留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯锁模的全保偏光纤激光器

陈恺 祝连庆 娄小平 姚齐峰 骆飞

陈恺, 祝连庆, 娄小平, 姚齐峰, 骆飞. 石墨烯锁模的全保偏光纤激光器[J]. 红外与激光工程, 2017, 46(10): 1005004-1005004(8). doi: 10.3788/IRLA201755.1005004
引用本文: 陈恺, 祝连庆, 娄小平, 姚齐峰, 骆飞. 石墨烯锁模的全保偏光纤激光器[J]. 红外与激光工程, 2017, 46(10): 1005004-1005004(8). doi: 10.3788/IRLA201755.1005004
Chen Kai, Zhu Lianqing, Lou Xiaoping, Yao Qifeng, Luo Fei. All-polarization-maintaining fiber laser mode-locked by graphene[J]. Infrared and Laser Engineering, 2017, 46(10): 1005004-1005004(8). doi: 10.3788/IRLA201755.1005004
Citation: Chen Kai, Zhu Lianqing, Lou Xiaoping, Yao Qifeng, Luo Fei. All-polarization-maintaining fiber laser mode-locked by graphene[J]. Infrared and Laser Engineering, 2017, 46(10): 1005004-1005004(8). doi: 10.3788/IRLA201755.1005004

石墨烯锁模的全保偏光纤激光器

doi: 10.3788/IRLA201755.1005004
基金项目: 

教育部长江学者和创新团队发展计划(IRT1212);北京市科技计划项目(Z151100003615010);北京市教委2015年度创新能力提升计划项目(TJSHG201510772016)

详细信息
    作者简介:

