留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偏振成像的水下图像复原技术研究最新进展

胡浩丰 李校博 刘铁根

胡浩丰, 李校博, 刘铁根. 基于偏振成像的水下图像复原技术研究最新进展[J]. 红外与激光工程, 2019, 48(6): 603006-0603006(13). doi: 10.3788/IRLA201948.0603006
引用本文: 胡浩丰, 李校博, 刘铁根. 基于偏振成像的水下图像复原技术研究最新进展[J]. 红外与激光工程, 2019, 48(6): 603006-0603006(13). doi: 10.3788/IRLA201948.0603006
Hu Haofeng, Li Xiaobo, Liu Tiegen. Recent advances in underwater image restoration technique based on polarimetric imaging[J]. Infrared and Laser Engineering, 2019, 48(6): 603006-0603006(13). doi: 10.3788/IRLA201948.0603006
Citation: Hu Haofeng, Li Xiaobo, Liu Tiegen. Recent advances in underwater image restoration technique based on polarimetric imaging[J]. Infrared and Laser Engineering, 2019, 48(6): 603006-0603006(13). doi: 10.3788/IRLA201948.0603006

基于偏振成像的水下图像复原技术研究最新进展

doi: 10.3788/IRLA201948.0603006
基金项目: 

国家自然科学基金(61775163);中国科协青年人才托举工程项目(2017QNRC001)

详细信息
    作者简介:

    胡浩丰(1985-),男,副教授,博士,主要从事偏振成像、偏振测量和光纤传感等方面的研究。Email:haofeng_hu@tju.edu.cn

    通讯作者: 刘铁根(1955-),男,教授,博士,主要光纤传感、偏振光学等方面的研究。Email:tgliu@tju.edu.cn
  • 中图分类号: O438

Recent advances in underwater image restoration technique based on polarimetric imaging

