留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短脉冲光纤激光相干合成(特邀)

粟荣涛 周朴 张鹏飞 王小林 马阎星 马鹏飞

粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞. 超短脉冲光纤激光相干合成(特邀)[J]. 红外与激光工程, 2018, 47(1): 103001-0103001(19). doi: 10.3788/IRLA201847.0103001
引用本文: 粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞. 超短脉冲光纤激光相干合成(特邀)[J]. 红外与激光工程, 2018, 47(1): 103001-0103001(19). doi: 10.3788/IRLA201847.0103001
Su Rongtao, Zhou Pu, Zhang Pengfei, Wang Xiaolin, Ma Yanxing, Ma Pengfei. Review on the progress in coherent beam combining of ultra-short fiber lasers(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103001-0103001(19). doi: 10.3788/IRLA201847.0103001
Citation: Su Rongtao, Zhou Pu, Zhang Pengfei, Wang Xiaolin, Ma Yanxing, Ma Pengfei. Review on the progress in coherent beam combining of ultra-short fiber lasers(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103001-0103001(19). doi: 10.3788/IRLA201847.0103001

超短脉冲光纤激光相干合成(特邀)

doi: 10.3788/IRLA201847.0103001
基金项目: 

国家自然科学基金(61705265,61405255)

详细信息
    作者简介:

    粟荣涛(1984-),男,博士,主要从事高能激光技术方面的研究。Email:surongtao@126.com

    通讯作者: 周朴(1984-),男,研究员,博士生导师,博士,主要从事光纤激光、光束合成等方面的研究。Email:zhoupu203@163.com
  • 中图分类号: O436

Review on the progress in coherent beam combining of ultra-short fiber lasers(Invited)

