留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率光纤激光器功率合束器的研究进展(特邀)

陈子伦 周旋风 王泽锋 许晓军

陈子伦, 周旋风, 王泽锋, 许晓军. 高功率光纤激光器功率合束器的研究进展(特邀)[J]. 红外与激光工程, 2018, 47(1): 103005-0103005(7). doi: 10.3788/IRLA201746.0103005
引用本文: 陈子伦, 周旋风, 王泽锋, 许晓军. 高功率光纤激光器功率合束器的研究进展(特邀)[J]. 红外与激光工程, 2018, 47(1): 103005-0103005(7). doi: 10.3788/IRLA201746.0103005
Chen Zilun, Zhou Xuanfeng, Wang Zefeng, Xu Xiaojun. Review of all-fiber signal combiner for high power fiber lasers(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103005-0103005(7). doi: 10.3788/IRLA201746.0103005
Citation: Chen Zilun, Zhou Xuanfeng, Wang Zefeng, Xu Xiaojun. Review of all-fiber signal combiner for high power fiber lasers(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103005-0103005(7). doi: 10.3788/IRLA201746.0103005

高功率光纤激光器功率合束器的研究进展(特邀)

doi: 10.3788/IRLA201746.0103005
基金项目: 

国家自然科学基金(61370045);国家重点研发计划(2017YFF0104600)

详细信息
    作者简介:

    陈子伦(1978-),男,副研究员,硕士生导师,主要从事光纤激光及大功率光纤器件方面的研究。Email:zilun2003@163.com

  • 中图分类号: O436

Review of all-fiber signal combiner for high power fiber lasers(Invited)

