留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高光谱分辨率激光雷达的气溶胶分类方法研究

刘秉义 庄全风 秦胜光 吴松华 刘金涛

刘秉义, 庄全风, 秦胜光, 吴松华, 刘金涛. 基于高光谱分辨率激光雷达的气溶胶分类方法研究[J]. 红外与激光工程, 2017, 46(4): 411001-0411001(13). doi: 10.3788/IRLA201746.0411001
引用本文: 刘秉义, 庄全风, 秦胜光, 吴松华, 刘金涛. 基于高光谱分辨率激光雷达的气溶胶分类方法研究[J]. 红外与激光工程, 2017, 46(4): 411001-0411001(13). doi: 10.3788/IRLA201746.0411001
Liu Bingyi, Zhuang Quanfeng, Qin Shengguang, Wu Songhua, Liu Jintao. Aerosol classification method based on high spectral resolution lidar[J]. Infrared and Laser Engineering, 2017, 46(4): 411001-0411001(13). doi: 10.3788/IRLA201746.0411001
Citation: Liu Bingyi, Zhuang Quanfeng, Qin Shengguang, Wu Songhua, Liu Jintao. Aerosol classification method based on high spectral resolution lidar[J]. Infrared and Laser Engineering, 2017, 46(4): 411001-0411001(13). doi: 10.3788/IRLA201746.0411001

基于高光谱分辨率激光雷达的气溶胶分类方法研究

doi: 10.3788/IRLA201746.0411001
基金项目: 

国家自然科学基金(40905005,41375016)

详细信息
    作者简介:

    刘秉义(1980-),男,副教授,博士,主要从事大气和海洋激光探测方面的研究。Email:liubingyi@ouc.edu.cn

  • 中图分类号: TN958.98

Aerosol classification method based on high spectral resolution lidar

  • 摘要: 气溶胶是影响气候变化和空气质量的重要因素,对气溶胶作用的量化分析依赖于气溶胶光学性质及其垂直剖面的精细探测。高光谱分辨率激光雷达利用窄带光学滤波器,可在光谱上实现对分子散射和气溶胶散射的分离,从而在不需假设气溶胶激光雷达比的情况下,独立获取气溶胶消光系数和后向散射系数。文中基于高光谱分辨率激光雷达技术,开展气溶胶分类方法研究。根据已有的气溶胶分类研究结果,给出基于气溶胶光学参数的分类方法,并建立气溶胶分类查找表。利用高光谱分辨率激光雷达于2015年春季在青岛地区测量的气溶胶消光系数、后向散射系数和退偏振比,参照建立的气溶胶分类查找表,实现了对气溶胶的分类识别,并用HYSPLIT轨迹模式、NAAPS气溶胶模式进行了印证。个例研究结果表明该方法能够实现对气溶胶类型的正确识别。
  • [1] Pschl U. Atmospheric aerosols:composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 2005, 44(46):7520-7540.
    [2] Climate Change 2013:the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York:Cambridge University Press, 2014.
    [3] Tie X, Cao J. Aerosol pollution in China:Present and future impact on environment[J]. Particuology, 2009, 7(6):426-431.
    [4] R Raymond M. Measures. Laser Remote Sensing:Fundamentals and Applications[M]. Florida:Wiley, 1992.
    [5] Winker D M, Vaughan M A, Omar A, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(11):2310-2323.
    [6] Ansmann A, Wandinger U, Le Rille O, et al. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN:methodology and simulations[J]. Applied Optics, 2007, 46(26):6606-6622.
    [7] Sy O O, Tanelli S, Takahashi N, et al. Simulation of Earth CARE spaceborne Doppler radar products using ground-based and airborne data:effects of aliasing and nonuniform beam-filling[J]. Geoscience and Remote Sensing IEEE Transactions on, 2014, 52(2):1463-1479.
    [8] Mace G G, Starr D O, Marchand R, et al. Contemplating synergistic algorithms for the NASA ACE mission[C]//SPIE Remote Sensing. International Society for Optics and Photonics, 2013, 8890:88900I.
    [9] Liu Dong, Yang Yongying, Zhou Yudi, et al. High spectral resolution lidar for atmosphere remote sensing:a review[J]. Infrared and Laser Engineering, 2015, 44(9):2535-2546. (in Chinese)刘东, 杨甬英, 周雨迪, 等. 大气遥感高光谱分辨率激光雷达研究进展[J]. 红外与激光工程, 2015, 44(9):2535-2546.
    [10] Hua Dengxin, Song Xiaoquan. Advances in lidar remote sensing techniques[J]. Infrared and Laser Engineering, 2008, 37(S):21-27. (in Chinese)华灯鑫, 宋小全. 先进激光雷达探测技术研究进展[J]. 红外与激光工程, 2008, 37(S):21-27.
    [11] Liu Z, Sugimoto N, Murayama T. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar[J]. Applied Optics, 2002, 41(15):2760-2767.
    [12] Sugimoto N, Lee C H. Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths[J]. Applied Optics, 2006, 45(28):7468-7474.
    [13] Xie C, Nishizawa T, Sugimoto N, et al. Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China[J]. Applied Optics, 2008, 47(27):4945-4951.
    [14] GroS, Tesche M, Freudenthaler V, et al. Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2[J]. Tellus B, 2011, 63(4):706-724.
    [15] Burton S P, Ferrare R A, Hostetler C A, et al. Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples[J]. Atmospheric Measurement Techniques, 2012, 5(1):73-98.
    [16] GroS, Esselborn M, Weinzierl B, et al. Aerosol classification by airborne high spectral resolution lidar observations[J]. Atmospheric Chemistry and Physics, 2013, 13(5):2487-2505.
    [17] Shipley S T, Tracy D H, Eloranta E W, et al. High resolution lidar to measure optical scattering properties of atmospheric aerosols. 1:Theory and instrumentation[J]. Applied Optics, 1983, 22(23):3716-3724.
    [18] Hua D, Uchida M, Kobayashi T. Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere[J]. Optics Letters, 2004, 29(10):1063-1065.
    [19] Imaki M, Kobayashi T. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties[J]. Applied Optics, 2005, 44(28):6023-6030.
    [20] She C Y, Alvarez II R J, Caldwell L M, et al. High-spectral-resolution Rayleigh-Mie lidar measurements of aerosol and atmospheric profiles[J]. Optics Letters, 1992, 17(7):541-543.
    [21] Piironen P, Eloranta E W. Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter[J]. Optics Letters, 1994, 19(3):234-236.
    [22] Hair J W. A high spectral resolution lidar at 532 nm for simultaneous measurement of atmospheric state and aerosol profiles using iodine vapor filters[D]. Colorado:Colorado State University, 1998.
    [23] Hair J W, Hostetler C A, Cook A L, et al. Airborne High Spectral Resolution Lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36):6734-6752.
    [24] Esselborn M, Wirth M, Fix A, et al. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients[J]. Applied Optics, 2008, 47(3):346-358.
    [25] Schwiesow R L, Lading L. Temperature profiling by Rayleigh-scattering lidar[J]. Applied Optics, 1981, 20(11):1972-1979.
    [26] Shepherd G G. Application of Doppler Michelson imaging to upper atmospheric wind measurement:WINDII and beyond[J]. Applied Optics, 1996, 35(16):2764-2773.
    [27] Liu D, Hostetler C, Miller I, et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar[J]. Optics Express, 2012, 20(2):1406-1420.
    [28] Liu Z, Kobayashi T. Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio[J]. Optical Review, 1996, 3(1):47-52.
    [29] Bruneau D, Pelon J. Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer:principle of operation and performance assessment[J]. Applied Optics, 2003, 42(6):1101-1114.
    [30] Bruneau D, Pelon J, Blouzon F, et al. 355-nm high spectral resolution airborne lidar LNG:system description and first results[J]. Applied Optics, 2015, 54(29):8776-8785.
    [31] Tenti G, Boley C D, Desai R C. On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases[J]. Canadian Journal of Physics, 1974, 52(4):285-290.