  • 摘要: 相干合成技术能够突破单路激光的功率和脉宽极限,实现超高功率、超短脉宽的脉冲激光输出。介绍了超短脉冲光纤激光空域、时域和频域相干合成的基本原理和关键技术。综述了空域、时域和频域相干合成系统及其关键技术的研究现状,梳理了超短脉冲光纤激光相干合成的发展趋势,为相关技术的发展提供参考。
  • [1] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nat Photonics, 2013, 7(11):868-874.
    [2] Manke G C. Ultrashort pulsed laser technology development program[C]//SPIE, 2014, 9251:92510O.
    [3] Li Ruxin, Leng Yuxin, Xu Zhizhan. Progress in superintense ultrafast lasers and their applications[J]. Physics, 2015, 44(8):509-517. (in Chinese)
    [4] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Sci Engng, 2015, 3(e3):1-14.
    [5] Li Hongxun, Zhang Rui. Progress of fiber amplification network and its application[J]. Laser Optoelectronics Progress, 2017, 54(1):11-22. (in Chinese)
    [6] Jauregui C, Limpert J, Tnnermann A. High-power fibre lasers[J]. Nat Photonics, 2013, 7(11):861-867.
    [7] Wan P, Yang L, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Opt Express, 2013, 21(24):29854-29859.
    [8] Hdrich S, Demmler S, Rothhardt J, et al. High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification[J]. Opt Lett, 2011, 36(3):313-315.
    [9] Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Opt Express, 2011, 19(1):255-260.
    [10] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Opt Commun, 1985, 55(6):447-449.
    [11] Chang W, Zhou T, Siiman L A, et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Opt Express, 2013, 21(3):3897-3910.
    [12] Liu Zejin, Zhou Pu, Wang Xiaolin, et al. The history, development and tend of coherent combining of laser beams[J]. Chin J Laser, 2010, 37(9):2221-2234. (in Chinese)
    [13] Cheng Yong, Liu Yang, Xu Lixin. Recent progress and development of fiber combining technology[J]. Infrared and Laser Engineering, 2007, 36(2):163-166. (in Chinese)
    [14] Lou Qihong, He Bin, Zhou Jun. Fiber lasers and it's coherent beam combination[J]. Infrared and Laser Engineering, 2007, 36(2):155-159. (in Chinese)
    [15] Su Rongtao, Wang Xiaolin, Zhou Pu, et al. Resent research and development of beam combination of high power pulse fiber laser[J]. Laser Optoelectronics Progress, 2011, 48(10):101401. (in Chinese)
    [16] Yu Hailong, Wang Xiaolin, Su Rongtao, et al. Advances in high power femtosecond fiber laser systems[J]. Laser Optoelectronics Progress, 2016, 53(5):67-85. (in Chinese)
    [17] Wang Xiaolin, Zhou Pu, Xu Xiaojun, et al. Techniques of the coherent beam combination of pulse fiber lasers[J]. Laser Optoelectronics Progress, 2009, 46(5):13-23. (in Chinese)
    [18] Hanna M, Guichard F, Zaouter Y, et al. Coherent combination of ultrafast fiber amplifiers[J]. J Phys B:at Mol Opt Phys, 2016, 49(6):062004.
    [19] Sprangle P, Ting A, Peano J, et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE J Sel Top Quantum Electron, 2009, 45(2):138-148.
    [20] Geng C, Zhao B, Zhang E, et al. 1.5 kW incoherent beam combining of four fiber lasers using adaptive fiber-optics collimators[J]. IEEE Photon Technol Lett, 2013, 25(13):1286-1289.
    [21] Zuitlin R, Shamir Y, Sintov Y, et al. Modeling the evolution of spatial beam parameters in parabolic index fibers[J]. Opt Lett, 2012, 37(17):3636-3638.
    [22] Shamir Y, Zuitlin R, Sintov Y, et al. Spatial beam properties of combined lasers' delivery fibers[J]. Opt Lett, 2012, 37(9):1412-1414.
    [23] Zheng Y, Yang Y, Wang J, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Opt Express, 2016, 24(11):12063-12071.
    [24] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//SPIE, 2016, 9730:97300Y.
    [25] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chin J Laser, 2016, 43(9):55-61. (in Chinese)
    [26] Xu J, Gao H, Peng Q, et al. High-efficient beam combining of polarized high power lasers by time multiplexing technique[J]. IEEE Photon Technol Lett, 2014, 26(3):261-263.
    [27] Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chin J Laser, 2017, 44(2):0201001. (in Chinese)
    [28] Manzoni C, Mcke O D, Cirmi G, et al. Coherent pulse synthesis:towards sub-cycle optical waveforms[J]. Laser Photonics Rev, 2015, 9(2):129-171.
