留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氟碲酸盐光纤的高功率中红外超连续光源(特邀)

贾志旭 姚传飞 李真睿 贾世杰 赵志鹏 秦伟平 秦冠仕

贾志旭, 姚传飞, 李真睿, 贾世杰, 赵志鹏, 秦伟平, 秦冠仕. 基于氟碲酸盐光纤的高功率中红外超连续光源(特邀)[J]. 红外与激光工程, 2018, 47(8): 803004-0803004(11). doi: 10.3788/IRLA201847.0803004
引用本文: 贾志旭, 姚传飞, 李真睿, 贾世杰, 赵志鹏, 秦伟平, 秦冠仕. 基于氟碲酸盐光纤的高功率中红外超连续光源(特邀)[J]. 红外与激光工程, 2018, 47(8): 803004-0803004(11). doi: 10.3788/IRLA201847.0803004
Jia Zhixu, Yao Chuanfei, Li Zhenrui, Jia Shijie, Zhao Zhipeng, Qin Weiping, Qin Guanshi. High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803004-0803004(11). doi: 10.3788/IRLA201847.0803004
Citation: Jia Zhixu, Yao Chuanfei, Li Zhenrui, Jia Shijie, Zhao Zhipeng, Qin Weiping, Qin Guanshi. High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803004-0803004(11). doi: 10.3788/IRLA201847.0803004

基于氟碲酸盐光纤的高功率中红外超连续光源(特邀)

doi: 10.3788/IRLA201847.0803004
基金项目: 

国家自然科学基金(61527823,61378004,61605058,11474132);吉林省重点科技研发项目(20180201120GX);吉林省重大科技招标专项(20170203012GX);装备预研教育部联合基金(6141A02022413);吉林省优秀青年人才基金(20180520188JH)

详细信息
    作者简介:

    贾志旭(1985-),男,讲师,博士,主要从事特种玻璃光纤及器件方面的研究。Email:jiazx@jlu.edu.cn

    通讯作者: 秦冠仕(1976-),男,教授,博士生导师,博士,主要从事特种玻璃光纤及器件方面的研究。Email:qings@jlu.edu.cn
  • 中图分类号: TN212

High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)

