留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

整层大气透过率获取方法研究进展及相关问题探讨

曹振松 黄印博 魏合理 朱文越 饶瑞中 王英俭

曹振松, 黄印博, 魏合理, 朱文越, 饶瑞中, 王英俭. 整层大气透过率获取方法研究进展及相关问题探讨[J]. 红外与激光工程, 2019, 48(12): 1203004-1203004(13). doi: 10.3788/IRLA201948.1203004
引用本文: 曹振松, 黄印博, 魏合理, 朱文越, 饶瑞中, 王英俭. 整层大气透过率获取方法研究进展及相关问题探讨[J]. 红外与激光工程, 2019, 48(12): 1203004-1203004(13). doi: 10.3788/IRLA201948.1203004
Cao Zhensong, Huang Yinbo, Wei Heli, Zhu Wenyue, Rao Ruizhong, Wang Yingjian. Research progress and related problems on the acquisition method of total atmospheric transmittance[J]. Infrared and Laser Engineering, 2019, 48(12): 1203004-1203004(13). doi: 10.3788/IRLA201948.1203004
Citation: Cao Zhensong, Huang Yinbo, Wei Heli, Zhu Wenyue, Rao Ruizhong, Wang Yingjian. Research progress and related problems on the acquisition method of total atmospheric transmittance[J]. Infrared and Laser Engineering, 2019, 48(12): 1203004-1203004(13). doi: 10.3788/IRLA201948.1203004

整层大气透过率获取方法研究进展及相关问题探讨

doi: 10.3788/IRLA201948.1203004
详细信息
    作者简介:

    曹振松(1979-),男,副研究员,博士,主要从事红外高分辨率高灵敏度激光吸收光谱及其应用方面的研究。Email:zscao@aiofm.ac.cn

  • 中图分类号: P421.1

Research progress and related problems on the acquisition method of total atmospheric transmittance