    [29] Shelton R K, Ma L, Kapteyn H C, et al. Phase-coherent optical pulse synthesis from separate femtosecond lasers[J]. Science, 2001, 293(5533):1286-1289.
    [30] Zhou P, Liu Z, Xu X, et al. Numerical analysis of the effects of aberrations on coherently combined fiber laser beams[J]. Appl Opt, 2008, 47(18):3350-3359.
    [31] Goodno G D, Shih C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Opt Express, 2010, 18(24):25403-25414.
    [32] Geng C, Luo W, Tan Y, et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control[J]. Opt Express, 2013, 21(21):25045-25055.
    [33] Weyrauch T, Vorontsov M, Ovchinnikov V, et al. Atmospheric turbulence compensation and coherent beam combining over a 7 km propagation path using a fiber-array system with 21 sub-apertures[C]//Imaging and Applied Optics, 2014:PW2E.3.
    [34] Zhi D, Ma P, Ma Y, et al. Novel adaptive fiber-optics collimator for coherent beam combination[J]. Opt Express, 2014, 22(25):31520-31528.
    [35] Su R, Zhou P, Ma Y, et al. 1.2 kW average power from coherently combined single-frequency nanosecond all-fiber amplifier array[J]. Appl Phys Express, 2013, 6(12):122702.
    [36] Fan X, Liu J, Liu J, et al. Coherent combining of a seven-element hexagonal fiber array[J]. Opt Laser Technol, 2010, 42(2):274-279.
    [37] Brosnan S J, Wichham M G, Komine H. Method and apparatus for optimizing the target intensity distribution transmitted from a fiber coupled array:US Patent, 7283702[P]. 2007-10-16.
    [38] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Opt Express, 2011, 19(18):17053-17058.
    [39] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Opt Lett, 2011, 36(14):2686-2688.
    [40] Su R, Zhou P, Wang X, et al. Actively coherent beam combining of two single-frequency 1083 nm nanosecond fiber amplifiers in low-repetition-rate[J]. IEEE Photon Technol Lett, 2013, 25(15):1485-1487.
    [41] Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Opt Express, 2010, 18(13):13547-13553.
    [42] Yang B, Wang X, Ma P, et al. Passive coherent beam combining four channels of nanosecond pulsed laser using all-fiber feedback loop[J]. Chin Phys Lett, 2014, 31(11):114210.
    [43] Ma P F, Zhou P, Su R T, et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique[J]. Laser Phys Lett, 2012, 9(6):456-458.
    [44] Yang Y, Liu H, Zheng Y, et al. Dammann-grating-based passive phase locking by an all-optical feedback loop[J]. Opt Lett, 2014, 39(3):708-710.
    [45] 刘泽金, 周朴, 马鹏飞, 等. 4路高功率窄线宽、线偏振光纤放大器相干偏振合成实现5 kW级高亮度激光输出(简讯)[J]. 中国激光, 2017, 44(4):0415004.
    [46] Mller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Opt Lett, 2016, 41(15):3439-3442.
    [47] Thielen P A, Ho J G, Burchman D A, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Opt Lett, 2012, 37(18):3741-3743.
    [48] Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//SPIE, 2016, 9728:97281Y.
    [49] Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Influence of temporal error with different pulse shapes on coherent beam combination system[J]. Acta Phys Sin, 2012, 61(8):206-211. (in Chinese)
    [50] Yu H L, Ma P F, Wang X L, et al. Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system[J]. Laser Phys Lett, 2015, 12(10):105301.
    [51] Su R, Zhou P, Wang X, et al. Impact of temporal and spectral aberrations on coherent beam combination of nanosecond fiber lasers[J]. Appl Opt, 2013, 52(10):2187-2193.
    [52] Klenke A, Seise E, Limpert J, et al. Basic considerations on coherent combining of ultrashort laser pulses[J]. Opt Express, 2011, 19(25):25379-25387.
    [53] Su R, Zhou P, Wang X, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers[J]. Opt Lett, 2012, 37(4):497-499.
    [54] Su Rongtao, Zhou Pu, Ma Yanxing, et al. Coherent beam combining of two nanosecond fiber pulse lasers[J]. Chinese J Laser, 2012, 39(1):0102004. (in Chinese)
    [55] Yu Hailong. Study on high power femtosecond fiber lasers and their coherent beam combining technology[D]. Changsha:National University of Defense Technology, 2016. (in Chinese)