  • 摘要: 高功率全光纤中红外超连续光源在基础科学研究、环境、医疗以及国防安全等领域有着重要应用。目前用于研制上述光源所用的非线性介质为氟化物玻璃光纤。但是氟化物玻璃光纤的损伤阈值低、化学稳性差,这在一定程度上影响了氟化物玻璃光纤在实用化高功率中红外光源研制中的应用。为了进一步提升中红外超连续光源的性能和研制实用化高功率中红外超连续光源,最近制备出了一种具有较好热稳定性和化学稳定性的氟碲酸盐玻璃(TeO2-BaF2-Y2O3,TBY),并利用其作为基质材料,设计制备出了一系列氟碲酸盐玻璃光纤。利用这些光纤作为非线性介质,研制出了光谱范围覆盖1.4~4 m的高相干超连续光源,光谱范围覆盖0.4~5.14 m的宽带超连续光源和平均功率大于10 W、光谱范围覆盖947~3 934 nm的超连续光源。
  • [1] Alfano R. The Supercontinuum Laser Source[M]. New York:Springer, 2006.
    [2] Dudley J, Taylor R. Supercontinuum Generation in Optical Fibers[M]. New York:Cambridge University Press, 2010.
    [3] Wei Zhiyi. The 2005 Nobel prize in physics and optical frequency comb techniques[J]. Physics, 2006, 35(3):213-217. (in Chinese)魏志义. 2005年诺贝尔物理学奖与光学频率梳[J]. 物理,2006, 35(3):213-217.
    [4] Hartl I, Li X D, Chudoba C, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Optics Letters, 2001, 26(9):608-610.
    [5] Wildanger D, Rittweger E, Kastrup L, et al. STED microscopy with a supercontinuum laser source[J]. Optics Express, 2008, 16(13):9614-9621.
    [6] Brown D M, Shi K, Liu Z, et al. Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents[J]. Optics Express, 2008, 16(12):8457-8471.
    [7] Wallace J. IR supercontinuum laser helps defend helicopters[N]. Laser Focus World, 2010, Sept 3.
    [8] Qian Liejia. Development and integration of wide tunable mid infrared femtosecond and narrow band long pulse laser devices[J]. Infrared and Laser Engineering, 2006, 35(z3):43. (in Chinese)钱列加. 宽调谐中红外飞秒及窄带长脉冲激光器件的研制和集成[J]. 红外与激光工程, 2006, 35(z3):43.
    [9] Deng Ying, Zhu Qihua, Zeng Xiaoming, et al. The generation and recent progress of ultrashort mid-infrared pulse[J]. Laser Optoelectronics Progress, 2006, 43(8):21-26. (in Chinese)邓颖, 朱启华, 曾小明, 等. 超短中红外激光脉冲的产生及其发展状况[J]. 激光与光电子进展, 2006, 43(8):21-26.
    [10] Chen K, Alam S U, Price J H V, et al. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power[J]. Optics Express, 2010, 18(6):5426-5432.
    [11] Sanghera J S, Aggarwal I D, Busse L E, et al. Chalcogenide optical fibers target mid-IR applications[J]. Laser Focus World, 2005, 41(4):83-87.
    [12] Harbold J M, Ilday F O, Wise F W, et al. Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching[J]. IEEE Photonics Technology Letters, 2002, 14(6):822-824.
    [13] Slusher R E, Lenz G, Hodelin J, et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers[J]. Journal of the Optical Society of America B-Optical Physics, 2004, 21(6):1146-1155.
    [14] Feng X, Mairaj A K, Hewak D W, et al. Nonsilica glasses for holey fibers[J]. Journal of Lightwave Technology, 2005, 23(6):2046-2054.
    [15] Petersen C R, Mller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4-13.3m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11):830-834.
    [16] Cheng T L, Nagasaka K, Tuan T H, et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1m in a chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(9):2117-2120.
    [17] Zhao Z M, Wang X S, Dai S X, et al. 1.5-14m midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(22):5222-5225.
    [18] Zhao Z M, Wu B, Wang X S, et al. Mid-infrared supercontinuum covering 2.0-16m in a low-loss telluride single-mode fiber[J]. Laser Photonics Reviews, 2017, 11(2):1700005.
    [19] Qin G S, Yan X, Kito C, et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28m in a fluoride fiber[J]. Applied Physics Letters, 2009, 95(16):584.
    [20] Xia C N, Xu Z, Islam M N, et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4m with direct pulse pattern modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2):422-434.
    [21] Yang W, Zhang B, Xue G, et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2m MOPA system[J]. Optics Letters, 2014, 39(7):1849-1852.
    [22] Liu K, Liu J, Shi H X, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics Express, 2014, 22(20):24384-24391.
