留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光增材制造成形合金钢件质量特征及其检测评价技术现状(特邀)

徐滨士 董世运 门平 闫世兴

徐滨士, 董世运, 门平, 闫世兴. 激光增材制造成形合金钢件质量特征及其检测评价技术现状(特邀)[J]. 红外与激光工程, 2018, 47(4): 401001-0401001(9). doi: 10.3788/IRLA201847.0401001
引用本文: 徐滨士, 董世运, 门平, 闫世兴. 激光增材制造成形合金钢件质量特征及其检测评价技术现状(特邀)[J]. 红外与激光工程, 2018, 47(4): 401001-0401001(9). doi: 10.3788/IRLA201847.0401001
Xu Binshi, Dong Shiyun, Men Ping, Yan Shixing. Quality characteristics and nondestructive test and evaluation technology for laser additive manufacturing alloy steel components (invited)[J]. Infrared and Laser Engineering, 2018, 47(4): 401001-0401001(9). doi: 10.3788/IRLA201847.0401001
Citation: Xu Binshi, Dong Shiyun, Men Ping, Yan Shixing. Quality characteristics and nondestructive test and evaluation technology for laser additive manufacturing alloy steel components (invited)[J]. Infrared and Laser Engineering, 2018, 47(4): 401001-0401001(9). doi: 10.3788/IRLA201847.0401001

激光增材制造成形合金钢件质量特征及其检测评价技术现状(特邀)

doi: 10.3788/IRLA201847.0401001
基金项目: 

国家重点研发计划重点专项(2016YFB1100205);国家自然科学基金(51705532);北京市科技专项(Z161100004916009);北京市科技计划(Z161100001516007)

详细信息
    作者简介:

    徐滨士(1931-),男,中国工程院院士,教授,主要从事装备再制造与延寿、表面工程方面的研究。Email:xubinshi@vip.sina.com

  • 中图分类号: TG115.28;TH878

Quality characteristics and nondestructive test and evaluation technology for laser additive manufacturing alloy steel components (invited)