    [56] Weiss S B, Weber M E, Goodno G D. Group delay locking of coherently combined broadband lasers[J]. Opt Lett, 2012, 37(4):455-457.
    [57] Bochove E J, Shakir S A. Analysis of a spatial-filtering passive fiber laser beam combining system[J]. IEEE J Sel Top Quantum Electron, 2009, 15(2):320-327.
    [58] He B, Lou Q, Wang W, et al. Experimental demonstration of phase locking of a two-dimensional fiber laser array using a self-imaging resonator[J]. Appl Phys Lett, 2008, 92(25):251115.
    [59] Li J, Duan K, Wang Y, et al. High-power coherent beam combining of two photonic crystal fiber lasers[J]. IEEE Photon Technol Lett, 2008, 20(11):888-890.
    [60] Huo Y, Cheo P. Analysis of transverse mode competition and selection in multicore fiber lasers[J]. J Opt Soc Am B, 2005, 22(11):2345-2349.
    [61] Michaille L, Bennett C R, Taylor D M, et al. Multicore photonic crystal fiber lasers for high power/energy applications[J]. IEEE J Sel Top Quantum Electron, 2009, 15(2):328-336.
    [62] Chen Z, Hou J, Zhou P, et al. Passive phase locking of an array of four fiber lasers by mutual injection locking[J]. Opt Laser Technol, 2009, 15(4):333-336.
    [63] Fabiny L, Colet P, Poy R. Coherence and phase dynamics of spatially coupled solid-state lasers[J]. Phys Rev A, 1993, 47(5):4287-4296.
    [64] Shardlow P C, Damzen M J. Phase conjugate self-organized coherent beam combination:a passive technique for laser power scaling[J]. Opt Lett, 2010, 35(7):1082-1084.
    [65] Steinhausser B, Brignon A, Lallier E, et al. High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup[J]. Opt Express, 2007, 15(10):6464-6469.
    [66] Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors[J]. Appl Phys Lett, 2008, 92(2):021120.
    [67] Zhou Jun, He Bing, Xue Yuhao, et al. Study on passive coherent beam combination technology of high power fiber laser arrays[J]. Acta Optica Sinica, 2011, 31(9):251-259. (in Chinese)
    [68] Eckhouse V, Ishaaya A A, Shimshi L, et al. Intracavity coherent addition of 16 laser distributions[J]. Opt Lett, 2006, 31(3):350-352.
    [69] Wang X, Zhou P, Ma H, et al. Synchronization and coherent combining of two pulsed fiber ring lasers based on direct phase modulation[J]. Chin Phys Lett, 2009, 26(5):054212.
    [70] Zhou P, Wang X, Chen Z, et al. Coherent combining of two pulsed fibre lasers in phase modulated mutually coupled fibre laser array[J]. Electron Lett, 2008, 44(21):20082057.
    [71] Zhang C, Chang W, Galvanauskas A, et al. Simultaneous passive coherent beam combining and mode locking of fiber laser arrays[J]. Opt Express, 2012, 20(15):16245-16257.
    [72] Kambayashi Y, Yoshida M, Sasaki T, et al. All-fiber phase-control-free coherent-beam combining toward femtosecond-pulse amplification[J]. Opt Commun, 2017, 382:556-558.
    [73] Kong F, Liu L, Sanders C, et al. Phase locking of nanosecond pulses in a passively Q-switched two-element finer laser array[J]. Appl Phys Lett, 2007, 90(15):151110.
    [74] Michaille L, Taylor D M, Bennett C R, et al. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area[J]. Opt Lett, 2008, 33(1):71-73.
    [75] Huo Y, Cheo P, King G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Opt Express, 2004, 12(25):6230-6239.
    [76] Liu H, He B, Zhou J, et al. Coherent beam combination of two nanosecond fiber amplifiers by an all-optical feedback loop[J]. Opt Lett, 2012, 37(18):3885-3887.
    [77] Ji Xiang, Zhou Pu, Wang Xiaolin, et al. Polarized beam coherent combination of pulsed fiber[J]. Acta Phys Sin, 2012, 61(24):244201. (in Chinese)
    [78] Daniault L, Hanna M, Papadopoulos D, et al. Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Opt Lett, 2011, 36(20):4023-4025.
    [79] Zaouter Y, Daniault L, Hanna M, et al. Passive coherent combination of two ultrafast rod type fiber chirped pulse amplifiers[J]. Opt Lett, 2012, 37(9):1460-1462.
    [80] Su R, Zhang Z, Zhou P, et al. Coherent beam combining of a fiber lasers array based on cascaded phase control[J]. IEEE Photon Technol Lett, 2016, 28(22):2585-2588.