    [23] Liu K, Liu J, Shi H X, et al. 24.3 W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier[C]//Advanced Solid State Lasers, 2014, AM3A.6.
    [24] Zheng Z J, Ouyang D Q, Zhao J Q, et al. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber[J]. Photonics Research, 2016, 4(4):135-139.
    [25] Yin K, Zhang B, Yang L Y, et al. 15.2 W spectrally flat all-fiber supercontinuum laser source with 1 W power beyond 3.8m[J]. Optics Letters, 2017, 42(12):2334-2337.
    [26] Poulain M, Poulain M, Lucas J. Verres fluores au tetrafluorure de zirconium proprietes optiques d'un verre dope au Nd3+[J]. Materials Research Bulletin, 1975, 10(4):243-246.
    [27] Zhu X, Peyghambarian N. High-power ZBLAN glass fiber lasers:review and prospect[J]. Advances in OptoElectronics, 2010(1687-563X):149-154.
    [28] Wang J S, Vogel E M, Snitzer E. Tellurite glass:a new candidate for fiber devices[J]. Optical Materials, 1994, 3(3):187-203.
    [29] Ghosh G. Sellmeier coefficients and chromatic dispersions for some tellurite glasses[J]. Journal of the American Ceramic Society, 1995, 78(10):2828-2830.
    [30] Domachuk P, Wolchover N A, Cronin-Golomb M, et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Optics Express, 2008, 16(10):7161-7168.
    [31] Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5m[C]//SPIE 2013, 8898:889808.
    [32] Shi H X, Feng X, Tan F Z, et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber[J]. Optical Materials Express, 2016, 6(12):3967-3976.
    [33] Yang L, Zhang B, Yin K, et al. 0.6-3.2m supercontinuum generation in a stepindex germania-core fiber using a 4.4 kW peak power pump laser[J]. Optics Express, 2016, 13(24):12600-12606.
    [34] Yin K, Zhang B, Yao J, et al. 1.9-3.6m supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio[J]. Optics Letters, 2016, 41(21):5067-5070.
    [35] Yin K, Zhang B, Yang L, et al. 30 W monolithic 2-3m supercontinuum laser[J]. Photonics Research, 2018, 6(2):123-126.
    [36] O'donnell M D, Miller C A, Furniss D, et al. Fluorotellurite glasses with improved mid-infrared transmission[J]. Journal of Non-Crystalline Solids, 2003, 331(1-3):48-57.
    [37] Liao G H, Chen Q P, Xing J J, et al. Preparation and characterization of new fluorotellurite glasses for photonics application[J]. Journal of Non-Crystalline Solids, 2009, 355(7):447-452.
    [38] O'donnell M D, Richardson K, Stolen R, et al. Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers:Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization[J]. Journal of the American Ceramic Society, 2007, 90(5):1448-1457.
    [39] Wang R, Meng X, Yin F, et al. Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7m laser applications[J]. Optical Material Express, 2013, 3(8):1127-1136.
    [40] de Sousa D F, Zonetti L F C, Bell M J V, et al. On the observation of 2.8m emission from diode-pumped Er3+-and Yb3+-doped low silica calcium aluminate glasses[J]. Applied Physics Letters, 1999, 74(7):908-910.
    [41] Yao C, He C, Jia Z, et al. Holmium-doped fluorotellurite microstructured fibers for 2.1m lasing[J]. Optics Letters, 2015, 40(20):4695-4698.
    [42] Wang F, Wang K, Yao C, et al. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation[J]. Optics Letters, 2016, 41(3):634-637.
    [43] Bei J F, Foo H T C, Qian G J, et al. Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water[J]. Optical Materials Express, 2014, 4(6):1213-1226.
    [44] Dudley J M, Coen S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Optics Letters, 2002, 27(13):1180-1182.
    [45] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4):1135-1184.
    [46] Savelii I, Desevedavy F, Jules J C, et al. Management of OH absorption in tellurite optical fibers and related supercontinuum generation[J]. Optical Materials, 2013, 35(8):1595-1599.
    [47] Jia Z, Yao C, Jia S, et al. Supercontinuum generation covering the entire transmission window of 0.4-5m in a tapered ultra-high NA all-solid fluorotellurite fiber[J]. Laser Physics Letters, 2018, 15:025102.
