留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气湍流下轨道角动量复用态串扰分析

柯熙政 宁川 王姣

柯熙政, 宁川, 王姣. 大气湍流下轨道角动量复用态串扰分析[J]. 红外与激光工程, 2018, 47(11): 1122002-1122002(7). doi: 10.3788/IRLA201847.1122002
引用本文: 柯熙政, 宁川, 王姣. 大气湍流下轨道角动量复用态串扰分析[J]. 红外与激光工程, 2018, 47(11): 1122002-1122002(7). doi: 10.3788/IRLA201847.1122002
Ke Xizheng, Ning Chuan, Wang Jiao. Crosstalk analysis of orbital angular momentum-multiplexed state under atmospheric turbulence[J]. Infrared and Laser Engineering, 2018, 47(11): 1122002-1122002(7). doi: 10.3788/IRLA201847.1122002
Citation: Ke Xizheng, Ning Chuan, Wang Jiao. Crosstalk analysis of orbital angular momentum-multiplexed state under atmospheric turbulence[J]. Infrared and Laser Engineering, 2018, 47(11): 1122002-1122002(7). doi: 10.3788/IRLA201847.1122002

大气湍流下轨道角动量复用态串扰分析

doi: 10.3788/IRLA201847.1122002
基金项目: 

国家自然科学基金(61377080,60977054);陕西省重点产业创新项目(2017ZDCXL-GY-06-01)

详细信息
    作者简介:

    柯熙政(1962-),男,教授,博士生导师,博士,主要从事自由空间光通信方面的研究。Email:xzke@263.net

  • 中图分类号: TN929.12

Crosstalk analysis of orbital angular momentum-multiplexed state under atmospheric turbulence