    [81] Redmond S M. Active coherent combination of 200 semiconductor amplifiers using a SPGD algorithm[C]//Conference on Lasers and Electro-Optics, 2011:CTuV1.
    [82] Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Phase locking of a coherent array of 32 fiber laser[J]. High Power Laser and Particle Beams, 2014, 26(11):10101. (in Chinese)
    [83] Wang X, Leng J, Zhou P, et al. 1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array[J]. Appl Phys B, 2012, 107(3):785-790.
    [84] Wang X, Zhou P, Ma Y, et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm[J]. Opt Lett, 2011, 36(16):3121-3123.
    [85] Su R, Zhou P, Wang X, et al. Active coherent beam combining of a five-element, 800 watt nanosecond fiber amplifier array[J]. Opt Lett, 2012, 37(19):3978-3980.
    [86] Hou Jing, Xiao Rui, Liu Zejin, et al. Two methods to realize phase controlling of ytterbium fiber amplifiers[J]. High Power Laser and Particle Beams, 2006, 18(11):1779-1782. (in Chinese)
    [87] Zhou Pu, Ma Yanxing, Wang Xiaolin, et al. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(5):973-977. (in Chinese)
    [88] Flores A, Shay T M, Lu C A, et al. Coherent beam combining of fiber amplifiers in a kW regime[C]//Conference on Lasers and Electro-Optics, 2011:CFE3.
    [89] Siiman L A, Chang W, Zhou T, et al. Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers[J]. Opt Express, 2012, 20(16):18097-18116.
    [90] Huang Z, Tang X, Luo Y, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. Rev Sci Instrum, 2016, 87:033109.
    [91] 刘泽金, 王小林, 周朴, 等. 9路光纤激光相干合成实现1.56kW高功率输出(简讯)[J]. 中国激光, 2011, 38(7):0705008.
    [92] Ma Y, Wang X, Leng J, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Opt Lett, 2011, 36(6):951-953.
    [93] Ma P, Tao R, Wang X, et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime[J]. Opt Express, 2014, 22(4):4123-4130.
    [94] Shay T M, Benham V, Baker J T, et al. First experimental demonstration of self-synchronous phase locking of an optical array[J]. Opt Express, 2006, 14(25):12015-12021.
    [95] Ma Y, Zhou P, Wang X, et al. Coherent beam combination with single frequency dithering technique[J]. Opt Lett, 2010, 35(9):1308-1310.
    [96] Ma Y, Zhou P, Wang X, et al. Active phase locking of fiber amplifiers using sine-cosine single-frequency dithering technique[J]. Appl Opt, 2011, 50(19):3330-3336.
    [97] Azarian A, Bourdon P, Lombard L, et al. Orthogonal coding methods for increasing the number of multiplexed channels in coherent beam combining[J]. Appl Opt, 2014, 53(8):1493-1502.
    [98] Jiang M, Su R, Zhang Z, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique[J]. Appl Opt, 2017, 56(15):4255-4260.
    [99] Kansky J E, Yu C X, Murphy D V, et al. Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count[C]//SPIE, 2006, 6306:63060G.
    [100] McNaught S J, Asman C P, Injeyan H, et al. 100-kW coherently combined Nd:YAG MOPA laser array[C]//Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics\ Photonics Technical Digest, 2009:FThD2.
    [101] Fan X, Liu J, Liu J, et al. Experimental investigation of a seven-element hexagonal fiber coherent array[J]. Chin Opt Lett, 2010, 8(1):48-51.
    [102] Xiao R, Hou J, Liu M, et al. Coherent combining technology of master oscillator power amplifier fiber arrays[J]. Opt Express, 2008, 16(3):2015-2022.
    [103] Su Rongtao, Zhou Pu, Wang Xiaolin, et al. High-speed high-precision phase controller for coherent beam combining of fiber lasers[J]. High Power Laser and Particle Beams, 2012, 24(6):1290-1294. (in Chinese)
    [104] Su R, Zhou P, Wang X, et al. High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination[Invited] [J]. IEEE J Sel Top Quantum Electron, 2014, 20(5):0903913.
    [105] Cui Y, Gao Y, Zhao Z, et al. Spectral phase effects and control requirements of coherent beam combining for ultrashort ultrahigh intensity laser systems[J]. Appl Opt, 2016, 55(35):10124-10132.
    [106] Seise E, Klenke A, Limpert J, et al. Coherent addition of fiber-amplified ultrashort laser pulses[J]. Opt Express, 2010, 18(26):27827-27835.
