1106005
    [11] 刘娜, 沈正祥, 马彬, 魏振博, 徐旭东, 王占山.  圆锥近似Wolter-I型X射线望远镜用柱面反射镜面形误差检测方法 . 红外与激光工程, 2018, 47(4): 417001-0417001(7). doi: 10.3788/IRLA201847.0417001
    [12] 于洋, 王世勇, 蹇毅, 陈珺, 代具亭.  面阵探测器连续扫描成像光学系统 . 红外与激光工程, 2016, 45(1): 118002-0118002(5). doi: 10.3788/IRLA201645.0118002
    [13] 刘波, 耿林, 刘琳, 曹昌东, 眭晓林, 颜子恒.  双通道接收的无扫描激光成像技术 . 红外与激光工程, 2016, 45(12): 1206008-1206008(5). doi: 10.3788/IRLA201645.1206008
    [14] 刘军, 黄玮.  反射式自由曲面头盔显示器光学系统设计 . 红外与激光工程, 2016, 45(10): 1018001-1018001(6). doi: 10.3788/IRLA201645.1018001
    [15] 赵子越, 邾继贵, 杨凌辉.  采用精确三维控制场的wMPS全局组网定向方法 . 红外与激光工程, 2016, 45(11): 1117001-1117001(6). doi: 10.3788/IRLA201645.1117001
    [16] 李孟麟, 朱精果, 孟柘, 任建峰, 肖芳, 张珂殊.  轻小型机载激光扫描仪设计 . 红外与激光工程, 2015, 44(5): 1426-1431.
    [17] 张铁, 李波, 邹焱飚.  基于条纹式激光传感器与机器人的扫描成像系统 . 红外与激光工程, 2015, 44(1): 53-58.
    [18] 叶莉华, 王文轩, 吕聪生, 汪海洋, 崔一平, 杭建军.  激光分拣系统的设计和改进 . 红外与激光工程, 2014, 43(9): 2878-2882.
    [19] 杨宇, 阚凌雁, 于佳, 王姣姣, 元光, 王金城.  基于激光扫描的人脸三维重建方法 . 红外与激光工程, 2014, 43(12): 3946-3950.
    [20] 郑睿童, 吴冠豪.  基于线阵APD探测器的脉冲式一维非扫描激光雷达系统 . 红外与激光工程, 2012, 41(1): 96-100.
  • 加载中
计量
  • 文章访问数:  292
  • HTML全文浏览量:  37
  • PDF下载量:  764
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-08-03
  • 刊出日期:  2014-03-25

基于视网膜扫描的头戴显示器研究现状

    作者简介:

    呼新荣(1988-),男,博士生,主要从事光学系统设计等方面的研究。Email:huxr062768@126.com;孙强(1971-),男,研究员,博士生导师,博士,主要从事现代红外光学仪器、二元光学、红外系统仿真等方面的研究。Email:sunq@ciomp.an.cn

    呼新荣(1988-),男,博士生,主要从事光学系统设计等方面的研究。Email:huxr062768@126.com;孙强(1971-),男,研究员,博士生导师,博士,主要从事现代红外光学仪器、二元光学、红外系统仿真等方面的研究。Email:sunq@ciomp.an.cn

基金项目:

国家自然科学基金(60977001);吉林省与中国科学院合作长吉图开发开放先导区科技创新合作专项(2011CJT0004);吉林省科技厅项目(20100615,20100310)

  • 中图分类号: TN141;TN27

摘要: 随着头戴显示器的轻小型化发展,基于视网膜扫描的头戴显示器逐渐成为近年来虚拟现实领域和头戴显示器领域的一个研究热点。此类显示器通过扫描装置控制激光束进行二维扫描,扫描图像经成像后可直接在观察者的视网膜上进行显示,具有大视场、高亮度、结构紧凑等独特优势,也被称为视网膜扫描显示器。鉴于国内该方向的研究较为薄弱,结合国外视网膜扫描显示器的研究基础,阐述了视网膜扫描显示器的工作原理,论述了该领域的技术发展及关键技术研究现状,总结了视网膜扫描显示器的技术发展趋势和应用前景,为国内相关领域的研究和发展指出了方向。

English Abstract

参考文献 (113)

目录

    /

    返回文章
    返回