    [32] Liu B Y, Esselborn M, Wirth M, et al. Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar[J]. Applied Optics, 2009, 48(27):5143-5154.
    [33] Miles R B, Lempert W R, Forkey J N. Laser rayleigh scattering[J]. Measurement Science and Technology, 2001, 12(5):R33.
    [34] Freudenthaler V, Esselborn M, Wiegner M, et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006[J]. Tellus, 2009, 61(1):165-179.
    [35] Mishchenko M I, Sassen K. Depolarization of lidar returns by small ice crystals:An application to contrails[J]. Geophysical Research Letters, 1998, 25(3):309-312.
    [36] Sugimoto N, Matsui I, Shimizu A, et al. Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai[J]. Geophysical Research Letters, 2002, 29(19). Doi: 10.1029/2002GL015112.
    [37] Sassen K, Hsueh C. Contrail properties derived from high-resolution polarization lidar studies during SUCCESS[J]. Geophysical Research Letters, 1998, 25(8):1165-1168.
    [38] Sakai T, Nagai T, Nakazato M, et al. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba[J]. Applied Optics, 2003, 42(36):7103-7116.
    [39] Sassen K. Depolarization of laser light backscattered by artificial clouds[J]. Journal of Applied Meteorology, 1974, 13(8):923-933.
    [40] Liu Z S, Liu B Y, Li Z G, et al. Wind measurements with incoherent Doppler lidar based on iodine filters at night and day[J]. Applied Physics B, 2007, 88(2):327-335.
    [41] Liu Z S, Liu B Y, Wu S H, et al. High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements[J]. Optics Letters, 2008, 33(13):1485-1487.
    [42] Li Z G, Liu Z S, Yan Z A, et al. Research on characters of the marine atmospheric boundary layer structure and aerosol profiles by high spectral resolution lidar[J]. Optical Engineering, 2008, 47(8):086001-086001-6.
    [43] Song Xiaoquan, Guo Jinjia, Yan Zhao'ai, et al. Atmospheric aerosol optical parameters detection research with High Spectral Resolution Lidar[J]. Progress in Natural Science, 2008, 18(9):1009-1015. (in Chinese)宋小全, 郭金家, 闫召爱, 等. 大气气溶胶光学参数的高光谱分辨率激光雷达探测研究[J]. 自然科学进展, 2008, 18(9):1009-1015.
    [44] Liu Z S, Bi D C, Song X, et al. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements[J]. Optics Letters, 2009, 34(18):2712-2714.
    [45] Wu S, Song X, Liu B, et al. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement[J]. Optics Express, 2015, 23(26):33870-33892.
    [46] Zhang Wei. Design and calibration of polarization channel in Water vapor-Cloud-Aerosol Lidar[D]. Qingdao:Ocean University of China, 2013. (in Chinese)张薇. 水汽-云-气溶胶激光雷达偏振通道的设计与校正研究[D]. 青岛:中国海洋大学, 2013.
    [47] Omar A H, Winker D M, Vaughan M A, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10):1994-2014.
    [48] Illingworth A J, Barker H W, Beljaars A, et al. The EarthCARE satellite:the next step forward in global measurements of clouds, aerosols, precipitation, and radiation[J]. Bulletin of the American Meteorological Society, 2015, 96(8):1311-1332.
  • [1] 王元祖, 孙东松, 韩於利, 郑俊, 赵一鸣.  大气模式对气溶胶光学参量反演及分类的影响研究 . 红外与激光工程, 2023, 52(1): 20220262-1-20220262-13. doi: 10.3788/IRLA20220262
    [2] 罗雄, 史悦, 范琪, 尹微, 彭涛, 赵培娥, 王柯, 周鼎富.  基于相干激光雷达气象多要素探测 . 红外与激光工程, 2023, 52(11): 20230138-1-20230138-10. doi: 10.3788/IRLA20230138
    [3] 李路, 邢昆明, 赵明, 邓迁, 王邦新, 庄鹏, 施云.  探测气溶胶-水汽的拉曼-米散射激光雷达系统 . 红外与激光工程, 2023, 52(4): 20220484-1-20220484-11. doi: 10.3788/IRLA20220484
    [4] 暴丽霞, 李江存, 贾启才.  炭基/锌掺杂铁磁体复合材料制备及其消光性能研究 . 红外与激光工程, 2022, 51(4): 20210378-1-20210378-8. doi: 10.3788/IRLA20210378
    [5] 杨彬, 莫祖斯, 刘海姣, 卜令兵.  大气探测激光雷达突变信号处理方法研究(特邀) . 红外与激光工程, 2022, 51(1): 20211117-1-20211117-9. doi: 10.3788/IRLA20211117
    [6] 李凯, 王玄玉, 高艳卿, 董文杰.  石墨烯红外波段复折射率及消光性能研究 . 红外与激光工程, 2021, 50(4): 20200246-1-20200246-7. doi: 10.3788/IRLA20200246
    [7] 李珂, 刘秉义, 杨倩, 唐军武, 吴松华.  海洋激光雷达测量水体剖面偏振信号的仿真模拟 . 红外与激光工程, 2021, 50(6): 20211035-1-20211035-10. doi: 10.3788/IRLA20211035
    [8] 朱倩, 潘增新, 毛飞跃, 石瑞星, 臧琳, 卢昕.  中国区域CALIPSO和MERRA-2气溶胶三维参数对比验证 . 红外与激光工程, 2020, 49(S2): 20200350-20200350. doi: 10.3788/IRLA20200350
    [9] 董俊发, 刘继桥, 朱小磊, 毕德仓, 竹孝鹏, 陈卫标.  星载高光谱分辨率激光雷达的高光谱探测分光比优化分析 . 红外与激光工程, 2019, 48(S2): 1-6. doi: 10.3788/IRLA201948.S205001
    [10] 陶宗明, 施奇兵, 谢晨波, 刘东, 张帅.  利用CCD和后向散射激光雷达精确探测近地面气溶胶消光系数廓线 . 红外与激光工程, 2019, 48(S1): 43-49. doi: 10.3788/IRLA201948.S106007
    [11] 袁辉, 郝明磊, 李凡显, 史倩义.  水雾中1.06 μm激光辐射的衰减特性 . 红外与激光工程, 2018, 47(10): 1006003-1006003(7). doi: 10.3788/IRLA201847.1006003
    [12] 杨辉, 赵雪松, 孙彦飞, 王铁栋, 叶结松.  荧光偏振短距激光雷达测量生物战剂/气溶胶 . 红外与激光工程, 2017, 46(10): 1030004-1030004(8). doi: 10.3788/IRLA201767.1030004
    [13] 鲁先洋, 李学彬, 秦武斌, 朱文越, 徐青山.  海洋大气气溶胶粒子谱分布及其消光特征分析 . 红外与激光工程, 2017, 46(12): 1211002-1211002(6). doi: 10.3788/IRLA201746.1211002
    [14] 孙国栋, 秦来安, 程知, 何枫, 侯再红.  成像激光雷达测量大气能见度实验研究 . 红外与激光工程, 2017, 46(10): 1030003-1030003(9). doi: 10.3788/IRLA201766.1030003
    [15] 郭晓铛, 乔小晶, 李旺昌, 任庆国, 魏龙.  铁磁体/碳复合材料多频干扰性能 . 红外与激光工程, 2016, 45(3): 321001-0321001(5). doi: 10.3788/IRLA201645.0321001
    [16] 赵明, 谢晨波, 钟志庆, 王邦新, 王珍珠, 尚震, 谭敏, 刘东, 王英俭.  高光谱分辨率激光雷达探测大气透过率 . 红外与激光工程, 2016, 45(S1): 76-80. doi: 10.3788/IRLA201645.S130002
    [17] 孙贤明, 万隆, 王海华.  激光雷达探测水云退偏振比的敏感性研究 . 红外与激光工程, 2016, 45(9): 906001-0906001(5). doi: 10.3788/IRLA201645.0906001
    [18] 刘东, 杨甬英, 周雨迪, 黄寒璐, 成中涛, 罗敬, 张与鹏, 段绿林, 沈亦兵, 白剑, 汪凯巍.  大气遥感高光谱分辨率激光雷达研究进展 . 红外与激光工程, 2015, 44(9): 2535-2546.
    [19] 闫顺生.  提高拉曼探测气溶胶消光系数精度的玻-温模式 . 红外与激光工程, 2014, 43(9): 3015-3019.
    [20] 熊兴隆, 蒋立辉, 冯帅.  Mie散射激光雷达回波信号处理方法 . 红外与激光工程, 2012, 41(1): 89-95.
  • 加载中
计量
  • 文章访问数:  630
  • HTML全文浏览量:  103
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-02
  • 修回日期:  2016-09-05
  • 刊出日期:  2017-04-25