  • 摘要: 光纤功率合束器是实现高功率光纤激光的核心元器件,可将多个中等功率的光纤激光器进行功率合成,以获得更高功率的光纤激光输出,解决单根光纤激光器功率进一步提升所遇到的瓶颈问题。文中综述了光纤激光功率合束器的基本结构和国内外研究现状,阐述了光纤功率合束器的工艺制作流程以及工艺难点,针对现存问题及今后的研究方向提出了建议。
  • [1] Tnnermann A, Schreiber T, Limpert J. Fiber lasers and amplifiers:An ultrafast performance evolution[J]. Appl Opt, 2010, 49(25):F71-F78.
    [2] Shiner B. The fibre laser:Delivering power[J]. Nature Photon, 2010, 4:290.
    [3] Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications[Invited] [J]. Appl Opt, 2013, 53(28):6554-6568.
    [4] Stiles E. New developments in IPG fiber laser technology[C]//Proceedings of the 5th International Workshop on Fiber Lasers, 2009.
    [5] Shiner B. The Impact of fiber laser technology on the world wide material processing market[C]//Proc of CLEO, 2013:AF2J.1.
    [6] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to highaverage power[J]. Opt Express, 2008, 16(17):13240-13266.
    [7] Zhou Hang. Study on the key technologies of high efficiency fiber combiners[D]. Changsha:National University of Defense Technology, 2015. (in Chinese)
    [8] Gapontsev V P, Fomin V, Platonov N. Powerful fiber laser system:US Patent,US7593435B2[P]. 2009-09-22.
    [9] Gapontsev V P, Fomin V, Platonov N. Fiber laser system:US, US7848368B2[P]. 2010-12-07
    [10] Gapontsev V, Fomin F A, Abramov M. Diffraction limited ultra-high-power fibre lasers[C]//Adv Solid-State Photon Topical Meeting, 2010.
    [11] Shamir Y, Sintov Y, Shtaif M. Incoherent beam combining of multiple single-mode fiber lasers utilizing fused tapered bundling[C]//Fiber Lasers VⅡ:Technology, System, and Applications, 2010:75801R-8.
    [12] Shamir Y, Sintov Y, Shtaif M. Beam quality analysis and optimization in an adiabatic low mode tapered fiber beam combiner[J]. J Opt Soc Am. B, 2010, 27(12):2669-2676.
    [13] Shamir Y, Sintov Y. All-fiber low mode beam combiner for high power and high beam quality:US, US2012/0281948A1[P]. 2010-07-07.
    [14] Shamir Y, Zuitlin R, Sintov Y, et al. Spatial beam properties of combined lasers' delivery fibers[J]. Opt Lett, 2012, 37(9):1412-1414.
    [15] Noordegraaf D, Maack M D, Skovgaard P M W, et al, All-fiber 71 signal combiner for incoherent laser beam combining[C]//Fiber Lasers VⅢ:Technology, Systems, and Applications, 2011:79142L-7.
    [16] Muendel M H, Farrow R, Liao K H, et al. Fused fiber pump and signal combiners for a 4-kW ytterbium fiber laser[C]//Fiber Lasers VⅢ:Technology, Systems, and Applications, 2011:791431.
    [17] Eschrich T, Hoh D, Just F, et al. Incoherent beam combining of 5.1 kW using a 71 signal combiner into a 50m core output fiber[C]//Advanced Photonics, 2014:JTu6A.1.
    [18] Pltner M, Vries O D, Schreiber T, et al, High power incoherent beam combining by an all-glass 7:1 fiber coupler with high beam quality[C]//Advanced Solid State Lasers, 2014:ATh2A.17.
    [19] Pltner M, Eschrichb T, Vries O D, et al. Demonstration of 5 kW emissions with good beam quality from two different 7:1 all-glass fiber coupler-types[C]//Components and Packaging for Laser Systems, 2015:93460W.
    [20] Jger M, Pltner M, Eschrich T, et al. High-brightness incoherent combination of fiber lasers in 71 fiber couplers at average powers 5 kW[J]. J Lightwave Technol, 2015, 33(20):4297-4302.
    [21] Zhu Xuewen, Dong Jie. Signal combiner and its making method:China, CN101866032A[P]. 2010-10-20. (in Chinese)
    [22] Yan Ping, Gong Mali, Xiao Qirong, et al. Signal all-fiber combiner with high beam quality and its making method:China, CN102778729A[P]. 2012-11-14. (in Chinese)
    [23] Shi Jianhong, Yan Dapeng, Li Cheng, et al. One fiber laser combiner:China, CN103487901A[P]. 2014-01-01.
    [24] Yan Dapeng, Shi Jianhong, Li Libo, et al. High power laser combiner Based on multi-core fiber:China, CN 104035166A[P]. 2014-11-05.
    [25] Yan D, Li C, Li L, et al. 4 kW continue wavelength fiber laser with all fiber 41 signal combiner[C]//International Photonics and Optoelectronics Meetings, 2012:MTh3A.3.
    [26] Zhou Hang, Chen Zilun, Zhou Xuanfeng, et al. All-fiber1 signal combiner for high power fiber lasers[J]. Appl Opt, 2015, 54(11):3090-3094.
    [27] Chen Zilun, Zhou Xuanfeng, Wang Zefeng, et al. 6 kW incoherent beam combining by an all-fiber signal combiner[J]. Chinese Journal of Laser, 2015, 42(12):1219001. (in Chinese)
    [28] Zhou Xuanfeng, Chen Zilun, Wang Zefeng, et al. High power incoherent beam combining of fiber lasers based on a 71 all-fiber signal combiner[J]. Opt Eng, 2016, 55(5):056103.