  • 摘要: 无损检测技术是合金钢构件激光增材制造的重要技术支撑,是保证激光增材制造产品质量和在役安全性的关键技术,是贯穿产品全寿命安全保证的重要技术组成。金属激光增材制造合金钢件成形、组织和力学性能不同于传统技术制造构件性能,使得无损检测技术面临诸多挑战。综述了激光增材制造合金钢成形质量特性,包括成形缺陷和力学性能;基于无损检测技术,论述了无损检测技术在激光增材制造合金钢件质量评价中的应用,重点论述了无损检测技术在激光增材制造构件缺陷和力学性能中的应用现状;提出了基于超声和微磁检测技术评价材料力学性能的原理、标定方法和微磁传感器设计方案;最后总结了无损检测评价技术在激光增材制造合金钢件检测评价应用中面临的挑战和发展趋势。
  • [1] Zhang Xuejun, Tang Siyi, Zhao Hengyue, et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44(2):122-128. (in Chinese)
    [2] Yang Yongqiang, Liu Yang, Song Changhui. The status and progress of manufacturing of metal parts by 3D printing technology[J]. Mechanical and Electrical Engineering Technology, 2013, 42(4):1-7. (in Chinese)
    [3] Li Huaixue, Sui Fan, Huang Baiying. Development and application of laser additive manufacturing for metal component[J]. Aeronautical Manufacturing Technology, 2012, 416(20):26-31. (in Chinese)
    [4] Lu Bingheng, Li Dichen. Development of the additive manufacturing(3D printing) technology[J]. Machine Building Automation, 2013, 42(4):1-4. (in Chinese)
    [5] Huang Weidong. Laser Solid Forming[M]. Xi'an:Northwestern Polytechnical University Press, 2007. (in Chinese)
    [6] Kumar S. Selective laser sintering/melting[J]. Comprehensive Materials Processing, 2014, 26(3):93-134.
    [7] Zhang Yuanliang, Zhang Hongchao, Zhao Jiaxu, et al. Review of non-destructive testing for remanufacturing of high-end equipment[J]. Journal of Mechanical Engineering, 2013, 49(7):80-90. (in Chinese)
    [8] Xu Binshi, Dong Shiyun. Laser Remanufacturing Technology[M]. Beijing:National Defense Industry Press, 2016. (in Chinese)
    [9] Khairallah S A, Anderson A T, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing:Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108:36-45.
    [10] Murr L E, Gaytan S M, Medina F, et al. Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting[J]. Materials Science Engineering A, 2010, 527(7-8):1861-1868.
    [11] Yong H, Ming C L, Mazumder J, et al. Additive manufacturing:current state, future potential, gaps and needs, and recommendations[J]. Journal of Manufacturing Science Engineering, 2015, 137(1):014001.
    [12] Brown D W, Bernardin J D, Carpenter J S, et al. Neutron diffraction measurements of residual stress in additively manufactured stainless steel[J]. Materials Science Engineering A, 2016, 678(15):291-298.
    [13] Sander J, Hufenbach J, Giebeler L, et al. Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting[J]. Materials Design, 2016, 89(15):335-341.
    [14] Gu D, Hong C, Jia Q, et al. Combined strengthening of multi-phase and graded interface in laser additive manufactured TiC/Inconel 718 composites[J]. Journal of Physics D Applied Physics, 2014, 47(4):45309-45319.
    [15] Cox S C, Jamshidi P, Eisenstein N M, et al. Adding functionality with additive manufacturing:Fabrication of titanium-based antibiotic eluting implants[J]. Materials Science Engineering C, 2016, 533(64):407-415.
    [16] Kim T B, Yue S, Zhang Z, et al. Additive manufactured porous titanium structures:through-process quantification of pore and strut networks[J]. Journal of Materials Processing Technology, 2014, 214(11):2706-2715.
    [17] Ibrahim K A, Wu B, Brandon N P. Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering[J]. Materials Design, 2016, 106(15):51-59.
    [18] Benedetti M, Cazzolli M, Fontanari V, et al. Fatigue limit of Ti6Al4V alloy produced by selective laser sintering[J]. Procedia Structural Integrity, 2016(2):3158-3167.
    [19] Cerniglia D, Scafidi M, Pantano A, et al. Inspection of additive-manufactured layered components[J]. Ultrasonics, 2015, 62(7):292-298.
    [20] Mengucci P, Barucca G, Gatto A, et al. Effects of thermal treatments on microstructure and mechanical properties of a Co-Cr-Mo-W biomedical alloy produced by laser sintering[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60(March):106-117.
    [21] Li P. Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures[J]. Materials Science Engineering A, 2015, 622(12):114-120.
    [22] Sun Z, Tan X, Shu B T, et al. Selective laser melting of stainless steel 316L with low porosity and high build rates[J]. Materials Design, 2016, 104(15):197-204.
    [23] Baek S W, Song E J, Kim J H, et al. Hydrogen embrittlement of 3-D printing manufactured austenitic stainless steel part for hydrogen service[J]. Scripta Materialia, 2017, 130(15):87-90.
    [24] Liu Bin. Ultrasonic and metal magnetic memory testing method for quality nondestructive evaluation of remanufacturing coating[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
    [25] American Society for Nondestructive Testing. American NDT Manual[M]. Beijing:World Book Publishing Company, 1999. (in Chinese)
    [26] Hu Mulin, Xie Changsheng, Huang Kaijin. Measurement of residual stress in multi-track laser-clad coating[J]. Laser Technology, 2006, 30(3):262-264. (in Chinese)
    [27] Dong Shiyun, Yan Xiaoling, Xu Binshi. Influence of microstructure and residual stress on surface stress measurement of laser cladding layer by Rayleigh wave[J]. Journal of Mechanical Engineering, 2015, 51(24):50-56. (in Chinese)
    [28] Liu Bin, Dong Shiyun. Stress measurement of laser cladding coating with critically refracted longitudinal wave method[J]. Transactions of the China Welding Institution, 2014, 35(9):53-56. (in Chinese)
    [29] Liu B, Dong S. Stress evaluation of laser cladding coating with critically refracted longitudinal wave based on cross correlation function[J]. Applied Acoustics, 2016, 101(1):98-103.
    [30] Haat G, Calmon P, Lasserre F. Application of ultrasonic modeling to the positioning of defects in a cladded component[C]//American Institute of Physics Conference Proceeding, 2004(2):1.1711612.
