留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双光栅的光纤激光光谱合成关键技术研究进展(特邀)

马毅 颜宏 孙殷宏 彭万敬 李建民 王树峰 李腾龙 王岩山 唐淳 张凯

马毅, 颜宏, 孙殷宏, 彭万敬, 李建民, 王树峰, 李腾龙, 王岩山, 唐淳, 张凯. 基于双光栅的光纤激光光谱合成关键技术研究进展(特邀)[J]. 红外与激光工程, 2018, 47(1): 103002-0103002(14). doi: 10.3788/IRLA201847.0103002
引用本文: 马毅, 颜宏, 孙殷宏, 彭万敬, 李建民, 王树峰, 李腾龙, 王岩山, 唐淳, 张凯. 基于双光栅的光纤激光光谱合成关键技术研究进展(特邀)[J]. 红外与激光工程, 2018, 47(1): 103002-0103002(14). doi: 10.3788/IRLA201847.0103002
Ma Yi, Yan Hong, Sun Yinhong, Peng Wanjing, Li Jianmin, Wang Shufeng, Li Tenglong, Wang Yanshan, Tang Chun, Zhang Kai. Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103002-0103002(14). doi: 10.3788/IRLA201847.0103002
Citation: Ma Yi, Yan Hong, Sun Yinhong, Peng Wanjing, Li Jianmin, Wang Shufeng, Li Tenglong, Wang Yanshan, Tang Chun, Zhang Kai. Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103002-0103002(14). doi: 10.3788/IRLA201847.0103002

基于双光栅的光纤激光光谱合成关键技术研究进展(特邀)

doi: 10.3788/IRLA201847.0103002
基金项目: 

国家自然科学基金(61605191)

详细信息
    作者简介:

    马毅(1977-),男,研究员,硕士,主要从事高功率固体激光和光纤激光技术方面的研究。Email:rufinecn@caep.cn

  • 中图分类号: TN248.1

Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration(Invited)