    [107] Daniault L, Hanna M, Lombard L, et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Opt Lett, 2011, 36(5):621-623.
    [108] Klenke A, Seise E, Demmler S, et al. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy[J]. Opt Express, 2011, 19(24):24280-24285.
    [109] Klenke A, Breitkopf S, Kienel M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplificatio system[J]. Opt Lett, 2013, 38(13):2283-2285.
    [110] Yang K, Li W, Shen X, et al. Parallel fiber amplifiers with carrier-envelope drift control for coherent combination of optical frequency combs[J]. Laser Physics, 2014, 24(12):125101.
    [111] Klenke A, Hdrich S, Eidam T, et al. 22 GW peak-power fiber chirped-pulse-amplification system[J]. Opt Lett, 2014, 39(24):6875-6878.
    [112] Ramirez L P, Hanna M, Bouwmans G E R, et al. Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier[J]. Opt Express, 2015, 23(5):5406-5416.
    [113] Mu J, Li Z, Jing F, et al. Coherent combination of femtosecond pulses via non-collinear cross-correlation and far-field distribution[J]. Opt Lett, 2016, 41(2):234-237.
    [114] Guichard F, Hanna M, Zaouter Y, et al. Analysis of limitations in divided-pulse nonlinear compression and amplification[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5):619-623.
    [115] Kienel M, Klenke A, Eidam T, et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept[J]. Opt Express, 2013, 21(23):29031-29042.
    [116] Guichard F, Lavenu L, Hanna M, et al. Coherent combining efficiency in strongly saturated divided-pulse amplification systems[J]. Opt Express, 2016, 24(22):25329-25336.
    [117] Zhou S, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Opt Lett, 2007, 32(7):871-873.
    [118] Lesparre F, Gomes J T, Dlen X, et al. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Opt Lett, 2016, 41(7):1628-1631.
    [119] Stark H, Mller M, Kienel M, et al. Electro-optically controlled divided-pulse amplification[J]. Opt Express, 2017, 25(12):13494-13503.
    [120] Guichard F, Zaouter Y, Hanna M, et al. Energy scaling of a nonlinear compression setup using passive coherent combining[J]. Opt Lett, 2013, 38(21):4437-4440.
    [121] Guichard F, Zaouter Y, Hanna M, et al. High-energy chirped-and divided-pulse Sagnac femtosecond fiber amplifier[J]. Opt Lett, 2015, 40(1):89-92.
    [122] Daniault L, Hanna M, Papadopoulos D N, et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Opt Express, 2012, 20(19):21627-21634.
    [123] Mueller M, Kienel M, Klenke A, et al. Phase stabilization of spatiotemporally multiplexed ultrafast amplifiers[J]. Opt Express, 2016, 24(8):7893-7904.
    [124] Kienel M, Mller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Opt Lett, 2016, 41(14):3343-3346.
    [125] Eidam T, Klenke A, Kienel M, et al. System design for joule-class femtosecond fiber amplifiers for particle acceleration[C]//Conference on Lasers and Electro-Optics, 2014:JTh4L.5.
    [126] Kienel M, Mller M, Klenke A, et al. Multidimensional coherent pulse addition of ultrashort laser pulses[J]. Opt Lett, 2015, 40(4):522-525.
    [127] Limpert J, Klenke A, Kienel M, et al. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5):1-10.
    [128] Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Opt Lett, 2012, 37(2):253-255.
    [129] Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped-and divided-pulse amplification system[J]. Opt Lett, 2013, 38(2):106-108.
    [130] Kienel M, Klenke A, Eidam T, et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Opt Lett, 2014, 39(4):1049-1052.
    [131] Webb B, Azim A, Bodnar N, et al. Divided-pulse amplification to the joule level[J]. Opt Lett, 2016, 41(13):3106-3109.
    [132] Pouysegur J, Weichelt B, Guichard F, et al. Simple Yb:YAG femtosecond booster amplifier using divided-pulse amplification[J]. Opt Express, 2016, 24(9):9896-9904.
    [133] Polzik E S, Kimble H J. Frequency doubling with KNbO3 in an external cavity[J]. Opt Lett, 1991, 16(18):1400-1402.