  • 摘要: 整层大气透过率是反映大气光学特性的一个重要参量,在大气辐射、地球资源遥感、空气质量监测、特别是光电工程等领域,都需要对大气透过率进行深入的研究。文中详细讨论了整层大气透过率的获取原理和方法,分析了不同获取方法的最新进展和存在的相关问题,对比分析了软件仿真计算和直接测量的优缺点,并对后续的研究工作进行了展望。
  • [1] Gong Shaoqi, Sun Haibo, Wang Shaofeng, et al. Study on atmospheric transmittance of thermal infrared remote sensing(I):derivation of atmospheric transmittance model[J]. Infrared and Laser Engineering, 2015, 44(6):1692-1698. (in Chinese)龚绍琦, 孙海波, 王少峰, 等. 热红外遥感中大气透过率的研究(一):大气透过率模式的构建[J]. 红外与激光工程, 2015, 44(6):1692-1698.
    [2] Tai Hongda, Zhuang Zibo, Jiang Lihui, et al. Multi-point mobile measurement of atmospheric transmittance[J]. Optics and Precision Engineering, 2016, 24(8):1894-1901. (in Chinese)台宏达, 庄子波, 蒋立辉, 等. 大气透过率的多点移动测量[J]. 光学精密工程, 2016, 24(8):1894-1901.
    [3] Zang Shouhong, Bai Yunta, Ouyang Yi. Research on atmospheric transmittance measuring method[J]. Infrared, 2009, 30(3):26-29. (in Chinese)臧寿洪, 白云塔, 欧阳艺. 大气透过率测量方法的研究[J]. 红外, 2009, 30(3):26-29.
    [4] Goody R M, Yung Y L. Atmospheric Radiation:Theoretical Basis[M]. Oxford:Oxford University Press, 1989:125-181.
    [5] Clough S A, Iacono M J. Line-by-line calculations of atmospheric fluxes and cooling rates:Part II:Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons[J]. Journal of Geophysics Research, 1995, 100(8):16519-16535.
    [6] Witschas B. Light Scattering on Molecules in the Atmosphere[M]//Schumann U. Atmospheric Physics. Research Topics in Aerospace, Berlin:Springer, 2012.
    [7] Kokhanovsky A. Aerosol Optics:Light Absorption and Scattering by Particles in the Atmosphere[M]. Berlin:Springer, 2008.
    [8] Zhan Jie, Guo Ruipeng, Huang Honghua, et al. Measurement of total atmospheric transmittance with stellar irradiance[J]. High Power Laser and Particle Beams, 2007, 19(11):1761-1765. (in Chinese)詹杰, 郭瑞鹏, 黄宏华, 等. 利用恒星测量整层大气透过率[J]. 强激光与粒子束, 2007, 19(11):1761-1765.
    [9] Adler-Golden S M, Slusser J R. Comparison of plotting methods for solar radiometer calibration[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(5):935-938.
    [10] Selby J E A, McClatchey R A. Atmospheric transmittance from 0.25 to 28.5m:Computer Code LOWTRAN 3[S]. 1975.
    [11] Haught K M, Cordray D M. Long-path high-resolution atmospheric transmission measurements:comparison with LOWTRAN 3B predictions[J]. Applied Optics, 1978, 17(17):2668-2670.
    [12] Kneizys, F X, Shettle E, Abreu L W, et al. User guide to LOWTRAN 7[Z]. 1988.
    [13] Meng Fanbin, Zheng Li. LOWTRAN 7-based calculation method of IR transmittance in the atmosphere[J]. Electro-Optic Technology Application, 2009, 24(3):29-32.(in Chinese)孟凡斌, 郑丽. 基于LOWTRAN 7的红外大气透过率计算方法[J]. 光电技术应用, 2009, 24(3):29-32.
    [14] Berk A, Conforti P, Kennett R. MODTRAN6:a major upgrade of the MODTRAN radiative transfer code[C]//SPIE, 2014, 9088:10.1117/12.2050433.
    [15] Berk A, Conforti P, Hawes F. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption with 0.1 cm-1 bins and pre-computed line tails[C]//SPIE, 2015, 9471:10.1117/12.2177444.