    [29] Zhou Hang, Chen Zilun, Zhou Xuanfeng, et al. All-fiber 71 signal combiner with high beam quality for high power fiber lasers[J]. Chin Opt Lett, 2015, 13(6):061406.
    [30] Zhou Xuanfeng, Chen Zilun, Wang Zefeng, et al. Beam quality analysis of incoherent beam combining by a 71 all-fiber signal combiner[J]. IEEE Photonics Technology Letters, 2016, 28(20):2265-2268.
    [31] Li Ruixian, Xiao Hu, Leng Jinyong, et al. 2240 W high-brightness 1018 nm fiber laser for tandem pump application[J]. Laser Physics Letters, 2017, 14(12):125102.
    [32] Zhou Hang, Jin Aijun, Chen Zilun, et al. Combined super-continuum source with 200 W power using a 31 broad-band fiber power combiner[J]. Opt Lett, 2015, 40(16):3810-3813.
    [33] Zhang Bin. The study on the incoherent combination of near-infrared supercontinuum source[D]. Changsha:National University of Defense Technology, 2015. (in Chinese)
    [34] Zhou Xuanfeng, Chen Zilun, Wang Zefeng, et al. Monolithic fiber end cap collimator for high power free-space fiber-fiber coupling[J]. Appl Opt, 2016, 55(15):4001-4003.
    [35] Zhou Xuanfeng, Chen Zilun, Hou Jing, et al. High power fiber end-cap with 6 kW output power[J]. High Power Laser and Particle Beams, 2015, 27(12):120101. (in Chinese)
  • [1] 许湘钰, 刘召强, 贾童, 楚春双, 张勇辉, 张紫辉.  增益分布对GaN基蓝光微盘激光器模式分布和发光功率的影响 . 红外与激光工程, 2024, 53(1): 20230401-1-20230401-8. doi: 10.3788/IRLA20230401
    [2] 王涛, 李灿, 刘洋, 任博, 唐振强, 常洪祥, 谢戈辉, 郭琨, 吴坚, 许将明, 冷进勇, 马鹏飞, 粟荣涛, 李文雪, 周朴.  基于光纤拉伸器锁相实现两路超快激光相干偏振合成 . 红外与激光工程, 2023, 52(6): 20220869-1-20220869-8. doi: 10.3788/IRLA20220869
    [3] 陈默, 王建飞, 路阳, 胡晓阳, 陈伟, 孟洲.  超窄线宽布里渊光纤激光器研究进展(特邀) . 红外与激光工程, 2023, 52(6): 20230131-1-20230131-18. doi: 10.3788/IRLA20230131
    [4] 程鑫, 姜华卫, 冯衍.  高功率单频掺铒光纤激光技术研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20220127-1-20220127-12. doi: 10.3788/IRLA20220127
    [5] 张万儒, 粟荣涛, 李灿, 张嵩, 姜曼, 马鹏飞, 马阎星, 吴坚, 周朴.  窄线宽光纤激光振荡器研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20210879-1-20210879-26. doi: 10.3788/IRLA20210879
    [6] 付敏, 李智贤, 王泽锋, 陈子伦.  高光束质量3×1光纤功率合束器的研制 . 红外与激光工程, 2022, 51(5): 20210354-1-20210354-7. doi: 10.3788/IRLA20210354
    [7] 王天齐, 康治军, 孟冬冬, 邱基斯, 刘昊.  受激布里渊散射相位共轭镜在高功率纳秒激光器中的应用进展 . 红外与激光工程, 2021, 50(5): 20211024-1-20211024-12. doi: 10.3788/IRLA20211024
    [8] 冉建, 曹飞, 姜俊, 张兴.  大电流、高稳定脉冲激光器驱动电路设计与数学分析 . 红外与激光工程, 2020, 49(S1): 20200184-20200184. doi: 10.3788/IRLA20200184
    [9] 陈晴, 浦双双, 牛娜, 周阳, 郑权.  双波长蓝光LD抽运Pr:YLF晶体倍频261 nm紫外激光器 . 红外与激光工程, 2020, 49(S1): 20200090-20200090. doi: 10.3788/IRLA20200090
    [10] 祖嘉琦, 武帅, 张海涛, 耿东晛, 卢姁.  光纤饱和吸收体掺镱全光纤化激光器 . 红外与激光工程, 2020, 49(6): 20190382-1-20190382-6. doi: 10.3788/IRLA20190382
    [11] 王菲.  高稳定度光泵浦腔内倍频488 nm半导体薄片激光器 . 红外与激光工程, 2019, 48(6): 606004-0606004(5). doi: 10.3788/IRLA201948.0606004
    [12] 王彩丽, 谢仕永, 刘辉, 许阳蕾, 张敬.  激光雷达用2 μm Tm:YAG激光器波长精细调控的理论研究 . 红外与激光工程, 2018, 47(8): 830003-0830003(5). doi: 10.3788/IRLA201847.0830003
    [13] 余光其, 王鹏, 宋伟, 刘奎永.  光纤激光泵浦的多波长中红外光参量振荡器 . 红外与激光工程, 2018, 47(4): 404003-0404003(7). doi: 10.3788/IRLA201847.0404003
    [14] 崔建丰, 高涛, 张亚男, 王迪, 姚俊, 岱钦.  高效率、高峰值功率351nm准连续紫外激光器 . 红外与激光工程, 2017, 46(6): 605004-0605004(4). doi: 10.3788/IRLA201746.0605004
    [15] 刘旭, 魏靖松, 谭朝勇, 朱孟真, 程勇.  激光器免温控泵浦源的多波长选择理论 . 红外与激光工程, 2016, 45(5): 505004-0505004(5). doi: 10.3788/IRLA201645.0505004
    [16] 黄伟, 谭荣清, 李志永.  LD横向泵浦铷蒸气激光器阈值特性理论研究 . 红外与激光工程, 2016, 45(2): 206001-0206001(7). doi: 10.3788/IRLA201645.0206001
    [17] 张鑫, 刘源, 贺岩, 杨燕, 侯霞, 陈卫标.  人眼安全高重频窄脉宽单模全光纤激光器特性研究 . 红外与激光工程, 2015, 44(4): 1105-1109.
    [18] 毛小洁, 秘国江, 庞庆生, 邹跃.  高光束质量弹载激光主动成像激光器研制 . 红外与激光工程, 2015, 44(8): 2239-2242.
    [19] 苏艳丽, 罗旭, 张学辉, 姜梦华, 惠勇凌, 雷訇, 李强.  重复频率连续可调谐的Cr4+:YAG被动调Q微片激光器 . 红外与激光工程, 2014, 43(2): 355-359.
    [20] 徐正文, 曲轶, 王钰智, 高婷, 王鑫.  高功率980nm非对称宽波导半导体激光器设计 . 红外与激光工程, 2014, 43(4): 1094-1098.
  • 加载中
计量
  • 文章访问数:  674
  • HTML全文浏览量:  112
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 修回日期:  2017-11-20
  • 刊出日期:  2018-01-25

高功率光纤激光器功率合束器的研究进展(特邀)

doi: 10.3788/IRLA201746.0103005
    作者简介:

    陈子伦(1978-),男,副研究员,硕士生导师,主要从事光纤激光及大功率光纤器件方面的研究。Email:zilun2003@163.com

基金项目:

国家自然科学基金(61370045);国家重点研发计划(2017YFF0104600)

  • 中图分类号: O436

摘要: 光纤功率合束器是实现高功率光纤激光的核心元器件,可将多个中等功率的光纤激光器进行功率合成,以获得更高功率的光纤激光输出,解决单根光纤激光器功率进一步提升所遇到的瓶颈问题。文中综述了光纤激光功率合束器的基本结构和国内外研究现状,阐述了光纤功率合束器的工艺制作流程以及工艺难点,针对现存问题及今后的研究方向提出了建议。

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回