    [134] Zimmermann C, Vuletic V, Hemmerich A, et al. All solid state laser source for tunable blue and ultraviolet radiation[J]. Appl Phys Lett, 1995, 66(18):2318-2320.
    [135] Han Hainian, Zhang Jinwei, Zhang Qing, et al. Theoretical and experimental study on femtosecond enhancement resonator[J]. Acta Phys Sin, 2012, 61(16):164206-164206. (in Chinese)
    [136] Potma E O, Evans C, Xie X S, et al. Picosecond-pulse amplification with an external passive optical cavity[J]. Opt Lett, 2003, 28(19):1835-1837.
    [137] Jones R J, Moll K D, Thorpe M J, et al. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity[J]. Phys Rev Lett, 2005, 94:193201.
    [138] Pupeza I, Holzberger S, Eidam T, et al. Compact high-repetition-rate source of coherent 100 eV radiation[J]. Nat Photonics, 2013, 7(8):608-612.
    [139] Zhou T, Ruppe J, Zhu C, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Opt Express, 2015, 23(6):7442-7462.
    [140] Astrauskas I, Kaksis E, Flry T, et al. High-energy pulse stacking via regenerative pulse-burst amplification[J]. Opt Lett, 2017, 42(11):2201-2204.
    [141] Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light Sci Appl, 2014, 2(10):e211.
    [142] Ruppe J, Chen S, Sheikhsofla M, et al. Multiplexed coherent pulse stacking of 27 Pulses in a 4+1 GTI resonator sequence[C]//Lasers Congress 2016(ASSL, LSC, LAC), 2016:AM4A.6.
    [143] Yang Y, Byrd J, Dawson J, et al. Multicavity coherent pulse stacking using herriott cells[C]//North American Particle Accelerator Conf, 2016:370-372.
    [144] Limpert J. Coherent temporal pulse-stacking approaches for peak-power scaling of ultrafast laser systems[C]//High-Brightness Sources and Light-Driven Interactions, 2016:HM8B.1.
    [145] Pei H, Ruppe J, Chen S, et al. Multi-mJ ultrashort pulse coherent pulse stacking amplification in a Yb-doped 85m CCC fiber based system[C]//Conference on Lasers and Electro-Optics, 2017:SM1L.2.
    [146] Klenke A, Drich S H A, Kienel M, et al. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression[J]. Opt Lett, 2014, 39(12):3520-3522.
    [147] Drich S H A, Klenke A, Hoffmann A, et al. Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power[J]. Opt Lett, 2013, 38(19):3866-3869.
    [148] Wirth A, Hassan M T, Grgura I, et al. Synthesized light transients[J]. Science, 2011, 334(6053):195-200.
    [149] Yavuz D D. Toward synthesis of arbitrary optical waveforms[J]. Science, 2011, 331(6021):1142-1143.
    [150] Schibli T R, Kim J, Kuzucu O, et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation[J]. Opt Lett, 2003, 28(11):947-949.
    [151] Tian H, Song Y, Meng F, et al. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers[J]. Opt Lett, 2016, 41(22):5142-5145.
    [152] Cox J A, Putnam W P, Sell A, et al. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback[J]. Opt Lett, 2012, 37(17):3579-3581.
    [153] Song Y, Kim C, Jung K, et al. Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime[J]. Opt Express, 2011, 19(15):14518-14525.
    [154] Krauss G, Lohss S, Hanke T, et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology[J]. Nat Photonics, 2010, 4(1):33-36.
    [155] Huang S, Cirmi G, Moses J, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nat Photonics, 2011, 5(8):475-479.
    [156] Chia S, Cirmi G, Fang S, et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers[J]. Optica, 2014, 1(5):315-322.
    [157] Rigaud P, Kermene V, Bouwmans G, et al. Spatially dispersive amplification in a 12-core fiber and femtosecond pulse synthesis by coherent spectral combining[J]. Opt Express, 2013, 21(11):13555-13563.
    [158] Shverdin M Y, Walker D R, Yavuz D D, et al. Generation of a single-cycle optical pulse[J]. Phys Rev Lett, 2005, 94(3):033904.
    [159] Chan H, Hsieh Z, Liang W, et al. Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics[J]. Science, 2011, 331(6021):1165-1168.
    [160] Guichard F, Hanna M, Lombard L, et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Opt Lett, 2013, 38(24):5430-5433.
    [161] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nat Photonics, 2013, 7(4):258-261.