    [48] Jia Z, Yao C, Jia S, et al. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber[J]. Applied Physics Letters, 2017, 110:261106.
    [49] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber[J]. Applied Physics B-Lasers and Optics, 2003, 77(2-3):269-277.
    [50] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental noise limitations to supercontinuum generation in microstructure fiber[J]. Physical Review Letters, 2003, 90(11):113904.
    [51] Klimczak M, Siwicki B, Skibinski P, et al. Coherent supercontinuum generation up to 2.3m in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion[J]. Optics Express, 2014, 22(15):18824-18832.
    [52] Li N, Wang F, Yao C, et al. Coherent supercontinuum generation from 1.4 to 4m in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser[J]. Applied Physics Letters, 2017, 110:061102.
    [53] Zhan H, Shi T F, Zhang A D, et al. Nonlinear characterization on mid-infrared fluorotellurite glass fiber[J]. Materials Letters, 2014, 120:174-176.
    [54] Chen Z, Taylor A J, Efimov A. Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper[J]. Optics Express, 2009, 17(7):5852-5860.
    [55] Yao C, Jia Z, Li Z, et al. 10-W-level mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. (Submitted).
  • [1] 杜俊廷, 常冰, 李照宇, 张浩, 秦琛烨, 耿勇, 谭腾, 周恒, 姚佰承.  中红外光学频率梳:进展与应用(特邀) . 红外与激光工程, 2022, 51(3): 20210969-1-20210969-15. doi: 10.3788/IRLA20210969
    [2] 雷姚远, 陈琦凯, 刘逸天, 马耀光.  中红外超表面的成像和检测原理及应用进展(特邀) . 红外与激光工程, 2022, 51(3): 20220082-1-20220082-19. doi: 10.3788/IRLA20220082
    [3] 杨婷婷, 陈红山, 刘贺言, 郝婧婕, 张金伟.  基于孤子自压缩的高功率少周期2 μm激光产生(特邀) . 红外与激光工程, 2021, 50(8): 20210355-1-20210355-7. doi: 10.3788/IRLA20210355
    [4] 白振旭, 杨学宗, 陈晖, 金舵, 丁洁, 齐瑶瑶, 李森森, 闫秀生, 王雨雷, 吕志伟.  高功率金刚石激光技术研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201076-1-20201076-13. doi: 10.3788/IRLA20201076
    [5] 田遥岭, 何月, 黄昆, 蒋均, 缪丽.  高功率110 GHz平衡式肖特基二极管频率倍频器 . 红外与激光工程, 2019, 48(9): 919002-0919002(6). doi: 10.3788/IRLA201948.0919002
    [6] 王标, 庞璐, 衣永青, 潘蓉, 耿鹏程, 宁鼎, 刘君.  国产25/400 μm掺镱光纤实现3.2 kW激光输出 . 红外与激光工程, 2019, 48(7): 706009-0706009(6). doi: 10.3788/IRLA201948.0706009
    [7] 王立军, 彭航宇, 张俊, 秦莉, 佟存柱.  高功率高亮度半导体激光器合束进展 . 红外与激光工程, 2017, 46(4): 401001-0401001(10). doi: 10.3788/IRLA201746.0401001
    [8] 曾江辉, 张培晴, 张倩, 李杏, 许银生, 王训四, 戴世勋.  啁啾光纤光栅在硫系光纤激光器中的色散补偿 . 红外与激光工程, 2017, 46(10): 1005007-1005007(7). doi: 10.3788/IRLA201758.1005007
    [9] 谭祺瑞, 葛廷武, 王智勇.  高功率非对称泵浦耦合器理论研究 . 红外与激光工程, 2016, 45(1): 105004-0105004(5). doi: 10.3788/IRLA201645.0105004
    [10] 王少奇, 邓颖, 李超, 王方, 张永亮, 康民强, 薛海涛, 罗韵, 粟敬钦, 胡东霞, 郑奎兴, 朱启华.  被动锁模掺Er3+氟化物光纤激光器理论研究 . 红外与激光工程, 2016, 45(11): 1136004-1136004(6). doi: 10.3788/IRLA201645.1136004
    [11] 赵坤, 史学舜, 刘长明, 刘玉龙, 陈海东, 刘红博, 陈坤峰, 李立功.  用于探测器中红外绝对光谱响应度测量的激光源 . 红外与激光工程, 2016, 45(7): 705005-0705005(7). doi: 10.3788/IRLA201645.0705005
    [12] 胡姝玲, 赵东伟, 牛燕雄, 王欢欢, 肖泽宇.  高功率光隔离器的热效应分析与优化 . 红外与激光工程, 2015, 44(11): 3186-3190.
    [13] 徐正文, 曲轶, 王钰智, 高婷, 王鑫.  高功率980nm非对称宽波导半导体激光器设计 . 红外与激光工程, 2014, 43(4): 1094-1098.
    [14] 陈月娥, 邵秋峰, 王金生.  多芯光子晶体光纤的相干组束集成 . 红外与激光工程, 2014, 43(5): 1454-1457.
    [15] 刘永兴, 张培晴, 戴世勋, 王训四, 林常规, 张巍, 聂秋华, 徐铁峰.  中红外硫系光子晶体光纤参量放大特性模拟研究 . 红外与激光工程, 2014, 43(2): 511-516.
    [16] 高静, 于峰, 葛廷武, 王智勇.  用于产生中红外超连续谱的硫系玻璃色散研究 . 红外与激光工程, 2014, 43(10): 3368-3372.
    [17] 马依拉木·木斯得克, 姚建铨, 王鹏.  LD端面泵浦946 nm/473 nm连续Nd:YAG/LBO激光器 . 红外与激光工程, 2013, 42(11): 2931-2934.
    [18] 于盛旺, 安康, 李晓静, 申艳艳, 宁来元, 贺志勇, 唐宾, 唐伟忠.  高功率MPCVD金刚石膜红外光学材料制备 . 红外与激光工程, 2013, 42(4): 971-974.
    [19] 林栩凌, 周峰, 张建兵, 戴志敏.  采用飞秒装置的高功率宽带太赫兹源 . 红外与激光工程, 2012, 41(1): 116-118.
    [20] 李斌, 方晓惠, 刘博文, 胡明列, 王清月.  飞秒激光产生7.45 W超连续光谱实验 . 红外与激光工程, 2012, 41(8): 2012-2016.
  • 加载中
计量
  • 文章访问数:  346
  • HTML全文浏览量:  44
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-05
  • 修回日期:  2018-05-03
  • 刊出日期:  2018-08-25

