留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外与激光融合目标识别方法

仝选悦 吴冉 杨新锋 滕书华 庄祉昀

仝选悦, 吴冉, 杨新锋, 滕书华, 庄祉昀. 红外与激光融合目标识别方法[J]. 红外与激光工程, 2018, 47(5): 526003-0526003(8). doi: 10.3788/IRLA201847.0526003
引用本文: 仝选悦, 吴冉, 杨新锋, 滕书华, 庄祉昀. 红外与激光融合目标识别方法[J]. 红外与激光工程, 2018, 47(5): 526003-0526003(8). doi: 10.3788/IRLA201847.0526003
Tong Xuanyue, Wu Ran, Yang Xinfeng, Teng Shuhua, Zhuang Zhiyun. Fusion target recognition method of infrared and laser[J]. Infrared and Laser Engineering, 2018, 47(5): 526003-0526003(8). doi: 10.3788/IRLA201847.0526003
Citation: Tong Xuanyue, Wu Ran, Yang Xinfeng, Teng Shuhua, Zhuang Zhiyun. Fusion target recognition method of infrared and laser[J]. Infrared and Laser Engineering, 2018, 47(5): 526003-0526003(8). doi: 10.3788/IRLA201847.0526003

红外与激光融合目标识别方法

doi: 10.3788/IRLA201847.0526003
基金项目: 

国家自然科学基金(61471371);湖南省自然科学基金(2015jj3022);河南省科技攻关项目(132102210215)

详细信息
    作者简介:

    仝选悦(1980-),女,讲师,硕士,主要从事图像处理、体系结构方面的研究。Email:ywind2005@163.com

  • 中图分类号: TP391.4

Fusion target recognition method of infrared and laser

  • 摘要: 针对自动目标识别需求,提出了一种激光与红外融合目标识别方法。首先分别对激光与红外两类单源数据分别提取小波矩和投影轮廓特征来表征目标;其次,将两类单源特征进行组合,并对组合后的特征进行约简。考虑到组合多个约简在进行分类时将产生互补信息,基于三种不同观点的约简提出了一种差异性组合分类器的构建方法,对约简后的激光和红外复合数据进行融合识别。最后,通过对激光与红外仿真数据的实验,验证了文中方法的有效性。
  • [1] Yin Xiaochen, Fu Yanhui. Optical design of common aperture IR/ladar dual-mode imaging seeker[J]. Infrared and Laser Engineering, 2015, 44(2):428-431. (in Chinese)
    [2] Wu Jiajie. Active-passive detection image registration and fusion[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
    [3] Fan Youchen, Zhao Hongli, Sun Huayan, et al. Calculation of maximum range of active and passive laser rangegated detection system[J]. Infrared and Laser Engineering, 2015, 44(S1):86-92. (in Chinese)
    [4] Harney R C. Dual active/passive infrared imaging systems[J]. Optical Engineering, 1981, 20(6):206976.
    [5] 张德文. 复合制导-导弹制导新主张[J]. 现代舰船, 2002, 9(15):36-37.
    [6] Barenz Joachim, Rainer Baumann, Frank Imkenberg, et al. All solid state imaging infrared/imaging ladar sensor system[C]//SPIE, 2004:171-179.
    [7] DeFlumere Michael E. Reentry Vehicle Interceptor with IR and variable FOV laser radar:US, Google Patents[P]. 2004.
    [8] Liu LiPing, Sun Xiudong, Zhao Yuan, et al. Design of high-efficiency beam dividing system used in active-passive composite imaging radar[J]. Acta Optica Sinica, 2009, 29(8):2293-2296. (in Chinese)
    [9] Wang L, Lou L M, Yang C L, et al. Portrait drawing from corresponding range and intensity images[J]. Frontiers of Information Technology Electronic Engineering, 2013, 14(7):530-541.
    [10] Zhang Xiuli, Li Qi, Wang Qi. Simulation of infrared-active-passive imaging fusion based on pixel-level[J]. Infrared and Laser Engineering, 2008, 37(S3):104-107. (in Chinese)
    [11] Yu Zhiwen, Daxing Wang, Jane You, et al. Progressive subspace ensemble learning[J]. Pattern Recognition, 2016, 60(C):692-705.
    [12] Choi J Y, Dae H K, Konstantinos N P, et al. Classifier Ensemble generation and Selection with multiple feature representations for classification applications in computer-aided detection and diagnosis on mammography[J]. Expert Systems with Applications, 2016, 46(C):106-121.
    [13] Zhu Zhihui, Xie Dejun, Li Wanqing, et al. Abnormal eggs detection based on spectroscopy technology and multiple classifier fusion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2):312-318. (in Chinese)
    [14] Wozniak Michal, Manuel Graa, Emilio Corchado. A survey of multiple classifier systems as hybrid systems[J]. Information Fusion, 2014, 16(1):3-17.
    [15] Suraj Z, Gayar N E, Delimata P. A rough set approach to multiple classifier systems[J]. Fundamenta Informaticae, 2006, 72(1-3):393-406.
    [16] Hu Qinghua, Daren Yu, Zongxia Xie, et al. Eros:ensemble rough subspaces[J]. Pattern Recognition, 2007, 40(12):3728-3739.
    [17] Kumar Das Asit, Jaya Sil. An efficient classifier design integrating rough set and set oriented database operations[J]. Applied Soft Computing, 2011, 11(2):2279-2285.
    [18] Guo Yuwei, Jiao Licheng, Wang Shuang, et al. A novel dynamic rough subspace based selective ensemble[J]. Pattern Recognition, 2015, 48(5):1638-1652.
    [19] Teng Shuhua, Lu Min, Yang Afeng, et al. A weighted uncertainty measure of rough sets based on general binary relation[J]. Chinese Journal of Conputers, 2014, 37(3):649-665. (in Chinese)
    [20] 赵晓震. 导弹自动目标识别关键技术研究[J]. 飞航导弹, 2014(2):23.
    [21] Huang Yingqing, Zhao Kai, Jiang Xiaoyu, et al. Study on recognition for armored vehicle based on wavelet moment and SVM[J]. Journal of Academy of Armored Force Engineering, 2012, 26(3):61-64. (in Chinese)
    [22] Mian Ajmal Saeed. Representations and matching techniques for 3d free-form object and face recognition[D]. Perth:University of Western Australia, 2006.
    [23] Chen Hui, Bir Bhanu. 3d free-form object recognition in range images using local surface patches[J]. Pattern Recognition Letters, 2007, 28(10):1252-1262.
    [24] Guo Yulan, Lu Min, Tan Zhiguo, et al. Fast target recognition in ladar using projection contour feature[J]. Chinese Journal of Lasers, 2012, 39(2):194-199. (in Chinese)