  • 摘要: 基于双多层电介质膜(MLD)光栅色散补偿构型设计的光谱合成激光器(SBC)既实现了多路光纤激光高光束质量共孔径合束输出,又降低了单路光纤激光的线宽要求,逐渐成为多纤光谱合成的重要技术途径之一。介绍了基于双MLD光栅光谱合成的基本原理,简要分析了其涉及的关键技术。回顾了高功率可合成窄线宽光纤激光器、高功率高效率短波长光纤激光器、大色散高衍射效率MLD光栅和高集成度密集组束等主要关键技术的研究进展。介绍了中国工程物理研究院应用电子学研究所在基于双MLD光栅光谱合成关键技术研究方面的最新研究进展。对双MLD光栅光谱合成光源的发展潜力进行了展望。
  • [1] Gapontsev V, Fomin V, Ferin A, et al. Diffraction limited ultra-high-power fiber lasers[C]//Advanced Solid-State Photonics, OSA Technical Digest Series, OSA, 2010:paper AWA1.
    [2] Michalis N Z, Christophe A C. High power fiber lasers:a review[J]. IEEE Journal of Select Topics in Quantum Electronics, 2014, 20(5):0904123.
    [3] Bourdon P, Lombard L, Durecu A, et al. Coherent combining of fiber lasers[C]//SPIE, 2017, 10254:1025402-1-10.
    [4] Shcherbakov E A, Fomin V V, Abramov A A,et al. Industrial grade 100 kW power CW fiber laser[C]//Advanced Solid-State Lasers Congress Technical Digest, OSA, 2013:ATh4A.
    [5] Madasamy P, Loftus T, Thomas P, et al. Comparison of spectral beam combining approaches for high power fiber laser systems[C]//SPIE, 2008, 6952:695207-1-10.
    [6] Schmidt O, Wirth C, Nodop D, et al. Spectral beam combination of fiber amplified ns-pulses by means of interference filter[J]. Optics Express, 2009, 17(25):22974-22982.
    [7] Andrusyak O, Ciapurin I, Smirnov V, et al. External and common-cavity high spectral density beam combining of high power fiber lasers[C]//SPIE, 2008, 6873:687314-1-8.
    [8] Andrusyak O, Smirnov V, Venus G, et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings[J]. IEEE Journal of Select Topics in Quantum Electronics, 2009, 15(2):344-353.
    [9] Ott D, Divliansky I, Anderson B, et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating[J]. Optics Express, 2013, 21(24):29620-29627.
    [10] Drachenberg D R, Andrusyak O, Venus G, et al. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers[J]. Applied Optics, 2014, 53(6):1242-1246.
    [11] Pu Shibing, Jiang Zongfu, Xu Xiaojun. Numerical analysis of spectral beam combining by volume Bragg grating[J]. High Power Laser and Particle Beams, 2008, 20(5):721-724. (in Chinese)蒲世兵, 姜宗福, 许晓军. 基于体布拉格光栅的光谱合成的数值分析[J]. 强激光与粒子束, 2008, 20(5):721-724.
    [12] Wang Junzhen, Wang Yuefeng, Bai Huijun. Study on multi-channel spectral beam combined characteristics based on volume Bragg gratings[J]. Laser Technology, 2012, 36(5):593-596. (in Chinese)王军阵, 汪岳峰, 白慧君. 多路激光体布喇格光栅光谱合成特性研究[J]. 激光技术, 2012, 36(5):593-596.
    [13] Liang Xiaobao, Chen Liangming, Li Chao, et al. High average power spectral beam combining employing volume Bragg gratings[J]. High Power Laser and Particle Beams, 2015, 27(7):071012. (in Chinese)梁小宝, 陈良明, 李超, 等. 体布拉格光栅用于高功率光谱组束的研究[J]. 强激光与粒子束, 2015, 27(7):071012.
    [14] Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Select Topics in Quantum Electronics, 2007, 13(3):487-497.
    [15] Wirth C, Schmidt O, Tsybin L I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 2011, 36(16):3118-3120.
    [16] Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency and brightness[C]//SPIE, 2013, 8601:8601115-1-5.
    [17] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//SPIE, 2015, 9730:97300Y.
    [18] Liu A, Mead R, Vatter T, et al. Spectral beam combining of high power fiber lasers[C]//SPIE, 2004, 5335:81-88.