基于氟碲酸盐光纤的高功率中红外超连续光源(特邀)

doi: 10.3788/IRLA201847.0803004
    作者简介:

    贾志旭(1985-),男,讲师,博士,主要从事特种玻璃光纤及器件方面的研究。Email:jiazx@jlu.edu.cn

    通讯作者: 秦冠仕(1976-),男,教授,博士生导师,博士,主要从事特种玻璃光纤及器件方面的研究。Email:qings@jlu.edu.cn
基金项目:

国家自然科学基金(61527823,61378004,61605058,11474132);吉林省重点科技研发项目(20180201120GX);吉林省重大科技招标专项(20170203012GX);装备预研教育部联合基金(6141A02022413);吉林省优秀青年人才基金(20180520188JH)

  • 中图分类号: TN212

摘要: 高功率全光纤中红外超连续光源在基础科学研究、环境、医疗以及国防安全等领域有着重要应用。目前用于研制上述光源所用的非线性介质为氟化物玻璃光纤。但是氟化物玻璃光纤的损伤阈值低、化学稳性差,这在一定程度上影响了氟化物玻璃光纤在实用化高功率中红外光源研制中的应用。为了进一步提升中红外超连续光源的性能和研制实用化高功率中红外超连续光源,最近制备出了一种具有较好热稳定性和化学稳定性的氟碲酸盐玻璃(TeO2-BaF2-Y2O3,TBY),并利用其作为基质材料,设计制备出了一系列氟碲酸盐玻璃光纤。利用这些光纤作为非线性介质,研制出了光谱范围覆盖1.4~4 m的高相干超连续光源,光谱范围覆盖0.4~5.14 m的宽带超连续光源和平均功率大于10 W、光谱范围覆盖947~3 934 nm的超连续光源。

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回