  • 摘要: 在水下环境中,悬浮的散射颗粒对光场的散射和吸收作用导致成像清晰度显著下降。基于偏振成像的水下图像复原技术是实现水下清晰成像的有效方法之一。该技术利用散射光的偏振特性,分离场景光和散射光,估计散射光强和透射系数,实现成像清晰化。近年来,偏振成像技术已广泛、高效地应用于水下图像复原和水下目标识别等诸多领域。水下偏振图像复原技术作为光学成像技术和图像处理技术的交叉领域,引起了广泛的关注并取得了大量优秀的研究成果。文中主要介绍了基于偏振成像的水下复原技术的基本原理、偏振信息处理方法和最新发展现状,综述了近年来偏振水下图像复原技术代表性的改进型方法。
  • [1] Ji T, Wang G. An approach to underwater image enhancement based on image structural decomposition[J]. Journal of Ocean University of China, 2015, 14(2):255-260.
    [2] Komatsu S, Markman A, Javidi B. Optical sensing and detection in turbid water using multidimensional integral imaging[J]. Optics Letters, 2018, 43(14):3261-3264.
    [3] Hua Dengxin, Wang Jun. Research progress of ocean laser remote sensing technology[J]. Infrared Laser Engineering, 2018, 47(9):0903003. (in Chinese) 华灯鑫, 王骏. 海洋激光遥感技术研究进展[J]. 红外与激光工程, 2018, 47(9):0903003.
    [4] Huang Youwei, Jin Weiqi, Ding Kun, et al. Underwater forward scattering imaging model based on beam broadening[J]. Infrared Laser Engineering, 2009, 38(4):669-701. (in Chinese) 黄有为, 金伟其, 丁琨, 等. 基于光束空间展宽的水下前向散射成像模型[J]. 红外与激光工程, 2009, 38(4):669-701.
    [5] Nie Ying, He Zhiyi. Underwater imaging and real-time optical image processing under illumination by light sources with different wavelengths[J]. Acta Optica Sinica, 2014, 34(7):0710002. (in Chinese) 聂瑛, 何志毅. 不同波长光源照明的水下成像及光学图像实时处理[J]. 光学学报, 2014, 34(7):0710002.
    [6] Jaffe J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2):101-111.
    [7] Jaffe J S, Moore K D, McLean J, et al. Underwater optical imaging:status and prospects[J]. Oceanography, 2001, 14(3):66-76.
    [8] Singh H, Adams J, Mindell D, et al. Imaging underwater for archaeology[J]. Journal of Field Archaeology, 2000, 27(3):319-328.
    [9] Xu Y, Wen J, Fei L, et al. Review of video and image defogging algorithms and related studies on image restoration and enhancement[J]. IEEE Access, 2016, 4:165-188.
    [10] Li X, Hu H, Zhao L, et al. Polarimetric image recovery method combining histogram stretching for underwater imaging[J]. Scientific reports, 2018, 8(1):12430.
    [11] Yang Fan, Wang Chunyan, Pang Guangning, et al. Optical system design for underwater polarization detector[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(1):56-59. (in Chinese) 杨帆, 王春艳, 庞广宁, 等. 基于偏振技术的水下探测器光学系统设计[J]. 长春理工大学学报, 2018, 41(1):56-59.
    [12] Emberton S, Chittka L, Cavallaro A. Underwater image and video dehazing with pure haze region segmentation[J]. Computer Vision and Image Understanding, 2018, 168:145-156.
    [13] Serikawa S, Lu H. Underwater image dehazing using joint trilateral filter[J]. Computers Electrical Engineering, 2014, 40(1):41-50.
    [14] Han Pingli, Liu Fei, Zhang Guang, et al. Multi-scale analysis method of underwater polarization imaging[J]. Acta Physica Sinica, 2018, 67(5):054202. (in Chinese) 韩平丽, 刘飞, 张广, 等. 多尺度水下偏振成像方法[J]. 物理学报, 2018, 67(5):054202.
    [15] Jayasree M S, Thavaseelan G, Scholar P G. Underwater color image enhancement using wavelength compensation and dehazing[J]. International Journal of Computer Science and Engineering Communications, 2014, 2(3):389-393.
    [16] He K, Sun J, Tang X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353.
    [17] Sathya R, Bharathi M, Dhivyasri G. Underwater image enhancement by dark channel prior[C]//IEEE International Conference on Electronics and Communication Systems (ICECS), 2015:1119-1123.
    [18] Lu H, Li Y, Nakashima S, et al. Underwater image super-resolution by descattering and fusion[J]. IEEE Access, 2017, 5:670-679.
    [19] Zhang W, Liang J, Ren L, et al. Real-time image haze removal using an aperture-division polarimetric camera[J]. Applied Optics, 2017, 56(4):942-947.
    [20] Liang J, Zhang W, Ren L, et al. Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion[J]. Applied Optics, 2016, 55(29):8221-8226.
    [21] Schechner Y Y, Karpel N. Recovery of underwater visibility and structure by polarization analysis[J]. Journal of Oceanic Engineering, 2005, 30(3):570-587.
    [22] Liang Jian, Ren Liyong, Ju Haijuan, et al. Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization[J]. Optics Express, 2015, 23(20):26146-26157.