    [19] Madasamy P, Jander D, Brooks C, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE Journal of Select Topics in Quantum Electronics, 2009, 15(2):337-343.
    [20] Tian Fei, Yan Hong, Chen Li,et al. Investigation on the influence of spectral linewidth broadening on beam quality in spectral beam combination[C]//SPIE, 2014, 9255:92553N.
    [21] Ma Yi, Yan Hong, Tian Fei, et al. Common apertures spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle Beams, 2015, 27(4):040101. (in Chinese)马毅, 颜宏, 田飞, 等. 光纤激光共孔径光谱合成实现5kW高效优质输出[J]. 强激光与粒子束, 2015, 27(4):040101.
    [22] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese J Lasers, 2016, 43(9):0901009. (in Chinese)马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43(9):0901009.
    [23] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 2014, 39(3):666-669.
    [24] Huang L, Wu H, Li R, et al. 414 W near-diffraction-limited all-fiberized single frequency polarization-maintained fiber amplifier[J]. Optics Letters, 2017, 42(1):1-4.
    [25] Khitrov V, Farley K, Leveille R, et al. kW level narrow linewidth Yb fiber amplifiers for beam combining[C]//SPIE, 2010, 7686:76860A.
    [26] Engin D, Lu W, Akbulut M,et al. 1 kW CW Yb-fiber-amplifier with 0.5 GHz linewidth and near diffraction limited beam-quality, for coherent combining application[C]//SPIE, 2011, 7914:791407-1-7.
    [27] Flores A, Robin C, Lanari A,et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 2014, 22(15):17735-17744.
    [28] Huang Z, Liang X, Li C, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2):297-302.
    [29] Sun Yihong, Feng Yujun, Li Tenglong, et al. 1.06 kW 13 GHz linewidth all fiber laser[J]. High Power Laser and Particle Beams, 2015, 27(7):071013. (in Chinese)孙殷宏, 冯昱骏, 李腾龙, 等. 1.06 kW 13 GHz线宽全光纤激光器[J]. 强激光与粒子束, 2015, 27(7):071013.
    [30] Ma P, Tao R, Su R, et al. 1.89 kW all-fiberized and polarization maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4):4187-4195.
    [31] Su R, Tao R, Wang X, et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Phys Lett, 2017, 14(8):085102.
    [32] Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbiumdoped low NA fiber amplifier[J]. Optics Express, 2016, 24(6):6011-6020.
    [33] Platonov N, Yagodkin R, Cruz J, et al. 1.5 kW linear polarized on PM fiber and 2kW on non-PM fiber narrow linewidth CW diffraction-limited fiber amplifier[C]//SPIE, 2017, 10085:100850M.
    [34] 杨依枫, 沈辉, 陈晓龙, 等. 全光纤化高效率、窄线宽光纤激光器实现2.5 kW近衍射极限输出[J]. 中国激光, 2016, 43(4):0419004.
    [35] Xu J, Liu W, Leng J, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW[J]. Optics Letters, 2015, 40(13):2973-2976.
    [36] Du X, Zhang H, Ma P,et al.Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser[J]. Optics Letters, 2015, 40(22):5311-5314.
    [37] Li Tenglong, Li Yang, Peng Wanjing,et al. 1.1 kW narrowband spectra random fiber laser amplifier[J]. Chinese J Lasers, 2017, 44(2):0202015. (in Chinese)李腾龙, 李阳, 彭万敬, 等. 1.1 kW窄光谱随机光纤激光放大[J]. 中国激光, 2017, 44(2):0202015.
    [38] Smith A, Smith J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11):10180-10912.
    [39] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. A novel theoretical model for mode instability in high power fiber lasers[C]//Advanced Solid State Laser, 2014:AM5A.20.