    [16] Clough S A, Kneizys F X, Shettle E P, et al. Atmospheric radiance and transmittance:FASCOD2[C]//Proceedings of the Sixth Conference on Atmospheric Radiation, American Meteorological Society, 1986:141-144.
    [17] Zhou Fengxian, Wang Luyi. Fast and accurate software for atmospheric tranmittance calculation-FASCODE[J]. Journal of Infrared Millimeter Waves, 1991, 10(5):398-400. (in Chinese)周凤仙, 王路易. 快速精确计算大气透过率的微机软件包-FASCODE[J]. 红外与毫米波学报, 1991, 10(5):398-400.
    [18] Isaacs R G, Wang W C, Worsham R D, et al. Multiple scattering LOWTRAN and FASCODE models[J]. Applied Optics, 1987, 26(7):1272-1281.
    [19] Clough S A, Shephard M W, Mlawer E J, et al. Atmospheric radiative transfer modeling:a summary of the AER codes[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91(2):233-244.
    [20] Alvarado M J, Payne V, Mlawer E J, et al. Performance of the line-by-line radiative transfer model (LBLRTM) for temperature, water vapor, and trace gas retrievals:recent updates evaluated with IASI case studies[J]. Atmospheric Chemistry and Physics, 2013, 13(14):6687-6711.
    [21] Chen Xiuhong, Wei Heli. Transplantation of LBLRTM from Workstation to PC[J]. Journal of atmospheric and Environmental Optics, 2007, 2(2):99-103. (in Chinese)陈秀红, 魏合理. LBLRTM从工作站到PC机的移植[J]. 大气与环境光学学报, 2007, 2(2):99-103.
    [22] Chen Xiuhong, Wei Heli, Xu Qingshan. Infrared atmospheric transmittance calculation model[J]. Infrared and Laser Engineering, 2011, 40(5):811-816. (in Chinese)陈秀红, 魏合理, 徐青山. 红外大气透过率的计算模式[J]. 红外与激光工程, 2011, 40(5):811-816.
    [23] Lamouroux J, Gamache R R, Laraia A L, et al. Semiclassical calculations of half-widths and line shifts for transitions in the 3001200001 and 3001300001 bands of CO2. III:Self collisions[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(12):1536-1546.
    [24] Wei H, Chen X, Rao R, et al. A Moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation[J]. Optics Express, 2007, 15(13):8360-8370.
    [25] Chen X H, Wei H L, Wei Y L, et al. Comparison of infrared atmospheric transmittance calculated by CART software with measured values[J]. Laser Infrared, 2009, 39(4):403-406.
    [26] Wei Heli, Chen Xiuhong, Dai Congming. Combined atmospheric radiative transfer (CART) model and its applications[J]. Infrared and Laser Engineering, 2012, 41(12):3360-3366. (in Chinese)魏合理, 陈秀红, 戴聪明. 通用大气辐射传输软件(CART)及其应用[J]. 红外与激光工程, 2012, 41(12):3360-3366.
    [27] Dai Congming, Wei Heli, Chen Xiuhong. Validation of the precision of atmospheric molecular absorption and thermal radiance calculated by combined atmospheric radiative transfer(CART) code[J]. Infrared and Laser Engineering, 2013, 42(6):1575-1581. (in Chinese)戴聪明, 魏合理, 陈秀红. 通用大气辐射传输软件(CART)大气散射辐射计算精度验证[J]. 红外与激光工程, 2013, 42(6):1575-1581.
    [28] Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds:The software package OPAC[J]. Bulletin of the American Meteorological Society, 1998, 79(5):831-844.