    [162] Bychenkov V Y, Brantov A V. Laser-based ion sources for medical applications[J]. Eur Phys J Special Topics, 2015, 224(13):2621-2624.
    [163] Gales S. Laser driven nuclear science and applications:The need of high efficiency, high power and high repetition rate Laser beams[J]. Eur Phys J Special Topics, 2015, 224(13):2631-2637.
    [164] Moustaizis S D, Lalousis P, Perrakis K, et al. ICAN:high power neutral beam generation[J]. Eur Phys J Special Topics, 2015, 224(13):2639-2643.
    [165] Roth M, Logan B. Advanced space power and propulsion based on lasers[J]. Eur Phys J Special Topics, 2015, 224(13):2657-2663.
    [166] Quinn M N, Jukna V, Ebisuzaki T, et al. Space-based application of the CAN laser to LIDAR and orbital debris remediation[J]. Eur Phys J Special Topics, 2015, 224(13):2645-2655.
  • [1] 殳博王, 张雨秋, 常洪祥, 常琦, 冷进勇, 马鹏飞, 周朴.  光纤激光相控阵光束扫描技术发展 . 红外与激光工程, 2023, 52(6): 20230250-1-20230250-14. doi: 10.3788/IRLA20230250
    [2] 陈默, 王建飞, 路阳, 胡晓阳, 陈伟, 孟洲.  超窄线宽布里渊光纤激光器研究进展(特邀) . 红外与激光工程, 2023, 52(6): 20230131-1-20230131-18. doi: 10.3788/IRLA20230131
    [3] 周朴, 蒋敏, 吴函烁, 邓宇, 常洪祥, 黄良金, 吴坚, 许将明, 王小林, 冷进勇.  学科交叉视角下的光纤激光:回顾与展望(特邀) . 红外与激光工程, 2023, 52(6): 20230334-1-20230334-16. doi: 10.3788/IRLA20230334
    [4] 王涛, 李灿, 刘洋, 任博, 唐振强, 常洪祥, 谢戈辉, 郭琨, 吴坚, 许将明, 冷进勇, 马鹏飞, 粟荣涛, 李文雪, 周朴.  基于光纤拉伸器锁相实现两路超快激光相干偏振合成 . 红外与激光工程, 2023, 52(6): 20220869-1-20220869-8. doi: 10.3788/IRLA20220869
    [5] 张万儒, 粟荣涛, 李灿, 张嵩, 姜曼, 马鹏飞, 马阎星, 吴坚, 周朴.  窄线宽光纤激光振荡器研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20210879-1-20210879-26. doi: 10.3788/IRLA20210879
    [6] 李灿, 周朴, 马鹏飞, 姜曼, 陶悦, 刘流.  单频光纤激光技术的研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20220237-1-20220237-14. doi: 10.3788/IRLA20220237
    [7] 刘洋, 曹前, 刁新财, 魏志义, 常国庆.  超快光纤激光驱动的长波中红外飞秒脉冲光源(特邀) . 红外与激光工程, 2021, 50(8): 20210368-1-20210368-15. doi: 10.3788/IRLA20210368
    [8] 祖嘉琦, 武帅, 张海涛, 耿东晛, 卢姁.  光纤饱和吸收体掺镱全光纤化激光器 . 红外与激光工程, 2020, 49(6): 20190382-1-20190382-6. doi: 10.3788/IRLA20190382
    [9] 马阎星, 吴坚, 粟荣涛, 马鹏飞, 周朴, 许晓军, 赵伊君.  光学相控阵技术发展概述 . 红外与激光工程, 2020, 49(10): 20201042-1-20201042-14. doi: 10.3788/IRLA20201042
    [10] 姜曼, 马鹏飞, 粟荣涛, 李灿, 吴坚, 马阎星, 周朴.  激光光谱合成技术研究进展与展望(特邀) . 红外与激光工程, 2020, 49(12): 20201053-1-20201053-18. doi: 10.3788/IRLA20201053
    [11] 支冬, 马阎星, 马鹏飞, 粟荣涛, 陈子伦, 周朴, 司磊.  公里级湍流大气环境下光纤激光高效相干合成 . 红外与激光工程, 2019, 48(10): 1005007-1005007(4). doi: 10.3788/IRLA201948.1005007
    [12] 洪梓铭, 艾青松, 陈昆.  基于光纤激光的高精度三维视觉测量技术 . 红外与激光工程, 2018, 47(8): 803011-0803011(8). doi: 10.3788/IRLA201847.0803011
    [13] 余光其, 王鹏, 宋伟, 刘奎永.  光纤激光泵浦的多波长中红外光参量振荡器 . 红外与激光工程, 2018, 47(4): 404003-0404003(7). doi: 10.3788/IRLA201847.0404003
    [14] 张璟璞, 杨依枫, 赵翔, 柏刚, 何兵, 周军.  外腔振荡式光纤激光光谱合成系统 . 红外与激光工程, 2018, 47(1): 103008-0103008(6). doi: 10.3788/IRLA201746.0103008
    [15] 程雪, 王建立, 刘昌华.  高能光纤激光器光束合成技术 . 红外与激光工程, 2018, 47(1): 103011-0103011(11). doi: 10.3788/IRLA201847.0103011
    [16] 夏润秋, 陈青山, 刘洋, 肖立亮.  线阵光纤激光相干合成角度扫描控制方法研究 . 红外与激光工程, 2018, 47(9): 906006-0906006(6). doi: 10.3788/IRLA201847.0906006
    [17] 周朴, 粟荣涛, 黄良金, 李俊.  基于计算技术的超快光纤激光研究进展与展望(特邀) . 红外与激光工程, 2018, 47(8): 803001-0803001(8). doi: 10.3788/IRLA201847.0803001
    [18] 王倩, 宋兴亮, 刘广义, 范元媛, 崔惠绒, 鲍洋, 周翊.  基于迈克尔逊腔光纤激光相干合成的输出特性 . 红外与激光工程, 2013, 42(1): 73-78.
    [19] 王雄, 王小林, 周朴, 粟荣涛, 耿超, 李新阳, 许晓军, 舒柏宏.  光纤激光相干合成中倾斜和锁相同时控制的实验研究 . 红外与激光工程, 2013, 42(6): 1443-1447.
    [20] 赵思思, 叶征宇, 王智勇.  光纤激光阵列自组织相干合成的性能研究 . 红外与激光工程, 2012, 41(1): 63-68.
  • 加载中
计量
  • 文章访问数:  721
  • HTML全文浏览量:  110
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-13
  • 修回日期:  2017-12-19
  • 刊出日期:  2018-01-25

超短脉冲光纤激光相干合成(特邀)

doi: 10.3788/IRLA201847.0103001
    作者简介:

    粟荣涛(1984-),男,博士,主要从事高能激光技术方面的研究。Email:surongtao@126.com

    通讯作者: 周朴(1984-),男,研究员,博士生导师,博士,主要从事光纤激光、光束合成等方面的研究。Email:zhoupu203@163.com
基金项目:

国家自然科学基金(61705265,61405255)

  • 中图分类号: O436

摘要: 相干合成技术能够突破单路激光的功率和脉宽极限,实现超高功率、超短脉宽的脉冲激光输出。介绍了超短脉冲光纤激光空域、时域和频域相干合成的基本原理和关键技术。综述了空域、时域和频域相干合成系统及其关键技术的研究现状,梳理了超短脉冲光纤激光相干合成的发展趋势,为相关技术的发展提供参考。

English Abstract

参考文献 (166)

目录

    /

    返回文章
    返回