    [40] Li Zebiao, Huang Zhihua, Xiang Xiaoyu. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser[J]. Photonics Research, 2017, 5(2):77-81.
    [41] Wang Yanshan, Liu Qinyong, Ma Yi, et al. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers[J]. Ann Phys, 2017, 529(8):1600398.
    [42] Huang Y, Edgecumbe J, Ding Jianwu, et al. Performance of kW class fiber amplifiers spanning a broad range of wavelengths:1028-1100 nm[C]//SPIE, 2014, 8961:89612K.
    [43] Yagodkin R, Platonov N, Yusim A, et al. 1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[C]//SPIE, 2015, 9728:972807-1-6.
    [44] Sun Yinhong, Ke Weiwei, Feng Yujun, et al. 1030 nm kilowatt-level ytterbium-doped narrow linewidth fiber amplifier[J]. Chinese J Lasers, 2016, 43(6):0601003. (in Chinese)孙殷宏, 柯伟伟, 冯昱骏, 等. 1030 nm千瓦级掺镱光纤窄线宽激光放大器[J]. 中国激光, 2016, 43(6):0601003.
    [45] Naderi A, Dajani I, Flores A. High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 2016, 41(5):1018-1021.
    [46] Chen Hui, Guan Heyuan, Zeng Lijiang, et al.Fabrication of broadband, high-efficiency, metal-multilayer-dielectric gratings[J]. Optics Communications, 2014, 329(2014):103-108.
    [47] Hu Anduo, Zhou Changhe, Cao Hongchao, et al. Polarization-independent wideband mixed metal dielectric reflective gratings[J]. Applied Optics, 2012, 51(20):4902-4906.
    [48] Naderi A, Dajani I, Flores A. High-efficiency multilayer dielectric diffraction gratings[J]. Optics Letters, 1995, 20(8):940-942.
    [49] Clausnitzer T, Limpert J, Zollner K, et al. Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems[J]. Applied Optics, 2003, 42(34):6934-6938.
    [50] Rumpel M, Moeller M, Moormann C, et al. Broadband pulse compression gratings with measured 99.7% diffraction efficiency[J]. Optics Letters, 2014, 39(2):323-326.
    [51] Kemme S A,Scrymgeour D A,Peter D W. High-efficiency diffractive optical eements for spectral beam combining[C]//SPIE, 2012, 8381:83810Q.
    [52] Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11):12063-12071.
    [53] Cho H, Kim H, Lee Y. Design and fabrication of multilayer dielectric gratings for spectral beam combining[C]//SPIE, 2015, 9556:955615-1-6.
    [54] Shen Biyao, Zeng Lijiang, Li Lifeng, et al. Fabrication of polarization independent gratings made on multilayer dielectric thin film substrates[J]. High Power Laser and Particle Beams, 2015, 27(11):111013. (in Chinese)申碧瑶, 曾理江, 李立峰, 等. 多层介质膜偏振无关光栅的研制[J].强激光与粒子束, 2015, 27(11):111013.
    [55] Beresnev L, Motes R, Townes K, et al. Design of a noncooled fiber collimator for compact, high-efficiency fiber laser arrays[J]. Applied Optics, 2017, 56(3):B169-B178.
    [56] 李腾龙, 查从文, 彭万敬, 等. 2 kW窄光谱随机光纤激光放大输出[J]. 中国激光, 2017, 44(4):0415003.
    [57] Sun Yinhong. Theory and experiment study on fiber laser with high power and narrow linewidth[D]. Mianyang:China Academy of Engineering Physics, 2016:51-53. (in Chinese)孙殷宏. 高功率窄线宽光纤激光器理论和实验研究[D]. 绵阳:中国工程物理研究院, 2016:51-53.
    [58] Cheung E, Ho J, Goodno G, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Opt Lett, 2008, 33(4):354-356.
    [59] Thielen P, Ho J, Burchman D, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Opt Lett, 2012, 37(18):3741-3743.
    [60] Redmond S M, Fan T Y, Ripin D J, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Opt Lett, 2012, 37(14):2832-2834.