    [29] Kotchenova S Y, Vermote E F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II:homogeneous lambertian and anisotropic surfaces[J]. Applied Optics, 2007, 46(20):4455-4464.
    [30] Iacono M J, Delamere J S, Mlawer E J, et al. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models[J]. Journal of Geophysical Research, 2008, 113, D13103:10.1029/2008JD009944.
    [31] Emde C, Buras-Schnell R, Kylling A, et al. The libradtran software package for radiative transfer calculations (version 2.0.1)[J]. Geoscientific Model Development, 2016, 9(5):1647-1672.
    [32] Li Shulei, Liu Lei, Gao Taichang. Introduction of atmospheric radiative transfer simulator software[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(4):241-248. (in Chinese)李书磊, 刘磊, 高太长. 大气辐射传输模拟器(ARTS)软件的介绍[J]. 大气与环境光学学报, 2016, 11(4):241-248.
    [33] Volz F E. Photometer mit Selen-photoelement zur spektralen Messung de Sonnenstrahlung und zer Bestimmung der Wallenlangenabhangigkeit der Dunsttrubun[J]. Arch Meteor Geophys Bioklim, 1959, B10:100-131.
    [34] Mao Jietai, Li Jianguo. Visibility and telephotometer[J]. Scientia Atmospherica Sinica, 1984, 8(2):170-177. (in Chinese)毛节泰, 李建国. 气象能见度与望远光度计[J]. 大气科学, 1984, 8(2):170-177.
    [35] Tan Kun, Wang Jie, Tu Chuanfang, et al. Multi-purpose solar photometer[J]. Acta Optica Sinica, 1991, 11(5):448-452. (in Chinese)谭锟, 王洁, 屠传芳, 等. 多功能太阳辐射计[J].光学学报, 1991, 11(5):448-452.
    [36] Zhan Jie, Tan Kun, Shao Shisheng, et al. Portable autocontrol solar photometer[J]. Chinese Journal of Quantum Electronics, 2001, 18(6):551-555. (in Chinese)詹杰, 谭锟, 邵石生, 等. 便携式自动太阳辐射计[J]. 量子电子学报, 2001, 18(6):551-555.
    [37] Huang Sheng, Jing Xu, Tan Fengfu, et al. Measurement and calibration methods for total atmospheric continuous transmittance[J]. Chinese Journal of Lasers, 2017, 44(7):0710001. (in Chinese)黄晟, 靖旭, 谭逢富, 等. 整层大气连续透过率的测量与标定方法[J]. 中国激光, 2017, 44(7):0710001.
    [38] Zhan Jie, Guo Ruipeng, Rao Ruizhong. Measurement of atmospheric transmittance in the visible and near infrared[J]. Journal of Atmospheric and Environmental Optics, 2006, 1(3):179-183. (in Chinese)詹杰, 郭瑞鹏, 饶瑞中. 可见到近红外波段整层大气透过率的测量[J]. 大气与环境光学学报, 2006, 1(3):179-183.
    [39] Wang Hao, He Feng, Jing Xu, et al. Study on measurement of total atmospheric transmittance in daytime and night observation stars[J]. Infrared and Laser Engineering, 2019, 48(3):0311001. (in Chinese)王浩, 何枫, 靖旭, 等. 昼夜观测恒星整层大气透过率测量研究[J]. 红外与激光工程, 2019, 48(3):0311001.
    [40] Roney P L, Reid F, Theriault J M. Transmission window near 2400 cm-1:An experimental and modeling study[J]. Applied Optics, 1991, 30(15):1995-2004.
    [41] L Weiyu, Zhu Wenyue, Li Zhichao, et al. Measurements of atmospheric transmittance based on fourier transform infrared spectrometer[J]. Journal of Atmospheric and Environmental Optics, 2010, 5(1):26-31. (in Chinese)吕炜煜, 朱文越, 李志朝, 等. 基于傅立叶变换红外光谱仪的水平大气透过率测量研究[J]. 大气与环境光学学报, 2010, 5(1):26-31.