    [23] Huang B J, Liu T G, Hu H F, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9):49826-9838.
    [24] Han Jiefei, Xiao Min, Sun Liying, et al. Influence of underwater targets with different polarization properities on the resolution of imaging system[J]. Acta Optica Sinica, 2016, 36(3):0311001. (in Chinese) 韩捷飞, 夏珉, 孙立颖, 等. 水下目标不同偏振特性对成像系统分辨率的影响[J]. 光学学报, 2016, 36(3):0311001.
    [25] Liang Jian, Ju Haijuan, Zhang Wenfei, et al. Review of optical polarimetric dehazing technique[J]. Acta Optica Sinica, 2017, 37(4):0400001. (in Chinese) 梁健, 巨海娟, 张文飞, 等. 偏振光学成像去雾技术综述[J]. 光学学报, 2017, 37(4):0400001.
    [26] Cariou J, Jeune B L, Lotrian J, et al. Polarization effects of seawater and underwater targets[J]. Applied Optics, 1990, 29(11):1689-1695.
    [27] Schechner Y Y, Karpel N. Clear underwater vision[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.
    [28] Mudge J, Virgen M. Real time polarimetric dehazing[J]. Applied Optics, 2013, 52(9):1932-1938.
    [29] Gao Jun, Bi Ran, Zhao Lujian, et al. Global optimized hazed image reconstruction based on polarization information[J]. Optics Precision Engineering, 2017, 25(8):2212-2220. (in Chinese) 高隽, 毕冉, 赵录建, 等. 利用偏振信息的雾天图像全局最优重构[J]. 光学精密工程, 2017, 25(8):2212-2220.
    [30] Zhang W, Liang J, Ju H, et al. A robust haze-removal scheme in polarimetric dehazing imaging based on automatic identification of sky region[J]. Optics Laser Technology, 2016, 86:145-151.
    [31] Qu Y, Zou Z. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature[J]. Optics Express, 2017, 25(21):25004-25022.
    [32] Guan Jinge, Zhu Jingping, Tian Heng, et al. Real-time polarization difference underwater imaging based on Stokes vector[J]. Acta Physica Sinica, 2015, 64(22):224203. (in Chinese) 管今哥, 朱京平, 田恒, 等. 基于Stokes矢量的实时偏振差分水下成像研究[J]. 物理学报, 2015, 64(22):224203.
    [33] Tian Heng, Zhu Jingping, Zhang Yunyao, et al. Image contrast for different imaging methods in turbid media[J]. Acta Physica Sinica, 2016, 65(8):084201. (in Chinese) 田恒, 朱京平, 张云尧, 等. 浑浊介质中图像对比度与成像方式的关系[J]. 物理学报, 2016, 65(8):084201.
    [34] Tyo J S, Rowe M P, Pugh Jr E N, et al. Target detection in optically scattering media by polarization-difference imaging[J]. Applied Optics, 1996, 35(11):1855-1870.
    [35] Zhang Jiamin, Shi Dongfeng, Huang Jian, et al. Full Strokes polarization correlated imaging[J]. Infrared Laser Engineering, 2018, 47(6):0624001. (in Chinese) 张家民, 时东锋, 黄见, 等. 全Stokes偏振关联成像技术研究[J]. 红外与激光工程, 2018, 47(6):0624001.
    [36] Wang Haifeng. Development and applications of small airborne polarization imaging system[J]. Opto-Electronic Engineering, 2017, 44(11):1075-1082. (in Chinese) 王海峰. 小型机载偏振成像系统研制及应用研究[J]. 光电工程, 2017, 44(11):1075-1082.
    [37] Hu H, Zhao L, Huang B, et al. Enhancing visibility of polarimetric underwater image by transmittance correction[J]. IEEE Photonics Journal, 2017, 9(3):1-10.
    [38] Laan J D V D, Scrymgeour D A, Kemme S A, et al. Increasing detection range and minimizing polarization mixing with circularly polarized light through scattering environments[C]//SPIE Sensing Technology Applications, 2014, 9099:909908.
    [39] Ni X H, Alfano R R. Time-resolved backscattering of circularly and linearly polarized light in a turbid medium[J]. Optics Letters, 2004, 29(23):2773-2775.
    [40] Van der Laan J D, Scrymgeour D A, Kemme S A, et al. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths[J]. Applied Optics, 2015, 54(9):2266-2274.
    [41] Hu H, Zhao L, Li X, et al. Polarimetric image recovery in turbid media employing circularly polarized light[J]. Optics Express, 2018, 26(19):25047-25059.
    [42] Li X, Hu H, Zhao L, et al. Polarimetric image recovery method combining histogram stretching for underwater imaging[J]. Scientific Reports, 2018, 8(1):12430.
    [43] Leonard I, Alfalou A, Brosseau C. Spectral optimized asymmetric segmented phase-only correlation filter[J]. Applied Optics, 2012, 10; 51(14):2638-2650.