    [31] Fang Yan, Chen Xichen. Research on key techniques of defect detection for laser remanufacturing[J]. Chinese Journal of Lasers, 2012, 39(4):54-59. (in Chinese)
    [32] Yan Xiaoling. Numerical simulation and experimental study on ultrasonic testing for laser cladding[D]. Beijing:Beijing Institute of Technology, 2015. (in Chinese)
    [33] Liu Bin, Gong Kai, Qiao Yanxin, et al. Evaluation of influence of preset crack burial depth on stress of laser cladding coating with metal magnetic memory[J]. Acta Metallurgica Sinica, 2016, 52(2):241-248. (in Chinese)
    [34] Dong Shiyun, Yan Shixing, Xu Binshi, et al. Laser cladding remanufacturing technology of cast iron cylinder head and its quality evaluation[J]. Journal of Academy of Armored Forces Engineering, 2013, 27(1):90-93. (in Chinese)
    [35] Shi Changliang. Metal magnetic memory and ultrasonic complex method for damage degree evaluation of used ferromagnetic component before remanufacturing[D]. Harbin:Harbin Institute of Technology, 2011. (in Chinese)
    [36] Chinese Society for Nondestructive Testing. 2016 China NDT annual report[R]. Shanghai:Nondestructive Testing Editorial Department, 2016. (in Chinese)
    [37] Deng Ziyun, Ma Bing, Yi Yinghui, et al. Microstructure and properties of nickel-based super alloys valve by laser cladding remanufacturing[J]. Ordnance Material Science and Engineering, 2013, 36(3):101-104. (in Chinese)
    [38] Wang Xiao, Shi Yiwei, Liang Jing, et al. The method for nondestructive testing additive manufacturing parts on line by laser ultrasonic:China, CN106018288A[P]. 2016-10-12. (in Chinese)
    [39] Men Ping, Dong Shiyun, Kang Xueliang, et al. Material early damage diagnosis with nonlinear ultrasound[J]. Chinese Journal of Scientific Instrument, 2017, 38(5):1101-1118. (in Chinese)
    [40] Chen Yunpeng, Li Mangmang, Tang Chenglong. Progression of online detection technologies of mechanical property of cold-rolled strip steels[J]. Physical Testing and Chemical Analysis Part A:Physical Testing, 2017, 53(12):859-865. (in Chinese)
    [41] Ukomski T, Stepinski T. Steel hardness evaluation based on ultrasound velocity measurements[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2010, 52(11):592-596.
    [42] Freitas V L D A, Albuquerque V H C D, Silva E D M, et al. Nondestructive characterization of microstructures and determination of elastic properties in plain carbon steel using ultrasonic measurements[J]. Materials Science Engineering A, 2010, 527(16):4431-4437.
    [43] Rayes M M E, El-Danaf E A, Almajid A A. Ultrasonic characterization of heat-treatment effects on SAE-1040 and -4340 steels[J]. Journal of Materials Processing Tech, 2015, 216(2):188-198.
    [44] Wiskel J B, Kennedy J, Ivey D G, et al. Ultrasonic velocity and attenuation measurements in l80 steel and their correlation with tensile properties[C]//19th World Conference on Non-Destructive Testing, 2016(7):1-9.
    [45] Murthy G V S, Ghosh S, Das M, et al. Correlation between ultrasonic velocity and indentation-based mechanical properties with microstructure in Nimonic 263[J]. Materials Science Engineering A, 2008, 488(1-2):398-405.
  • [1] 邹锦阳, 张雅婷, 丁欣, 姚建铨.  激光致声混凝土内部空洞检测 . 红外与激光工程, 2023, 52(1): 20220306-1-20220306-10. doi: 10.3788/IRLA20220306
    [2] 彭星, 翟德德, 石峰, 田野, 宋辞, 铁贵鹏, 沈永祥, 乔硕, 申箫, 张万里, 王盛, 阮宁烨.  高反射工件表面缺陷偏振检测光学系统设计 . 红外与激光工程, 2023, 52(6): 20220863-1-20220863-14. doi: 10.3788/IRLA20220863
    [3] 张鹏辉, 赵扬, 李鹏, 周志权, 白雪, 马健.  基于有限元法的激光声磁检测系统优化研究 . 红外与激光工程, 2022, 51(7): 20210533-1-20210533-9. doi: 10.3788/IRLA20210533
    [4] 孙强, 戴鹭楠, 应恺宁, 倪辰荫.  二分搜索和压缩感知在激光超声内部缺陷快速检测技术的应用 . 红外与激光工程, 2022, 51(2): 20210810-1-20210810-13. doi: 10.3788/IRLA20210810
    [5] 卜迟武, 赵博, 刘涛, 张喜斌, 李锐, 唐庆菊.  CFRP/Al蜂窝结构缺陷巴克编码热波检测及匹配滤波 . 红外与激光工程, 2021, 50(10): 20210050-1-20210050-11. doi: 10.3788/IRLA20210050
    [6] 汪子君, 邱俨睿, 杨宏霄, 孙磊.  基于鲁棒Otsu的红外无损检测缺陷分割算法 . 红外与激光工程, 2019, 48(2): 204004-0204004(9). doi: 10.3788/IRLA201948.0204004
    [7] 杨正伟, 谢星宇, 李胤, 张炜, 田干.  激光扫描热成像无损检测关键参数影响分析 . 红外与激光工程, 2019, 48(11): 1105008-1105008(11). doi: 10.3788/IRLA201948.1105008
    [8] 夏嘉斌, 孙广开, 宋潮, 周正干.  “钢-铅”粘接结构非接触激光超声检测方法 . 红外与激光工程, 2018, 47(1): 117006-0117006(7). doi: 10.3788/IRLA201847.0117006
    [9] 卞宏友, 翟泉星, 曲伸, 杨光, 王伟, 王维.  GH738合金激光沉积修复试验研究 . 红外与激光工程, 2018, 47(7): 706002-0706002(6). doi: 10.3788/IRLA201847.0706002
    [10] 杨光, 刘欢欢, 周佳平, 钦兰云, 王维, 任宇航.  激光沉积修复某型飞机垂尾梁研究 . 红外与激光工程, 2017, 46(2): 206004-0206004(9). doi: 10.3788/IRLA201746.0206004
    [11] 李文洁, 赵读亮, 林颖, 梁勖, 方晓东.  高灵敏紫外激光脉冲能量在线检测系统设计 . 红外与激光工程, 2017, 46(12): 1222002-1222002(6). doi: 10.3788/IRLA201746.1222002
    [12] 吴红兵, 史云龙, 杜雪, 熊瑞斌, 石松.  电脉冲处理对钛合金超精密切削的影响 . 红外与激光工程, 2016, 45(2): 220002-0220002(4). doi: 10.3788/IRLA201645.0220002
    [13] 周小丹, 李丽娟, 赵铎, 任姣姣.  太赫兹技术在陶瓷基复合材料缺陷无损检测中的应用 . 红外与激光工程, 2016, 45(8): 825001-0825001(8). doi: 10.3788/IRLA201645.0825001
    [14] 卞宏友, 赵翔鹏, 李英, 杨光, 钦兰云, 王维, 任宇航.  激光沉积修复GH4169合金试验研究 . 红外与激光工程, 2016, 45(2): 206006-0206006(6). doi: 10.3788/IRLA201645.0206006
    [15] 陈林, 杨立, 范春利, 石宏臣, 赵小龙.  基于相位的热障涂层厚度及其脱粘缺陷红外定量识别 . 红外与激光工程, 2015, 44(7): 2050-2056.
    [16] 张振振, 杨爱玲, 赵扬, 南钢洋.  人工缺陷铝块试样的激光超声三维成像 . 红外与激光工程, 2015, 44(S1): 57-62.
    [17] 韦吉爵, 苏安, 唐秀福, 高英俊, 梁祖彬, 陈颖川.  缺陷对一维光子晶体滤波性能的调制 . 红外与激光工程, 2015, 44(S1): 168-172.
    [18] 王维, 李新宇, 杨光, 钦兰云, 任宇航.  超声场下激光沉积TA15钛合金的组织和力学性能 . 红外与激光工程, 2015, 44(12): 3559-3564.
    [19] 钦兰云, 王婷, 杨光, 王维, 卞宏友, 任宇航.  激光沉积修复BT20合金试验研究 . 红外与激光工程, 2014, 43(2): 404-410.
    [20] 代福, 杨李茗.  激光预处理中薄膜损伤形貌对预处理效果的影响 . 红外与激光工程, 2013, 42(1): 190-194.
  • 加载中
计量
  • 文章访问数:  582
  • HTML全文浏览量:  108
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-05
  • 修回日期:  2017-12-15
  • 刊出日期:  2018-04-25