    [42] Paine S, Blundell R, Cosmo Papa D, et al. A Fourier transform spectrometer for measurement of atmospheric transmission at submillimeter wavelengths[J]. Publications of the Astronomical Society of the Pacific, 2000, 112:108-118.
    [43] Weidmann D, Reburn W J, Smith K M. Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer:results and analysis[J]. Applied Optics, 2007, 46(29):7162-7171.
    [44] Wilson E L, McLinden M L, Miller J H, et al. Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column[J]. Applied Physics B, 2014, 114(3):385-393.
    [45] Peyton B, DiNardo A, Cohen S, et al. An infrared heterodyne radiometer for high-resolution measurements of solar radiation and atmospheric transmission[J], IEEE Journal of Quantum Electronics, 1975, 11:569-574.
    [46] Tan Tu, Cao Zhensong, Wang Guishi, et al. Study on the technolgy of the 4.4m mid-infrared laser heterodyne spectrum[J]. Spectroscopy and Spectral Analysis, 2015, 35(6):1516-1519. (in Chinese)谈图, 曹振松, 王贵师, 等. 4.4m中红外激光外差光谱探测技术研究[J]. 光谱学与光谱分析, 2015, 35(6):1516-1519.
    [47] Wu Qingchuan, Huang Yinbo, Tan Tu, et al. High-resolution atmospheric-transmission measurement using a laser heterodyne radiometer[J]. Spectroscopy and Spectral Analysis, 2017, 37(6):1678-1682. (in Chinese)吴庆川, 黄印博, 谈图, 等. 基于激光外差技术的高分辨率整层大气透过率测量[J]. 光谱学与光谱分析, 2017, 37(6):1678-1682.
    [48] Liu Junchi, Li Hongwen, Wang Jianli, et al. Measurement of mid-infrared total atmospheric transmittance and ite error analysis[J]. Optics and Precision Engineering, 2015, 23(6):1547-1557. (in Chinese)刘俊池, 李洪文, 王建立, 等. 中波红外整层大气透过率测量及误差分析[J]. 光学精密工程, 2015, 23(6):1547-1557.
    [49] Zhao Zhijun, Xu Fangyu, Wei Chaoqun, et al. Study on measurement method for total infrared atmospheric transmittance[J]. Infrared Technology, 2018, 40(7):718-722. (in Chinese)赵志军, 许方宇, 魏超群, 等. 红外整层大气透过率测量方法研究[J]. 红外技术, 2018, 40(7):718-722.
    [50] Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203:3-69.
    [51] Liu Dandan, Huang Yinbo, Dai Congming, et al. Effect of changes of HITRAN database on transmittance calculation in mid-infrared region along vertical uplink[J]. Infrared and Laser Engineering, 2013, 42(7):1776-1782. (in Chinese)刘丹丹, 黄印博, 戴聪明, 等. 不同版本HITRAN数据库中红外波段上行传输透过率的计算[J]. 红外与激光工程, 2013, 42(7):1776-1782.
    [52] Sun Mingguo, Ma Hongliang, Cao Zhensong, et al. Measurement and application of CO2 spectroscopic parameters near 2.0m[J]. Spectroscopy and Spectral Analysis, 2014, 34(11):2881-2886. (in Chinese)孙明国, 马宏亮, 曹振松, 等. 2m附近CO2谱线参数测量及应用[J]. 光谱学与光谱分析, 2014, 34(11):2881-2886.
    [53] Liu G L, Wang J, Tan Y, et al. Line positions and N2-induced line parameters of the 003-000 band of 14N216O by comb-assisted cavity ring-down spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 229:17-22.
    [54] Ma H, Liu Q, Cao Z, et al. Temperature dependences for N2- and air-broadened Lorentz half-width coefficients of methane transitions around 3.38m[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 171:50-56.
