留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星上红外遥感相机的辐射定标技术发展综述

盛一成 顿雄 金伟其 郭一新 周峰 肖思

盛一成, 顿雄, 金伟其, 郭一新, 周峰, 肖思. 星上红外遥感相机的辐射定标技术发展综述[J]. 红外与激光工程, 2019, 48(9): 904001-0904001(13). doi: 10.3788/IRLA201948.0904001
引用本文: 盛一成, 顿雄, 金伟其, 郭一新, 周峰, 肖思. 星上红外遥感相机的辐射定标技术发展综述[J]. 红外与激光工程, 2019, 48(9): 904001-0904001(13). doi: 10.3788/IRLA201948.0904001
Sheng Yicheng, Dun Xiong, Jin Weiqi, Guo Yixin, Zhou Feng, Xiao Si. Review of on-orbit radiometric calibration technology used in infrared remote sensors[J]. Infrared and Laser Engineering, 2019, 48(9): 904001-0904001(13). doi: 10.3788/IRLA201948.0904001
Citation: Sheng Yicheng, Dun Xiong, Jin Weiqi, Guo Yixin, Zhou Feng, Xiao Si. Review of on-orbit radiometric calibration technology used in infrared remote sensors[J]. Infrared and Laser Engineering, 2019, 48(9): 904001-0904001(13). doi: 10.3788/IRLA201948.0904001

星上红外遥感相机的辐射定标技术发展综述

doi: 10.3788/IRLA201948.0904001
基金项目: 

国家重点研发计划(2018YFB0504900);国家自然科学基金(61871034)

详细信息
    作者简介:

    盛一成(1987-),男,博士生,主要从事红外成像技术及星上辐射定标技术方面的研究。Email:shengyicheng87@gmail.com

  • 中图分类号: TP7

Review of on-orbit radiometric calibration technology used in infrared remote sensors