激光增材制造成形合金钢件质量特征及其检测评价技术现状(特邀)

doi: 10.3788/IRLA201847.0401001
    作者简介:

    徐滨士(1931-),男,中国工程院院士,教授,主要从事装备再制造与延寿、表面工程方面的研究。Email:xubinshi@vip.sina.com

基金项目:

国家重点研发计划重点专项(2016YFB1100205);国家自然科学基金(51705532);北京市科技专项(Z161100004916009);北京市科技计划(Z161100001516007)

  • 中图分类号: TG115.28;TH878

摘要: 无损检测技术是合金钢构件激光增材制造的重要技术支撑,是保证激光增材制造产品质量和在役安全性的关键技术,是贯穿产品全寿命安全保证的重要技术组成。金属激光增材制造合金钢件成形、组织和力学性能不同于传统技术制造构件性能,使得无损检测技术面临诸多挑战。综述了激光增材制造合金钢成形质量特性,包括成形缺陷和力学性能;基于无损检测技术,论述了无损检测技术在激光增材制造合金钢件质量评价中的应用,重点论述了无损检测技术在激光增材制造构件缺陷和力学性能中的应用现状;提出了基于超声和微磁检测技术评价材料力学性能的原理、标定方法和微磁传感器设计方案;最后总结了无损检测评价技术在激光增材制造合金钢件检测评价应用中面临的挑战和发展趋势。

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回