    [44] Miller P C, Caprari R S. Demonstration of improved automatic target-recognition performance by moment analysis of correlation peaks[J]. Applied Optics, 1999, 38(8):1325-1331.
    [45] Dubreuil M, Delrot P, Leonard I, et al. Exploring underwater target detection by imaging polarimetry and correlation techniques[J]. Applied Optics, 2013, 52(5):997-1005.
    [46] Liu F, Han P, Wei Y, et al. Deeply seeing through highly turbid water by active polarization imaging[J]. Optics Letters, 2018, 43(20):4903-4906.
    [47] Garcia R, Nicosevici T, Cuf X. On the way to solve lighting problems in underwater imaging[C]//OCEANS'02 MTS/IEEE, 2002, 2:1018-1024.
    [48] Padmavathi G, Subashini P, Kumar M M, et al. Comparison of filters used for underwater image pre-processing[J]. International Journal of Computer Science and Network Security, 2010, 10(1):58-65.
    [49] Prabhakar C J, Kumar P U. An image-based technique for enhancement of underwater images[J]. arXiv, 2012, 1212:0291.
    [50] Hu H, Zhao L, Li X, et al. Underwater image recovery under the non-uniform optical field based on polarimetric imaging[J]. IEEE Photonics Journal, 2018, 10(1):1-9.
    [51] Kocak D M, Dalgleish F R, Caimi F M, et al. A focus on recent developments and trends in underwater imaging[J]. Marine Technology Society Journal, 2008, 42(1):52-67.
    [52] Bonin F, Burguera A, Oliver G. Imaging systems for advanced underwater vehicles[J]. Journal of Maritime Research, 2011, 8(1):65.
  • [1] 苏乐伟, 段存丽, 孙亮, 宋博, 雷平顺, 陈嘉男, 何军, 周燕, 王新伟.  不同水质下光学偏振对距离选通成像目标识别距离的影响分析 . 红外与激光工程, 2024, 53(1): 20230372-1-20230372-11. doi: 10.3788/IRLA20230372
    [2] 胡浩丰, 黄一钊, 朱震, 马千文, 翟京生, 李校博.  基于深度学习复杂环境的偏振成像技术研究进展(特邀) . 红外与激光工程, 2024, 53(3): 20240057-1-20240057-18. doi: 10.3788/IRLA20240057
    [3] 张驯, 赵金雄, 白万荣, 赵红.  基于边界约束图像融合的光学字符识别算法研究 . 红外与激光工程, 2022, 51(12): 20220102-1-20220102-6. doi: 10.3788/IRLA20220102
    [4] 胡玮娜, 吕勇, 耿蕊, 李宇海, 牛春晖.  光电探测器表面损伤状态偏振成像式探测系统 . 红外与激光工程, 2022, 51(6): 20210629-1-20210629-9. doi: 10.3788/IRLA20210629
    [5] 罗海波, 张俊超, 盖兴琴, 刘燕.  偏振成像技术的发展现状与展望(特邀) . 红外与激光工程, 2022, 51(1): 20210987-1-20210987-10. doi: 10.3788/IRLA20210987
    [6] 陆秋萍, 石岩, 戴晟昕, 陈义, 赵春柳, 赵天琦, 金尚忠, 牛海彬.  生物组织单像素成像重构的散射干扰抑制 . 红外与激光工程, 2022, 51(3): 20210722-1-20210722-7. doi: 10.3788/IRLA20210722
    [7] 李荣华, 唐智超, 朴俊峰, 李宏亮.  偏振参数最优重构的水下降质图像清晰化方法 . 红外与激光工程, 2021, 50(6): 20200426-1-20200426-9. doi: 10.3788/IRLA20200426
    [8] 刘星洋, 翟尚礼, 李靖, 汪洋, 苗锋, 杜瀚宇, 邹超凡.  制冷型中波红外偏振成像光学系统设计 . 红外与激光工程, 2021, 50(2): 20200208-1-20200208-9. doi: 10.3788/IRLA20200208
    [9] 熊志航, 廖然, 曾亚光, 刘晋, 马辉.  利用偏振成像在复杂现场快速识别金属碎屑(特约) . 红外与激光工程, 2020, 49(6): 20201012-1-20201012-6. doi: 10.3788/IRLA20201012
    [10] 赵永强, 戴慧敏, 申凌皓, 张景程.  水下偏振清晰成像方法综述 . 红外与激光工程, 2020, 49(6): 20190574-1-20190574-11. doi: 10.3788/IRLA20190574
    [11] 王辉, 王进, 李校博, 胡浩丰, 刘铁根.  一种基于圆偏光的偏振去雾成像优化方法 . 红外与激光工程, 2019, 48(11): 1126001-1126001(5). doi: 10.3788/IRLA201948.1126001
    [12] 时东锋, 黄见, 苑克娥, 王英俭, 谢晨波, 刘东, 朱文越.  空间编码复用散斑多信息融合关联成像(特邀) . 红外与激光工程, 2018, 47(5): 502001-0502001(8). doi: 10.3788/IRLA201847.0502001
    [13] 彭勇, 冯斌, 史泽林, 徐保树, 惠斌.  微偏振片阵列成像的非均匀校正研究 . 红外与激光工程, 2017, 46(4): 404004-0404004(8). doi: 10.3788/IRLA201746.0404004
    [14] 刘震, 洪津, 龚冠源, 郑小兵, 杨伟锋, 袁银麟.  空间调制型全偏振成像系统的角度误差优化 . 红外与激光工程, 2017, 46(1): 117003-0117003(7). doi: 10.3788/IRLA201746.0117003
    [15] 徐超, 何利民, 王霞, 金伟其.  红外偏振成像系统高速处理模块设计 . 红外与激光工程, 2017, 46(2): 204002-0204002(8). doi: 10.3788/IRLA201746.0204002
    [16] 柏财勋, 李建欣, 周建强, 刘勤, 徐文辉.  基于微偏振阵列的干涉型高光谱偏振成像方法 . 红外与激光工程, 2017, 46(1): 136003-0136003(6). doi: 10.3788/IRLA201746.0138003
    [17] 杨蔚, 顾国华, 陈钱, 周骁俊, 徐富元.  穆勒矩阵图像的获取及处理 . 红外与激光工程, 2015, 44(12): 3831-3836.
    [18] 赵永强, 张宇辰, 刘吾腾, 张艳, 李琳, 潘泉.  基于微偏振片阵列的偏振成像技术研究 . 红外与激光工程, 2015, 44(10): 3117-3123.
    [19] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵.  大孔径静态超光谱全偏振成像技术 . 红外与激光工程, 2014, 43(2): 574-578.
    [20] 王霞, 张明阳, 陈振跃, 拜晓锋, 金伟其.  主动偏振成像的系统结构概述 . 红外与激光工程, 2013, 42(8): 2244-2251.
  • 加载中
计量
  • 文章访问数:  1190
  • HTML全文浏览量:  242
  • PDF下载量:  381
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-10
  • 修回日期:  2019-03-20
  • 刊出日期:  2019-06-25