  • 摘要: 随着对天基对地以及临近空间目标探测的需求增大,高性能红外相机探测及海量数据定量化迫切需要高可靠性、高精度的辐射定标技术,因此,星上辐射定标装置已成为当前空间定量遥感技术发展的重要方向。在轨红外遥感相机的辐射定标主要校正探测器响应的不均匀性(相对辐射定标)和建立遥感相机输出信号与输入辐射量的函数关系(绝对辐射定标)。在介绍红外相机星上辐射定标基本原理的基础上,综述近年来几个国内外典型星上辐射定标装置及其特点,并介绍笔者所在课题组近年来基于内部定标源+天空星图的红外相机高动态范围(HDR)相对辐射定标方法的研究进展。论文对于红外辐射定标技术及星上辐射定标装置的发展具有参考意义。
  • [1] Liu Li, Gu Xingfa, Yu Tao, et al. HJ-1B thermal infrared band in-flight radiometric calibration and validation[J]. Infrared and Laser Engineering, 2012, 41(5):1119-1125. (in Chinese)刘李, 顾行发, 余涛, 等. HJ-1B卫星热红外通道在轨场地定标与验证[J]. 红外与激光工程, 2012, 41(5):1119-1125.
    [2] Sun Ke, Fu Qiaoyan, Qi Xueyong. Radiometric cross-calibration of thermal infrared channel of IRS sensor on HJ-1B satellite[J]. Infrared and Laser Engineering, 2010, 39(5):785-790. (in Chinese)孙珂, 傅俏燕, 亓学勇. HJ-1B卫星IRS传感器热红外通道交叉定标[J]. 红外与激光工程, 2010, 39(5):785-790.
    [3] Long Liang, Wang Shitao, Zhou Feng, et al. In-orbit radiometric calibration methods for remote sensing system to detect space infrared point target[J]. Spacecraft Recovery Remote Sensing, 2012, 33(2):73-80. (in Chinese)龙亮, 王世涛, 周峰, 等. 空间红外点目标遥感探测系统在轨辐射定标[J]. 航天返回与遥感, 2012, 33(2):73-80.
    [4] Zhang Wei, Xie Xufen, Wang Fugang, et al. Single-point absolute radiometric calibration for space infrared camera by changing integration time[J]. Infrared and Laser Engineering, 2012, 41(8):2090-2095. (in Chinese)张伟, 谢蓄芬, 王付刚, 等. 变积分时间的空间红外相机单点绝对辐射定标法[J]. 红外与激光工程, 2012, 41(8):2090-2095.
    [5] Tansock J, Bancroft D, Butler J, et al. Guidelines for radiometric calibration of electro-optical instruments for remote sensing[R]. NIST.HB.157, USA, 2015.
    [6] Xiong X, Chiang K, Esposito J, et al. MODIS on-orbit calibration and characterization[J]. Metrologia, 2003, 40(1):S89.
    [7] Xiong X, Angal A, Barnes W L, et al. Updates of Moderate Resolution Imaging Spectroradiometer on-orbit calibration uncertainty assessments[J]. Journal of Applied Remote Sensing, 2018, 12(3):18.
    [8] Xiong X, Barnes W. An overview of MODIS radiometric calibration and characterization[J]. Advances in Atmospheric Sciences, 2006, 23(1):69-79.
    [9] Xiong X, Sun J, Barnes W, et al. Multiyear on-orbit calibration and performance of Terra MODIS reflective solar bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4):879-889.
    [10] Xiong X, Chiang K, Sun J, et al. NASA EOS Terra and Aqua MODIS on-orbit performance[J]. Advances in Space Research, 2009, 43(3):413-422.
    [11] Schott J R, Hook S J, Barsi J A, et al. Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982-2010)[J]. Remote Sensing of Environment, 2012, 122:41-49.
    [12] Jhabvala M, Reuter D, Choi K, et al. QWIP-based thermal infrared sensor for the landsat data continuity mission[J]. Infrared Physics Technology, 2009, 52(6):424-429.
    [13] Thome K, Lunsford A, Montanaro M, et al. Calibration plan for the Thermal Infrared Sensor on the Landsat Data Continuity Mission[C]//SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, 2011:804813-804819.
    [14] Montanaro M, Lunsford A, Tesfaye Z, et al. Radiometric calibration methodology of the landsat 8 thermal infrared sensor[J]. Remote Sensing, 2014, 6(9):8803-8821.
    [15] Barsi J, Schott J, Hook S, et al. Landsat-8 Thermal infrared sensor (TIRS) vicarious radiometric calibration[J]. Remote Sensing, 2014, 6(11):11607-11626.
    [16] Knight E, Kvaran G. Landsat-8 operational land imager design, characterization and performance[J]. Remote Sensing, 2014, 6(11):10286-10305.
    [17] Montanaro M, Levy R, Markham B. On-orbit radiometric performance of the landsat 8 thermalInfrared sensor[J]. Remote Sensing, 2014, 6(12):11753-11769.