    陈恺(1990-),男,硕士生,主要从事光纤激光器等方面的研究。Email:347248645@qq.com

  • 中图分类号: TN248.1

All-polarization-maintaining fiber laser mode-locked by graphene

  • 摘要: 报道了一种基于反射式石墨烯可饱和吸收镜锁模的全保偏掺铒光纤激光器。分别使用单层和十层石墨烯作为可饱和吸收器件,通过全保偏结构,避免了外界环境对腔内偏振态的影响,获得了高稳定性、高偏振度、易自启动的锁模脉冲输出,脉冲宽度分别为697 fs和502 fs。实验表明,十层石墨烯相比于单层石墨烯能够获得更窄的脉冲宽度,更高的峰值功率,具有好的锁模效果。研究同时发现,经十层石墨烯锁模,进一步提高泵浦功率,可在全保偏光纤腔中获得重复频率62.94 MHz的二阶谐波锁模脉冲输出。并通过非线性薛定谔方程对谐波锁模产生的机理进行了分析。这种基于反射式可饱和吸收镜的全保偏锁模光纤激光器有望成为实现基频锁模与谐波锁模可切换的单偏振激光源。
  • [1] Zhang H, Shen X, Chen D, et al. High energy and high peak power nanosecond pulses generated by fiber amplifier[J]. IEEE Photonics Technology Letters, 2014, 26(22):2295-2298.
    [2] Shen X, Zhang H, Hao H, et al. High energy, single-polarized, single-transverse-mode, nanosecond pulses generated by a multi-stage Yb-doped photonic crystal fiber amplifier[J]. Optics Communications, 2015, 345:168-172.
    [3] Yuan Ruixia, Peng Jiying, Li Zuohan, et al. Nd:YVO4 self-mode-locked picosecond laser[J]. Infrared and Laser Engineering, 2016, 45(3):0305001. (in Chinese)袁瑞霞, 彭继迎, 李祚涵,等. Nd:YVO4自锁模皮秒激光器[J]. 红外与激光工程, 2016, 45(3):0305001.
    [4] Tao S, Xu L, Chen G, et al. Ultra-high repetition rate harmonic mode-locking generated in a dispersion and nonlinearity managed fiber laser[J]. Journal of Lightwave Technology, 2016, 34(9):2354-2357.
    [5] Chen H, Chen S, Jiang Z, et al. 0.4J, 7 kW ultrabroadband noise-like pulse direct generation from an all-fiber dumbbell-shaped laser[J]. Optics Letters, 2015, 40(23):5490-5493.
    [6] Zhang L, Zhou J, Wang Z, et al. SESAM mode-locked, environmentally stable, and compact dissipative soliton fiber laser[J]. IEEE Photonics Technology Letters, 2014, 26(13):1314-1316.
    [7] Krylov A A, Sazonkin S G, Arutyunyan N R, et al. Performance peculiarities of carbon-nanotube-based thin-film saturable absorbers for erbium fiber laser mode-locking[J]. Journal of the Optical Society of America B, 2015, 33(2):134.
    [8] Dong Xinzheng, Yu Zhenhua, Tian Jinrong, et al. A 147 fs mode-locked erbium-doped fiber laser with a carbon nanotubes saturable absorber in evanescent field[J]. Acta Physica Sinica, 2014, 63(3):034202. (in Chinese)董信征, 于振华, 田金荣,等. 147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器[J]. 物理学报, 2014, 63(3):034202.
    [9] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    [10] Yamashita S, Martinez A, Xu B. Short pulse fiber lasers mode-locked by carbon nanotubes and graphene[J]. Optical Fiber Technology, 2014, 20(6):702-713.
    [11] Baek I H, Lee H W, Bae S, et al. Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber[J]. Applied Physics Express, 2012, 5(3):339-345.
    [12] Zaugg C A, Sun Z, Wittwer V J, et al. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector.[J]. Optics Express, 2013, 21(25):31548-31559.
    [13] Haris H, Harun S W, Anyi C L, et al. Generation of soliton and bound soliton pulses in mode-locked erbium-doped fiber laser using graphene film as saturable absorber[J]. Journal of Modern Optics, 2015, 63(8):1-6.
    [14] Sobon G, Sotor J, Pasternak I, et al. Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er-and Tm-doped fiber lasers[J]. Optical Materials Express, 2015, 5(12):2884-2894.
    [15] Zhu G, Zhu X, Wang F, et al. Graphene mode-locked fiber laser at 2.8[J]. IEEE Photonics Technology Letters, 2015, 28(1):7-10.
    [16] Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene[J]. Physics, 2013, 4(3):131-140.
    [17] Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19):3077-3083.
    [18] Sun Z, Popa D, Hasan T, et al. A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser[J]. Nano Research, 2010, 3(9):653-660.
    [19] Feng Dejun, Huang Wenyu, Jiang Shouzhen, et al. Few-layer graphene membrane as an ultrafast mode-locker in erbium-doped fiber laser[J]. Acta Physica Sinica, 2013, 62(5):054202. (in Chinese)冯德军, 黄文育, 姜守振, 等. 基于少数层石墨烯可饱和吸收的锁模光纤激光器[J]. 物理学报, 2013, 62(5):054202.
    [20] He X, Wang D N, Liu Z B. Pulse-width tuning in a passively mode-locked fiber laser with graphene saturable absorber[J]. IEEE Photonics Technology Letters, 2014, 26(4):360-363.
    [21] Sotor J, Pasternak I, Krajewska A, et al. Sub-90 fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber.[J]. Optics Express, 2015, 23(21):27503-27508.