  • 摘要: 以加载QPSK调制信号的轨道角动量(OAM)光束为传输载波,以多个相位屏模拟大气湍流,研究不同大气湍流强度下OAM复用态的串扰情况。通过对复用光束光强和相位研究,得出在OAM复用态光强受到湍流影响时会发生明显的闪烁现象,光功率分散,相位发生旋转弯曲,且湍流强度越大,受到的影响越大。选用螺旋谱分析不同湍流强度下各OAM复用态之间的弥散程度,当大气湍流强度增加时,OAM态之间的弥散程度增加,且较强湍流会导致OAM复用态失真。同时,考虑OAM复用态之间的模式串扰以及每路携带信息的OAM态因大气信道引起的混合噪声而造成的码间干扰,对比研究了不同大气湍流强度下系统误码率随传输距离的变化,结果表明:系统误码率随传输距离的增长而增大,强湍流之下光束误码率会随着传输距离增长到一定程度后趋于平稳,弱湍流之下光束误码率会随着传输距离的增长而增大。
  • [1] Qiao Wen, Gao Shecheng, Lei Ting, et al. Transmission of orbital angular momentum modes in grape-type microstructure fiber[J]. Chinese J Lasers, 2017, 44(4):0406002. (in Chinese)
    [2] Torres J P. Optical communications:multiplexing twisted light[J]. Nature Photonics, 2012, 6(7):420-422.
    [3] Fang Y, Yu J J, Chi N. A novel PON architecture based on OAM multiplexing for efficient bandwidth utilization[J]. IEEE Photonics Journal, 2015, 7(1):7900506.
    [4] Amburini F, Mari E, Sponselli A, et al. Encoding many channels on the same frequency through radio vorticity:first experimental test[J]. New Journal of Physics, 2012, 14:033001.
    [5] Lou Yan, Chen Chunyi, Zhao Yiwu, et al. Istics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6):768-776. (in Chinese)
    [6] Anguita J A, Neifeld M A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link.[J]. Applied Optics, 2008, 47(13):2414-2429.
    [7] Cheng M, Guo L, Li J, et al. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence[J]. J Opt Soc Am A Opt Image Sci Vis, 2016, 33(8):1442-1450.
    [8] Rodenburg B, Lavery M P, Malik M, et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum[J]. Optics Letters, 2012, 37(17):3735-3737.
    [9] Ke Xizheng, Gou Xinlong. Orbital angular momentum research of high order Bessel Gaussian beam in a slant atmosphere turbulence.[J]. Infrared and Laser Engineering, 2015, 44(12):3744-3749. (in Chinese)
    [10] Zou Li, Zhao Shengmei, Wang Le. Effects of Atmospheric turbulence on communication performance of orbital angular momentum[J]. Acta Photonica Sinica, 2014, 43(9):52-57. (in Chinese)
    [11] Xu Guangyong. Numerical simulation of laser transmission in atmospheric turbulence and influence analysis[D]. Chengdu:Electronic Science and Technology University, 2008. (in Chinese)
    [12] Chen Mu, Ke Xizheng. Effect of atmospheric turbulence on the performance of laser communication system[J]. Infrared and Laser Engineering, 2016, 45(8):0822009. (in Chinese)
  • [1] 傅玉青, 段琦, 周林.  Gamma Gamma强海洋湍流和瞄准误差下水下无线光通信系统的性能研究 . 红外与激光工程, 2020, 49(2): 0203013-0203013. doi: 10.3788/IRLA202049.0203013
    [2] 李瑶, 苏桐, 石峰, 盛立志, 强鹏飞, 赵宝升.  空间X射线通信系统误码率分析 . 红外与激光工程, 2018, 47(6): 622001-0622001(7). doi: 10.3788/IRLA201847.0622001
    [3] 李盾, 宁禹, 吴武明, 孙全, 杜少军.  旋转相位屏的动态大气湍流数值模拟和验证方法 . 红外与激光工程, 2017, 46(12): 1211003-1211003(7). doi: 10.3788/IRLA201746.1211003
    [4] 王姣, 柯熙政.  部分相干光束在大气湍流中传输的散斑特性 . 红外与激光工程, 2017, 46(7): 722003-0722003(8). doi: 10.3788/IRLA201746.0722003
    [5] 丁西峰, 马赛, 赵尚弘, 王翔, 郑永兴, 温泉, 林涛.  HAP-GEO-HAP全光中继放大链路模型及其误码性能 . 红外与激光工程, 2017, 46(6): 622003-0622003(7). doi: 10.3788/IRLA201746.0622003
    [6] 吴君鹏, 刘泉, 于林韬.  Gamma-Gamma大气湍流中部分相干光通信系统性能研究 . 红外与激光工程, 2017, 46(3): 322004-0322004(7). doi: 10.3788/IRLA201746.0322004
    [7] 陈牧, 柯熙政.  QPSK调制光通信中混合噪声的功率谱性能与误码率 . 红外与激光工程, 2017, 46(10): 1022005-1022005(6). doi: 10.3788/IRLA201789.1022005
    [8] 周颖捷, 周安然, 孙东松, 强希文, 封双连.  差分像移大气湍流廓线激光雷达的研制 . 红外与激光工程, 2016, 45(11): 1130001-1130001(5). doi: 10.3788/IRLA201645.1130001
    [9] 李一芒, 高世杰, 盛磊.  近海激光通信分集技术对大气湍流扰动抑制的实验 . 红外与激光工程, 2016, 45(3): 322001-0322001(7). doi: 10.3788/IRLA201645.0322001
    [10] 李玉杰, 朱文越, 饶瑞中.  非Kolmogorov大气湍流随机相位屏模拟 . 红外与激光工程, 2016, 45(12): 1211001-1211001(8). doi: 10.3788/IRLA201645.1211001
    [11] 陈牧, 柯熙政.  大气湍流对激光通信系统性能的影响研究 . 红外与激光工程, 2016, 45(8): 822009-0822009(7). doi: 10.3788/IRLA201645.0822009
    [12] 李菲, 路后兵.  弱湍流条件下大气光通信的阈值优化方法 . 红外与激光工程, 2016, 45(12): 1211004-1211004(6). doi: 10.3788/IRLA201645.1211004
    [13] 卢芳, 韩香娥.  高斯-谢尔模型阵列光束在湍流大气中的空间相干性 . 红外与激光工程, 2015, 44(1): 305-309.
    [14] 王怡, 章奥, 马晶, 谭立英.  自由空间光通信系统中弱大气湍流引起的相位波动和强度闪烁对DPSK调制系统的影响 . 红外与激光工程, 2015, 44(2): 758-763.
    [15] 柯熙政, 郭新龙.  大气斜程传输中高阶贝塞尔高斯光束轨道角动量的研究 . 红外与激光工程, 2015, 44(12): 3744-3749.
    [16] 葛琪, 王可东, 张弘, 李桂斌, 邸超.  长曝光大气湍流退化图像点扩散函数估计 . 红外与激光工程, 2014, 43(4): 1327-1331.
    [17] 孙刚, 翁宁泉, 张彩云, 高慧, 吴毅.  基于NOAA模式的典型地区大气湍流高度分布 . 红外与激光工程, 2014, 43(2): 388-393.
    [18] 向宁静, 吴振森, 王明军.  部分相干高斯-谢尔光束在大气湍流中的展宽与漂移 . 红外与激光工程, 2013, 42(3): 658-662.
    [19] 李思雯, 徐超, 刘广荣, 金伟其.  大气湍流模糊图像的高分辨力复原算法 . 红外与激光工程, 2013, 42(12): 3486-3490.
    [20] 刘丹, 刘艳, 刘智, 王璞瑶, 周昕.  基于圆偏振移位键控的大气激光通信性能分析 . 红外与激光工程, 2013, 42(11): 3111-3115.
  • 加载中
计量
  • 文章访问数:  405
  • HTML全文浏览量:  71
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-10
  • 修回日期:  2018-07-20
  • 刊出日期:  2018-11-25

大气湍流下轨道角动量复用态串扰分析

doi: 10.3788/IRLA201847.1122002
    作者简介:

    柯熙政(1962-),男,教授,博士生导师,博士,主要从事自由空间光通信方面的研究。Email:xzke@263.net

基金项目:

国家自然科学基金(61377080,60977054);陕西省重点产业创新项目(2017ZDCXL-GY-06-01)

  • 中图分类号: TN929.12

摘要: 以加载QPSK调制信号的轨道角动量(OAM)光束为传输载波,以多个相位屏模拟大气湍流,研究不同大气湍流强度下OAM复用态的串扰情况。通过对复用光束光强和相位研究,得出在OAM复用态光强受到湍流影响时会发生明显的闪烁现象,光功率分散,相位发生旋转弯曲,且湍流强度越大,受到的影响越大。选用螺旋谱分析不同湍流强度下各OAM复用态之间的弥散程度,当大气湍流强度增加时,OAM态之间的弥散程度增加,且较强湍流会导致OAM复用态失真。同时,考虑OAM复用态之间的模式串扰以及每路携带信息的OAM态因大气信道引起的混合噪声而造成的码间干扰,对比研究了不同大气湍流强度下系统误码率随传输距离的变化,结果表明:系统误码率随传输距离的增长而增大,强湍流之下光束误码率会随着传输距离增长到一定程度后趋于平稳,弱湍流之下光束误码率会随着传输距离的增长而增大。

English Abstract

参考文献 (12)

目录

    /

    返回文章
    返回