    [55] Richard C, Gordon I E, Rothman L S, et al. New section of the HITRAN database:Collision-induced absorption (CIA)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113:1276-1285.
    [56] Liu Kai, Wei Lixin, Chen Zhikun, et al. Radiosonde observations at the southwest continent and analysis of atmospheric vertical structure characteristics if the Antarctic[J]. Chinese Journal of Polar Research, 2019, 31(1):13-24. (in Chinese)刘凯, 魏立新, 陈志昆, 等. 夏季西南极探空观测以及南极大陆大气垂直结构特征分析[J]. 极地研究, 2019, 31(1):13-24.
    [57] Wang Yuxun, Wang Rui, Yan Wei, et al. Data simulation and parameter inversion based on microwave hyperspectral technology[J]. Journal of Microwaves, 2019, 35(2):75-80. (in Chinese)王玉训, 王蕊, 严卫, 等. 基于微波高光谱技术的数据仿真及参数反演研究[J]. 微波学报, 2019, 35(2):75-80.
    [58] Tao Zongming, Shi Qibing, Xie Chenbo, et al. Precise detection of near ground aerosol extinction coefficient profile based on CCD and backscattering lidar[J]. Infrared and Laser Engineering, 2019, 48(S1):S106007. (in Chinese)陶宗明, 施奇兵, 谢晨波, 等. 利用CCD和后向散射激光雷达精确探测近地面气溶胶消光系数廓线[J]. 红外与激光工程, 2019, 48(S1):S106007.
    [59] Ma Xiaomin, Tao Zongming, Zhang Lulu, et al. Ground layer aerosol detection technology during daytime based on side-scattering lidar[J]. Acta Optica Sinica, 2018, 38(4):0401005. (in Chinese)麻晓敏, 陶宗明, 张璐璐, 等. 侧向散射激光雷达探测白天近地面气溶胶探测技术[J]. 光学学报, 2018, 38(4):0401005.
    [60] Liu Zeyang, Li Xuebin, Sun Gang, et al. Analysis of seasonal change characteristics of aerosol optical depth in Delingha and Hefei[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(3):185-192. (in Chinese)刘泽阳, 李学彬, 孙刚, 等. 德令哈和合肥地区气溶胶光学厚度季节变化特征分析[J]. 大气与环境光学学报, 2018, 13(3):185-192.
    [61] Huang Sheng. The design and related data analysis of solar spectral radiometer from visible to near infrared bands[D]. Changsha:University of Science and Technology of China, 2018. (in Chinese)黄晟. 可见到近红外太阳光谱辐射计的研制与相关数据分析[D]. 长沙:中国科学技术大学, 2018.
    [62] Shaw G E. Error analysis of multi-wavelength sun photometry[J]. Pure and Applied Geophysics, 1976, 114(1):1-14.
    [63] Yang Zhifeng, Zhang Xiaoye, Che Huizheng, et al. An introductory study on the calibration of CE318 sunphotometer[J]. Journal of applied Meteorological Science, 2008, 19(3):297-306. (in Chinese)杨志峰, 张小曳, 车慧正, 等. CE318型太阳光度计标定方法初探[J]. 应用气象学报, 2008, 19(3):297-306.
    [64] Zhang Junhua, Wang Meihua, Mao Jietai. Error analysis and correction for multi-wavelength Sun-photometer aerosol remote sensing[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(6):855-859. (in Chinese)张军华, 王美华, 毛节泰. 多波段光度计遥感气溶胶误差分析及订正[J]. 大气科学, 2000, 24(6):855-859.
    [65] Bruce C K, Zheng Q, Alexander F H G. Direct solar spectral irradiance and transmittance measurements from 350 to 2500 nm[J]. Applied Optics, 2001, 40(21):3483-3494.