基于偏振成像的水下图像复原技术研究最新进展

doi: 10.3788/IRLA201948.0603006
    作者简介:

    胡浩丰(1985-),男,副教授,博士,主要从事偏振成像、偏振测量和光纤传感等方面的研究。Email:haofeng_hu@tju.edu.cn

    通讯作者: 刘铁根(1955-),男,教授,博士,主要光纤传感、偏振光学等方面的研究。Email:tgliu@tju.edu.cn
基金项目:

国家自然科学基金(61775163);中国科协青年人才托举工程项目(2017QNRC001)

  • 中图分类号: O438

摘要: 在水下环境中,悬浮的散射颗粒对光场的散射和吸收作用导致成像清晰度显著下降。基于偏振成像的水下图像复原技术是实现水下清晰成像的有效方法之一。该技术利用散射光的偏振特性,分离场景光和散射光,估计散射光强和透射系数,实现成像清晰化。近年来,偏振成像技术已广泛、高效地应用于水下图像复原和水下目标识别等诸多领域。水下偏振图像复原技术作为光学成像技术和图像处理技术的交叉领域,引起了广泛的关注并取得了大量优秀的研究成果。文中主要介绍了基于偏振成像的水下复原技术的基本原理、偏振信息处理方法和最新发展现状,综述了近年来偏振水下图像复原技术代表性的改进型方法。

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回