    [18] Barsi J, Lee K, Kvaran G, et al. The spectral response of the landsat-8 operational land imager[J]. Remote Sensing, 2014, 6(10):10232-10251.
    [19] Montanaro M, Gerace A, Lunsford A, et al. Stray light artifacts in imagery from the landsat 8 thermal infrared sensor[J]. Remote Sensing, 2014, 6(11):10435-10456.
    [20] Gerace A, Montanaro M, Connal R. Leveraging intercalibration techniques to support stray-light removal from Landsat 8 thermal infrared sensor data[J]. Journal of Applied Remote Sensing, 2017, 12(1):13.
    [21] Reuter D, Irons J, Lunsford A, et al. The operational land imager (OLI) and the thermal infrared sensor (TIRS) on the Landsat data continuity mission (LDCM)[C]//SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, 2011:804812-804817.
    [22] Irons J R, Dwyer J L, Barsi J A. The next Landsat satellite:The Landsat data continuity mission[J]. Remote Sensing of Environment, 2012, 122:11-21.
    [23] Kintner E C, Jacobs E S, Hartley J M, et al. Infrared internal calibration sources developed at SSGPO, Inc[C]//Optical Science and Technology, SPIE's 48th Annual Meeting, 2003:International Society for Optics and Photonics, 2003, 5152:42-50.
    [24] Kintner E C, Hartley J M, Jacobs E S, et al. Advanced development of internal calibration sources for remote sensing telescopes[C]//Optical Science and Technology, the SPIE 49th Annual Meeting, 2004:International Society for Optics and Photonics, 2004, 5543:313-319.
    [25] Smith W, Harrison F, Hinton D, et al. The geosynchronous imaging Fourier transform spectrometer (GIFTS)[C]//Conference on Satellite Meteorology and Oceanography, 2001:391-398.
    [26] Zhou D K, Smith W L, Bingham G E, et al. Ground-based measurements with the Geosynchronous Imaging Fourier Transform Spectrometer(GIFTS) engineering demonstration unit-experiment description and first results[J]. Journal of Applied Remote Sensing, 2007, 1(1):13528-13514.
    [27] Kintner E C, Wong W K, Jacobs E S, et al. Efficient and versatile internal reference sources for remote sensing space telescopes[C]//Proceedings-SPIE the International Society for Optical Engineering, 2006:International Society for Optical Engineering, 2006, 6297:62970F.
    [28] Paxton L J, Meng C-I, Anderson D E, et al. MSX-A multiuse space experiment[J]. Johns Hopkins APL Technical Digest, 1996, 17(1):19-34.
    [29] Mill J D, O'Neil R R, Price S, et al. Midcourse space experiment:introduction to the spacecraft, instruments, and scientific objectives[J]. Journal of Spacecraft and Rockets, 1994, 31(5):900-907.
    [30] Bartschi B Y, Morse D E, Woolston T L. The spatial infrared imaging telescope Ⅲ[J]. Johns Hopkins APL Technical Digest, 1996, 17(2):215-225.
    [31] Huebschman R K. The MSX spacecraft system design[J]. Johns Hopkins APL Technical Digest, 1996, 17(1):41-48.
    [32] Egan M, Price S, Moshir M, et al. The midcourse space experiment point source catalog version 1.2 explanatory guide[R]. DTIC Document, USA, 1999.
    [33] Burdick S V, Morris D C. SPIRIT Ⅲ calibration stars:inband irradiance and uncertainty[J]. Optical Engineering, 1997, 36(11):2971-2976.
    [34] Price S D, Egan M P, Carey S J, et al. Midcourse space experiment survey of the Galactic Plane[J]. The Astronomical Journal, 2001, 121(5):2819.
    [35] Burdick S V, Chalupa J, Hamilton C L, et al. MSX reference objects[J]. Johns Hopkins APL Technical Digest, 1996, 17(2):247.
    [36] Mill J D, Guilmain B D. The MSX mission objectives[J]. Johns Hopkins APL Technical Digest, 1996, 17(1):5.