    [22] Purdie D G, Popa D, Wittwer V J, et al. Few-cycle from pulses from a graphene mode-locked all-fiber laser[J]. Applied Physics Letters, 2015, 106(25):253101.
    [23] Xu J, Wu S, Liu J, et al. All-polarization-maintaining femtosecond fiber lasers using graphene oxide saturable absorber[J]. IEEE Photonics Technology Letters, 2014, 26(4):346-348.
    [24] Bowen P, Singh H, Runge A, et al. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser at 1060 nm[J]. Optics Communications, 2016, 364:181-184.
    [25] Jang H, Jang Y S, Kim S, et al. Polarization maintaining linear cavity Er-doped fiber femtosecond laser[J]. Laser Physics Letters, 2015, 12(10):105102.
    [26] Xu B, Martinez A, Set S Y, et al. Polarization Maintaining, nanotube-based mode-locked lasing from figure of eight fiber laser[J]. IEEE Photonics Technology Letters, 2014, 26(2):180-182.
    [27] Huang P L, Lin S C, Yeh C Y, et al. Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber[J]. Optics Express, 2012, 20(3):2460-2465.
    [28] Liu Dongfeng, Chen Guofu, Bai Jintao, et al. Generation and amplification of the ultrashort optical pulse sin passive harmonic mode-locking Er3+-doped fiber laser[J]. Acta Physica Sinica, 2000, 49(2):241-246. (in Chinese)刘东峰, 陈国夫, 白晋涛,等. 被动高阶谐波锁模掺Er~(3+)光纤激光超短光脉冲的产生及其放大[J]. 物理学报, 2000, 49(2):241-246.
    [29] Hu Tonghuan, Jiang Guobao, Chen Yu, et al. Passive harmonic mode-locking in Er-doped fiber laser based on mechanical exfoliated graphene saturable absorber[J]. Chinese Journal of Lasers, 2015, 42(8):0802013. (in Chinese)胡同欢, 蒋国保, 陈宇, 等. 机械剥离石墨烯被动谐波锁模掺铒光纤激光器[J]. 中国激光, 2015, 42(8):0802013.
  • [1] 柏汉泽, 钟艺峰, 任炽明, 黄俊杰, 田劲东, 熊德平, 孙敬华.  高次谐波锁模飞秒掺镱光纤激光器的噪声情况 . 红外与激光工程, 2022, 51(8): 20210779-1-20210779-7. doi: 10.3788/IRLA20210779
    [2] 高玉欣, 陈吉祥, 张泽贤, 战泽宇, 罗智超.  1.7 μm全光纤锁模脉冲掺铥光纤激光器研究 . 红外与激光工程, 2022, 51(7): 20220234-1-20220234-6. doi: 10.3788/IRLA20220234
    [3] 黄千千, 黄梓楠, 戴礼龙, 牟成博.  锁模光纤激光器中隐形孤子脉动演化特性研究(特邀) . 红外与激光工程, 2022, 51(1): 20210749-1-20210749-9. doi: 10.3788/IRLA20210749
    [4] 王润雨, 王庆.  2.4 μm波段全正色散飞秒克尔透镜锁模激光器(特邀) . 红外与激光工程, 2021, 50(8): 20210352-1-20210352-6. doi: 10.3788/IRLA20210352
    [5] 杨思敏, 汪徐德, 孙梦秋, 梁勤妹.  波长可切换可调谐耗散孤子锁模掺镱光纤激光器 . 红外与激光工程, 2020, 49(10): 20200026-1-20200026-6. doi: 10.3788/IRLA20200026
    [6] 祖嘉琦, 武帅, 张海涛, 耿东晛, 卢姁.  光纤饱和吸收体掺镱全光纤化激光器 . 红外与激光工程, 2020, 49(6): 20190382-1-20190382-6. doi: 10.3788/IRLA20190382
    [7] 明淑娴, 魏志伟, 刘萌, 罗爱平, 徐文成, 罗智超.  调Q和调Q锁模脉冲共存双波长光纤激光器 . 红外与激光工程, 2019, 48(8): 805009-0805009(8). doi: 10.3788/IRLA201948.0805009
    [8] 张利明, 鄢楚平, 冯进军, 张昆, 张浩彬, 朱辰, 张大勇, 赵鸿, 陈念江, 李尧, 郝金坪, 王雄飞, 何晓彤, 周寿桓.  180 W单频全光纤激光器 . 红外与激光工程, 2018, 47(11): 1105001-1105001(9). doi: 10.3788/IRLA201847.1105001
    [9] 凌远达, 黄千千, 邹传杭, 闫志君, 牟成博.  基于45°倾斜光栅的重复频率可切换被动谐波锁模光纤激光器 . 红外与激光工程, 2018, 47(8): 803007-0803007(5). doi: 10.3788/IRLA201847.0803007
    [10] 何广龙, 徐莉, 金亮, 马晓辉, 吴国盛, 隋庆学, 张志敏.  双SESAM被动锁模超短脉冲光纤激光器 . 红外与激光工程, 2018, 47(5): 505002-0505002(6). doi: 10.3788/IRLA201847.0505002
    [11] 梁佩茹, 宁秋奕, 陈伟成.  调Q锁模类噪声方波脉冲掺铒光纤激光器 . 红外与激光工程, 2018, 47(8): 803009-0803009(6). doi: 10.3788/IRLA201847.0803009
    [12] 张海鹍, 黄继阳, 周城, 夏伟, 何京良.  2 μm波段Tm:YAP晶体半导体可饱和吸收镜连续波锁模激光器 . 红外与激光工程, 2018, 47(5): 505003-0505003(4). doi: 10.3788/IRLA201847.0505003
    [13] 李润敏, 宋有建, 师浩森, 戴雯, 李跃鹏, 武子铃, 田昊晨, 柴路, 胡明列.  全保偏非线性偏振环形镜锁模掺铒光纤激光器 . 红外与激光工程, 2018, 47(8): 803006-0803006(6). doi: 10.3788/IRLA201847.0803006
    [14] 王少奇, 邓颖, 李超, 王方, 张永亮, 康民强, 薛海涛, 罗韵, 粟敬钦, 胡东霞, 郑奎兴, 朱启华.  被动锁模掺Er3+氟化物光纤激光器理论研究 . 红外与激光工程, 2016, 45(11): 1136004-1136004(6). doi: 10.3788/IRLA201645.1136004
    [15] 王立新, 蔡军, 姜培培, 沈永行.  全光纤化高功率线偏振掺镱脉冲光纤激光器 . 红外与激光工程, 2014, 43(2): 350-354.
    [16] 葛颜绮, 罗娇林, 张书敏, 唐定远, 沈德元, 赵鹭明.  被动锁模光纤激光器中增益支配孤子的腔至峰值功率钳位效应 . 红外与激光工程, 2014, 43(11): 3533-3539.
    [17] 华弋, 肖晓晟.  波长可调节全正色散掺镱锁模光纤激光器的放大特性 . 红外与激光工程, 2014, 43(12): 3924-3927.
    [18] 范丹, 陈淑芬, 高远, 付雷, 邹正峰, 孟彦斌.  基于色散控制的全光纤掺镱被动锁模激光器的设计与仿真 . 红外与激光工程, 2014, 43(8): 2399-2403.
    [19] 左林, 杨爱英, 赖俊森, 孙雨南.  非线性偏振旋转锁模光纤激光器数值模型 . 红外与激光工程, 2013, 42(1): 57-62.
    [20] 杨远洪, 段纬倩, 高丽娟.  反射型保偏光纤温度传感器现场校准方法 . 红外与激光工程, 2012, 41(8): 2107-2111.
  • 加载中
计量
  • 文章访问数:  394
  • HTML全文浏览量:  66
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-10
  • 修回日期:  2017-03-20
  • 刊出日期:  2017-10-25