基于高光谱分辨率激光雷达的气溶胶分类方法研究

doi: 10.3788/IRLA201746.0411001
    作者简介:

    刘秉义(1980-),男,副教授,博士,主要从事大气和海洋激光探测方面的研究。Email:liubingyi@ouc.edu.cn

基金项目:

国家自然科学基金(40905005,41375016)

  • 中图分类号: TN958.98

摘要: 气溶胶是影响气候变化和空气质量的重要因素,对气溶胶作用的量化分析依赖于气溶胶光学性质及其垂直剖面的精细探测。高光谱分辨率激光雷达利用窄带光学滤波器,可在光谱上实现对分子散射和气溶胶散射的分离,从而在不需假设气溶胶激光雷达比的情况下,独立获取气溶胶消光系数和后向散射系数。文中基于高光谱分辨率激光雷达技术,开展气溶胶分类方法研究。根据已有的气溶胶分类研究结果,给出基于气溶胶光学参数的分类方法,并建立气溶胶分类查找表。利用高光谱分辨率激光雷达于2015年春季在青岛地区测量的气溶胶消光系数、后向散射系数和退偏振比,参照建立的气溶胶分类查找表,实现了对气溶胶的分类识别,并用HYSPLIT轨迹模式、NAAPS气溶胶模式进行了印证。个例研究结果表明该方法能够实现对气溶胶类型的正确识别。

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回