    [61] Flores A, Ehrenreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//SPIE, 2015, 9728:97281Y.
    [62] Goodno G, Shih C, Rothenberg, et al. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 2010, 18(24):25403-25414.
  • [1] 王丽莎, 孙松松, 闫炜, 瞿娇娇, 王勇.  L波段可切换双波长高能量脉冲光纤激光器 . 红外与激光工程, 2021, 50(7): 20200370-1-20200370-5. doi: 10.3788/IRLA20200370
    [2] 何旭宝, 肖虎, 马鹏飞, 张汉伟, 王小林, 许晓军.  基于双色镜的2.3 kW光纤激光光束合成 . 红外与激光工程, 2021, 50(2): 20200385-1-20200385-7. doi: 10.3788/IRLA20200385
    [3] 杜鑫彪, 陈檬, 任俊杰, 高小强.  1 kHz高倍率亚纳秒全固态激光放大器研究 . 红外与激光工程, 2020, 49(3): 0305001-0305001-5. doi: 10.3788/IRLA202049.0305001
    [4] 朱可, 裴丽, 赵琦, 解宇恒, 常彦彪.  采用双Sagnac环滤波器的可切换多波长光纤激光器 . 红外与激光工程, 2020, 49(11): 20200047-1-20200047-7. doi: 10.3788/IRLA20200047
    [5] 姜曼, 马鹏飞, 粟荣涛, 李灿, 吴坚, 马阎星, 周朴.  激光光谱合成技术研究进展与展望(特邀) . 红外与激光工程, 2020, 49(12): 20201053-1-20201053-18. doi: 10.3788/IRLA20201053
    [6] 张昆, 周寿桓, 李尧, 张利明, 余洋, 张浩彬, 朱辰, 张大勇, 赵鸿.  142 W高峰值功率窄线宽线偏振脉冲光纤激光器 . 红外与激光工程, 2020, 49(4): 0405003-0405003-6. doi: 10.3788/IRLA202049.0405003
    [7] 颜凡江, 杨策, 陈檬, 桑思晗, 李梦龙, 蒙裴贝.  高重频高峰值功率窄线宽激光放大器 . 红外与激光工程, 2019, 48(2): 206002-0206002(5). doi: 10.3788/IRLA201948.0206002
    [8] 凌远达, 黄千千, 邹传杭, 闫志君, 牟成博.  基于45°倾斜光栅的重复频率可切换被动谐波锁模光纤激光器 . 红外与激光工程, 2018, 47(8): 803007-0803007(5). doi: 10.3788/IRLA201847.0803007
    [9] 程雪, 王建立, 刘昌华.  高能光纤激光器光束合成技术 . 红外与激光工程, 2018, 47(1): 103011-0103011(11). doi: 10.3788/IRLA201847.0103011
    [10] 柏刚, 沈辉, 杨依枫, 赵翔, 张璟璞, 何兵, 周军.  光谱合成激光阵列指向偏差的光束特性分析 . 红外与激光工程, 2018, 47(1): 103010-0103010(6). doi: 10.3788/IRLA201847.0103010
    [11] 张璟璞, 杨依枫, 赵翔, 柏刚, 何兵, 周军.  外腔振荡式光纤激光光谱合成系统 . 红外与激光工程, 2018, 47(1): 103008-0103008(6). doi: 10.3788/IRLA201746.0103008
    [12] 李志永, 谭荣清, 黄伟, 叶庆, 韩高策, 柯常军, 李辉.  光热敏折变玻璃的体布拉格光栅热特性理论研究 . 红外与激光工程, 2017, 46(8): 821001-0821001(5). doi: 10.3788/IRLA201746.0821001
    [13] 曾江辉, 张培晴, 张倩, 李杏, 许银生, 王训四, 戴世勋.  啁啾光纤光栅在硫系光纤激光器中的色散补偿 . 红外与激光工程, 2017, 46(10): 1005007-1005007(7). doi: 10.3788/IRLA201758.1005007
    [14] 史伟, 房强, 李锦辉, 付士杰, 李鑫, 盛泉, 姚建铨.  激光雷达用高性能光纤激光器 . 红外与激光工程, 2017, 46(8): 802001-0802001(5). doi: 10.3788/IRLA201746.0802001
    [15] 王枫, 毕卫红, 付兴虎, 付广伟, 江鹏, 武洋, 王莹.  基于重叠光栅的双波长掺铒光子晶体光纤激光器 . 红外与激光工程, 2016, 45(8): 822001-0822001(5). doi: 10.3788/IRLA201645.0822001
    [16] 戚刚, 熊水东, 梁迅, 林惠祖.  用于微弱信号放大的高性能窄线宽纳秒脉冲光纤放大器 . 红外与激光工程, 2015, 44(11): 3234-3237.
    [17] 赵建科, 李霞, 徐亮, 段亚轩.  激光缩束系统波前畸变精度分析 . 红外与激光工程, 2013, 42(1): 79-83.
    [18] 龚智群, 王小林, 曹涧秋, 郭少锋, 江厚满.  国产高功率光纤泵浦合束器特性研究 . 红外与激光工程, 2013, 42(10): 2658-2662.
    [19] 王云祥, 邱琪, 梁旭, 邓珠峰.  窄线宽低噪声可调谐非平面环形激光器 . 红外与激光工程, 2013, 42(3): 595-598.
    [20] 方秀丽, 童峥嵘, 曹晔, 杨秀峰.  采用F-P光纤环滤波器的窄线宽环形腔光纤激光器 . 红外与激光工程, 2013, 42(2): 329-333.
  • 加载中
计量
  • 文章访问数:  476
  • HTML全文浏览量:  48
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-09
  • 修回日期:  2017-12-12
  • 刊出日期:  2018-01-25

基于双光栅的光纤激光光谱合成关键技术研究进展(特邀)

doi: 10.3788/IRLA201847.0103002
    作者简介:

    马毅(1977-),男,研究员,硕士,主要从事高功率固体激光和光纤激光技术方面的研究。Email:rufinecn@caep.cn

基金项目:

国家自然科学基金(61605191)

  • 中图分类号: TN248.1

摘要: 基于双多层电介质膜(MLD)光栅色散补偿构型设计的光谱合成激光器(SBC)既实现了多路光纤激光高光束质量共孔径合束输出,又降低了单路光纤激光的线宽要求,逐渐成为多纤光谱合成的重要技术途径之一。介绍了基于双MLD光栅光谱合成的基本原理,简要分析了其涉及的关键技术。回顾了高功率可合成窄线宽光纤激光器、高功率高效率短波长光纤激光器、大色散高衍射效率MLD光栅和高集成度密集组束等主要关键技术的研究进展。介绍了中国工程物理研究院应用电子学研究所在基于双MLD光栅光谱合成关键技术研究方面的最新研究进展。对双MLD光栅光谱合成光源的发展潜力进行了展望。

English Abstract

参考文献 (62)

目录

    /

    返回文章
    返回