    [25] Teng Shuhua, Min Lu, Yang Afeng, et al. Efficient attribute reduction from the viewpoint of discernibility[J]. Information Sciences, 2016, 326(C):297-314.
    [26] Jia Xiuyi, Shang Lin, Zhou Bing, et al. Generalized attribute reduct in rough set theory[J]. Knowledge-Based Systems, 2016, 91(C):204-218.
    [27] Niu Tao, Yang Fengbao, Wang Xiaoxia, et al. Establishment of set-valued mapping between difference characteristics and fusion algorithms[J]. Infrared and Laser Engineering, 2015, 44(3):1073-1079. (in Chinese)
    [28] Qi Shengxiang, Ma Jie, Tao Chao, et al. A robust directional saliency-based method for infrared small-target detection under various complex backgrounds[J]. Geoscience and Remote Sensing Letters, IEEE, 2013, 10(3):495-499.
    [29] Zhang Wenguang, Lu Min, Guo Yulan, et al. LiDAR data processing system based on multi-core DSP[J]. Laser Infrared, 2015, 45(11):1385-1391. (in Chinese)
    [30] Peng Hanchuan, Long Fuhui, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2005, 27(8):1226-1238.
    [31] Hu Qinghua, Yu Daren, Xie Zongxia. Numerical attribute reduction based on neighborhood granulation and rough approximation[J]. Journal of Software, 2008, 19(3):640-649. (in Chinese)
  • [1] 王明军, 易芳, 李乐, 黄朝军.  自适应局部邻域特征点提取和匹配的点云配准 . 红外与激光工程, 2022, 51(5): 20210342-1-20210342-10. doi: 10.3788/IRLA20210342
    [2] 庞忠祥, 刘勰, 刘桂华, 龚泿军, 周晗, 罗洪伟.  并行多特征提取网络的红外图像增强方法 . 红外与激光工程, 2022, 51(8): 20210957-1-20210957-9. doi: 10.3788/IRLA20210957
    [3] 王晓艳, 徐高魁.  基于立体视觉与特征匹配的点云目标识别算法 . 红外与激光工程, 2022, 51(9): 20210596-1-20210596-7. doi: 10.3788/IRLA20210596
    [4] 林森, 赵振禹, 任晓奎, 陶志勇.  基于语义信息补偿全局特征的物体点云分类分割 . 红外与激光工程, 2022, 51(8): 20210702-1-20210702-12. doi: 10.3788/IRLA20210702
    [5] 张丹萌, 白璐, 吕强, 王岩坤, 谢锦宇.  尾焰的紫外高分辨辐射图像仿真与特征提取 . 红外与激光工程, 2021, 50(10): 20200466-1-20200466-8. doi: 10.3788/IRLA20200466
    [6] 张银波, 李思宁, 姜鹏, 孙剑峰.  PCA特征提取和弹性BP神经网络的水下气泡识别 . 红外与激光工程, 2021, 50(6): 20200352-1-20200352-7. doi: 10.3788/IRLA20200352
    [7] 王毅, 何明元, 葛晶晶, 项杰.  基于正交匹配追踪的云检测算法研究 . 红外与激光工程, 2019, 48(12): 1203003-1203003(6). doi: 10.3788/IRLA201948.1203003
    [8] 程全, 樊宇, 刘玉春, 王志良.  多特征融合的车辆识别技术 . 红外与激光工程, 2018, 47(7): 726003-0726003(6). doi: 10.3788/IRLA201847.0726003
    [9] 付群健, 于淼, 常天英, 张瑾, 罗政纯, 王旭, 刘珉含, 崔洪亮.  相位敏感光时域反射系统模式识别方法综述 . 红外与激光工程, 2018, 47(7): 722001-0722001(14). doi: 10.3788/IRLA201847.0722001
    [10] 熊晶莹, 戴明, 赵春蕾.  红外激光车载云台去抖动设计 . 红外与激光工程, 2018, 47(1): 126002-0126002(7). doi: 10.3788/IRLA201847.0126002
    [11] 蔡克荣, 仇理宽, 高瑞林.  脉冲激光引信的信号特征提取方法及应用(特邀) . 红外与激光工程, 2018, 47(3): 303004-0303004(5). doi: 10.3788/IRLA201847.0303004
    [12] 郭伟, 董丽虹, 王海斗, 徐雅薇, 徐滨士.  基于小波分解的热波相位特征提取及喷涂层厚度评价 . 红外与激光工程, 2017, 46(9): 904003-0904003(7). doi: 10.3788/IRLA201746.0904003
    [13] 孙俊灵, 马鹏阁, 孙光民, 羊毅.  低信噪比下机载多脉冲激光雷达姿态不敏感性特征提取研究 . 红外与激光工程, 2017, 46(3): 330002-0330002(9). doi: 10.3788/IRLA201746.0330002
    [14] 赵丽娟, 李永倩, 徐志钮.  Lorentzian型布里渊频谱特征提取时模型的影响 . 红外与激光工程, 2016, 45(5): 522002-0522002(6). doi: 10.3788/IRLA201645.0522002
    [15] 方敏, 王君, 王红艳, 李天涯.  应用监督近邻重构分析的高光谱遥感数据特征提取 . 红外与激光工程, 2016, 45(10): 1028003-1028003(8). doi: 10.3788/IRLA201645.1028003
    [16] 张士成, 杨立, 石恒.  基于射线跟踪算法的舰船尾迹波红外特征与探测 . 红外与激光工程, 2015, 44(5): 1450-1455.
    [17] 杨晟, 李学军, 谢剑薇, 王珏.  脊点集稳健裁剪和惩罚约束的高精度靶标点提取 . 红外与激光工程, 2014, 43(6): 1994-1999.
    [18] 杨晟, 李学军, 朱诗兵, 刘涛.  抗仿射形变异构金字塔复合描述点特征匹配算法 . 红外与激光工程, 2014, 43(7): 2387-2392.
    [19] 闫勇刚, 欧阳健飞, 马祥, 翟羽佳.  基于2-DGabor滤波器的光学定穴体表特征提取方法 . 红外与激光工程, 2014, 43(5): 1685-1689.
    [20] 蔡辉, 李娜, 赵慧洁.  基于本征模函数的高光谱数据特征提取方法 . 红外与激光工程, 2013, 42(12): 3475-3480.
  • 加载中
计量
  • 文章访问数:  361
  • HTML全文浏览量:  50
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-10
  • 修回日期:  2018-01-20
  • 刊出日期:  2018-05-25

红外与激光融合目标识别方法

doi: 10.3788/IRLA201847.0526003
    作者简介:

    仝选悦(1980-),女,讲师,硕士,主要从事图像处理、体系结构方面的研究。Email:ywind2005@163.com

基金项目:

国家自然科学基金(61471371);湖南省自然科学基金(2015jj3022);河南省科技攻关项目(132102210215)

  • 中图分类号: TP391.4

摘要: 针对自动目标识别需求,提出了一种激光与红外融合目标识别方法。首先分别对激光与红外两类单源数据分别提取小波矩和投影轮廓特征来表征目标;其次,将两类单源特征进行组合,并对组合后的特征进行约简。考虑到组合多个约简在进行分类时将产生互补信息,基于三种不同观点的约简提出了一种差异性组合分类器的构建方法,对约简后的激光和红外复合数据进行融合识别。最后,通过对激光与红外仿真数据的实验,验证了文中方法的有效性。

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回