    [66] Qie L L, Dai C M, Xu Q S, et al. Calibration of near-infrared absorption band for a sun-photometer[J]. Journal of Remote Sensing, 2012, 16(5):928-938.
  • [1] 魏合理, 戴聪明, 武鹏飞, 李建玉, 孙凤萤, 唐超礼, 黄宏华, 李学彬, 朱文越, 饶瑞中, 王英俭.  通用大气辐射传输软件CART在场景计算中的应用(特邀) . 红外与激光工程, 2022, 51(5): 20210916-1-20210916-10. doi: 10.3788/IRLA20210916
    [2] 魏合理, 戴聪明, 武鹏飞, 唐超礼, 赵凤美, 吴欣, 饶瑞中, 王英俭.  更新升级的通用大气辐射传输软件CART2(特约) . 红外与激光工程, 2020, 49(7): 20201024-1-20201024-8. doi: 10.3788/IRLA20201024
    [3] 陈双远, 王飞翔, 许方宇, 郭杰, 肖建国, 贾钰超, 徐稚, 赵志军, 王远方舟.  基于辐射传输的M'波段大气透过率实测和误差分析 . 红外与激光工程, 2019, 48(12): 1203006-1203006(6). doi: 10.3788/IRLA201948.1203006
    [4] 陈新民, 李建玉, 魏合理, 黄宏华, 钱仙妹.  用太阳光度计获取激光波段大气透过率 . 红外与激光工程, 2019, 48(S2): 90-97. doi: 10.3788/IRLA201948.S209002
    [5] 王浩, 何枫, 靖旭, 谭逢富, 秦来安, 张巳龙, 张守川, 侯再红.  昼夜观测恒星整层大气透过率测量研究 . 红外与激光工程, 2019, 48(3): 311001-0311001(6). doi: 10.3788/IRLA201948.0311001
    [6] 白岩, 杨春梅, 杨柳松, 田赫.  线性调频激光外差技术测量磁致伸缩系数 . 红外与激光工程, 2018, 47(12): 1217002-1217002(5). doi: 10.3788/IRLA201847.1217002
    [7] 冯全全, 詹杰, 刘庆, 李学彬, 朱文越.  夜间整层大气透过率测量技术研究 . 红外与激光工程, 2017, 46(6): 617005-0617005(6). doi: 10.3788/IRLA201746.0617005
    [8] 衣小龙, 方伟, 李叶飞, 叶新, 王玉鹏.  太阳辐照度绝对辐射计的定标新方法 . 红外与激光工程, 2016, 45(9): 917001-0917001(7). doi: 10.3788/IRLA201645.0917001
    [9] 赵明, 谢晨波, 钟志庆, 王邦新, 王珍珠, 尚震, 谭敏, 刘东, 王英俭.  高光谱分辨率激光雷达探测大气透过率 . 红外与激光工程, 2016, 45(S1): 76-80. doi: 10.3788/IRLA201645.S130002
    [10] 谷晓彬, 冯国英, 刘建.  自适应滤波算法在微弱振动测量中的应用 . 红外与激光工程, 2016, 45(4): 417003-0417003(7). doi: 10.3788/IRLA201645.0417003
    [11] 戴聪明, 张志勇, 马力, 冯志伟, 魏合理.  红外望远镜站址大气传输和环境背景特性的测量分析研究 . 红外与激光工程, 2016, 45(12): 1204005-1204005(7). doi: 10.3788/IRLA201645.1204005
    [12] 龚绍琦, 孙海波, 王少峰, 国文哲, 李云梅.  热红外遥感中大气透过率的研究(二): 大气透过率模式的应用 . 红外与激光工程, 2015, 44(7): 2013-2020.
    [13] 郑茹, 张国玉, 王凌云, 王浩君, 高越.  光谱型太阳辐射观测仪光学系统设计 . 红外与激光工程, 2015, 44(2): 583-589.
    [14] 龚绍琦, 孙海波, 王少峰, 国文哲, 李云梅.  热红外遥感中大气透过率的研究(一):大气透过率模式的构建 . 红外与激光工程, 2015, 44(6): 1692-1698.
    [15] 张瑜, 刘秉琦, 魏合理, 华文深, 闫宗群.  基于氧气光谱吸收的被动测距中无云天空背景辐射特性研究 . 红外与激光工程, 2015, 44(1): 298-304.
    [16] 魏合理, 戴聪明.  辐射特性测量大气传输修正研究:大气传输修正系统 . 红外与激光工程, 2014, 43(4): 1019-1024.
    [17] 刘丹丹, 黄印博, 戴聪明, 魏合理.  中红外波段高空大气传输透过率及热辐射计算 . 红外与激光工程, 2013, 42(9): 2324-2329.
    [18] 戴聪明, 魏合理, 陈秀红.  通用大气辐射传输软件(CART)大气散射辐射计算精度验证 . 红外与激光工程, 2013, 42(6): 1575-1581.
    [19] 戴聪明, 魏合理, 陈秀红.  通用大气辐射传输软件(CART)分子吸收和热辐射计算精度验证 . 红外与激光工程, 2013, 42(1): 174-180.
    [20] 亚楠, 陈秀红, 魏合理.  卷云高度对大气的红外光谱辐射影响的研究 . 红外与激光工程, 2012, 41(8): 1965-1970.
  • 加载中
计量
  • 文章访问数:  512
  • HTML全文浏览量:  73
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-05
  • 修回日期:  2019-11-01
  • 刊出日期:  2019-12-25

整层大气透过率获取方法研究进展及相关问题探讨

doi: 10.3788/IRLA201948.1203004
    作者简介:

    曹振松(1979-),男,副研究员,博士,主要从事红外高分辨率高灵敏度激光吸收光谱及其应用方面的研究。Email:zscao@aiofm.ac.cn

  • 中图分类号: P421.1

摘要: 整层大气透过率是反映大气光学特性的一个重要参量,在大气辐射、地球资源遥感、空气质量监测、特别是光电工程等领域,都需要对大气透过率进行深入的研究。文中详细讨论了整层大气透过率的获取原理和方法,分析了不同获取方法的最新进展和存在的相关问题,对比分析了软件仿真计算和直接测量的优缺点,并对后续的研究工作进行了展望。

English Abstract

参考文献 (66)

目录

    /

    返回文章
    返回