石墨烯锁模的全保偏光纤激光器

doi: 10.3788/IRLA201755.1005004
    作者简介:

    陈恺(1990-),男,硕士生,主要从事光纤激光器等方面的研究。Email:347248645@qq.com

基金项目:

教育部长江学者和创新团队发展计划(IRT1212);北京市科技计划项目(Z151100003615010);北京市教委2015年度创新能力提升计划项目(TJSHG201510772016)

  • 中图分类号: TN248.1

摘要: 报道了一种基于反射式石墨烯可饱和吸收镜锁模的全保偏掺铒光纤激光器。分别使用单层和十层石墨烯作为可饱和吸收器件,通过全保偏结构,避免了外界环境对腔内偏振态的影响,获得了高稳定性、高偏振度、易自启动的锁模脉冲输出,脉冲宽度分别为697 fs和502 fs。实验表明,十层石墨烯相比于单层石墨烯能够获得更窄的脉冲宽度,更高的峰值功率,具有好的锁模效果。研究同时发现,经十层石墨烯锁模,进一步提高泵浦功率,可在全保偏光纤腔中获得重复频率62.94 MHz的二阶谐波锁模脉冲输出。并通过非线性薛定谔方程对谐波锁模产生的机理进行了分析。这种基于反射式可饱和吸收镜的全保偏锁模光纤激光器有望成为实现基频锁模与谐波锁模可切换的单偏振激光源。

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回