    [37] Zhang Yong. Study on thermal infrared remote sensors' absolutely radiometric calibrations[D]. Beijing:Institute of Remote Sensing Applications Chinese Academy of Sciences, 2006:60-64. (in Chinese)张勇. 遥感传感器热红外数据辐射定标研究[D]. 北京:中国科学院遥感应用研究所, 2006:60-64.
    [38] Sheng Y, Jin W, Dun X, et al. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors[C]//Applied Optics and Photonics China (AOPC2017), 2017.
    [39] Sheng Y, Dun X, Jin W, et al. The on-orbit non-uniformity correction method with modulated internal calibration sources for infrared remote sensing systems[J]. Remote Sensing, 2018, 10(6):830.
    [40] Wielicki B A, Young D, Mlynczak M, et al. Achieving climate change absolute accuracy in orbit[J]. Bulletin of the American Meteorological Society, 2013, 94(10):1519-1539.
  • [1] 马秀秀, 王海燕, 韩启金, 张学文, 赵航, 徐兆鹏, 曾健, 马灵玲, 王宁.  GF5B热红外通道星上定标与验证 . 红外与激光工程, 2023, 52(4): 20220644-1-20220644-11. doi: 10.3788/IRLA20220644
    [2] 王腾飞, 傅雨田.  红外光场成像中的辐射定标与校正 . 红外与激光工程, 2022, 51(7): 20210646-1-20210646-7. doi: 10.3788/IRLA20210646
    [3] 吕原, 丛明煜, 赵旖旎, 牛凯庆, 路子威.  红外相机实时绝对辐射定标技术研究 . 红外与激光工程, 2022, 51(7): 20220395-1-20220395-14. doi: 10.3788/IRLA20220395
    [4] 谢臣瑜, 翟文超, 郝小鹏, 谢琳琳, 刘延, 李健军, 郑小兵.  超连续谱激光-单色仪在偏振遥感器定标中的影响因素分析 . 红外与激光工程, 2021, 50(5): 20200313-1-20200313-10. doi: 10.3788/IRLA20200313
    [5] 岳春宇, 郑永超, 邢艳秋, 庞勇, 李世明, 蔡龙涛, 何红艳.  星载激光遥感林业应用发展研究 . 红外与激光工程, 2020, 49(11): 20200235-1-20200235-10. doi: 10.3788/IRLA20200235
    [6] &陈双远, &张芳, 齐琳琳, 韩成鸣, 曾丽, 许方宇.  国内典型天文台站大气红外背景辐射实测分析 . 红外与激光工程, 2019, 48(12): 1203010-1203010(9). doi: 10.3788/IRLA201948.1203010
    [7] 盛文阳, 夏茂鹏, 李健军, 翟文超, 郑小兵.  基于受激参量下转换的红外标准传递辐射计定标技术 . 红外与激光工程, 2019, 48(12): 1204001-1204001(7). doi: 10.3788/IRLA201948.1204001
    [8] 李永强, 赵占平, 徐彭梅, 王静怡, 郭永祥.  大动态范围微光相机的辐射定标 . 红外与激光工程, 2019, 48(S1): 78-82. doi: 10.3788/IRLA201948.S117002
    [9] 宋健, 郝小鹏, 丁雷, 李凯, 孙建平.  真空低背景红外高光谱亮温计量标准装置研制 . 红外与激光工程, 2019, 48(10): 1004001-1004001(7). doi: 10.3788/IRLA201948.1004001
    [10] 徐伟伟, 张黎明, 李鑫, 杨宝云, 王戟翔.  基于灰阶靶标的高分辨光学卫星传感器在轨绝对辐射定标 . 红外与激光工程, 2018, 47(4): 417005-0417005(6). doi: 10.3788/IRLA201847.0417005
    [11] 韩启金, 张学文, 乔志远, 杨磊, 潘志强, 刘李.  高分一号卫星PMS 相机多场地宽动态辐射定标 . 红外与激光工程, 2015, 44(1): 127-133.
    [12] 王建军, 黄晨, 高昕, 李舰艇.  红外辐射测量系统内外标定技术 . 红外与激光工程, 2014, 43(6): 1767-1771.
    [13] 孙志远, 常松涛, 朱玮.  中波红外探测器辐射定标的简化方法 . 红外与激光工程, 2014, 43(7): 2132-2137.
    [14] 韩光宇, 曹立华, 张文豹.  地基目标光学辐射特性测量系统设计 . 红外与激光工程, 2014, 43(2): 551-556.
    [15] 徐骏, 孟炳寰, 翟文超, 丁蕾, 郑小兵.  基于热红外标准辐亮度计的常温黑体定标技术 . 红外与激光工程, 2014, 43(3): 716-721.
    [16] 钱婧, 孙胜利, 于胜云, 沙晟春, 盛敏健, 雍朝良.  大型红外辐射面源的设计 . 红外与激光工程, 2013, 42(1): 31-35.
    [17] 罗茂捷, 周金梅, 傅景能, 廖胜.  考虑积分时间变量的红外系统辐射响应定标 . 红外与激光工程, 2013, 42(1): 36-40.
    [18] 闵敏, 张勇, 胡秀清, 董立新, 戎志国.  FY-3A中分辨率光谱成像仪红外通道辐射定标的场地评估 . 红外与激光工程, 2012, 41(8): 1995-2001.
    [19] 张伟, 谢蓄芬, 王付刚, 智喜洋.  变积分时间的空间红外相机单点绝对辐射定标法 . 红外与激光工程, 2012, 41(8): 2090-2095.
    [20] 金伟其, 刘崇亮, 修金利.  基于U形边框黑体光阑的红外成像动态辐射定标与校正技术 . 红外与激光工程, 2012, 41(2): 273-278.
  • 加载中
计量
  • 文章访问数:  1141
  • HTML全文浏览量:  179
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-05
  • 修回日期:  2019-05-03
  • 刊出日期:  2019-09-25

星上红外遥感相机的辐射定标技术发展综述

doi: 10.3788/IRLA201948.0904001
    作者简介:

    盛一成(1987-),男,博士生,主要从事红外成像技术及星上辐射定标技术方面的研究。Email:shengyicheng87@gmail.com

基金项目:

国家重点研发计划(2018YFB0504900);国家自然科学基金(61871034)

  • 中图分类号: TP7

摘要: 随着对天基对地以及临近空间目标探测的需求增大,高性能红外相机探测及海量数据定量化迫切需要高可靠性、高精度的辐射定标技术,因此,星上辐射定标装置已成为当前空间定量遥感技术发展的重要方向。在轨红外遥感相机的辐射定标主要校正探测器响应的不均匀性(相对辐射定标)和建立遥感相机输出信号与输入辐射量的函数关系(绝对辐射定标)。在介绍红外相机星上辐射定标基本原理的基础上,综述近年来几个国内外典型星上辐射定标装置及其特点,并介绍笔者所在课题组近年来基于内部定标源+天空星图的红外相机高动态范围(HDR)相对辐射定标方法的研究进展。论文对于红外辐射定标技术及星上辐射定标装置的发展具有参考意义。

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回