留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然气泄漏被动式红外成像检测技术及系统性能评价研究进展

张旭 金伟其 李力 王霞 秦超

张旭, 金伟其, 李力, 王霞, 秦超. 天然气泄漏被动式红外成像检测技术及系统性能评价研究进展[J]. 红外与激光工程, 2019, 48(S2): 47-59. doi: 10.3788/IRLA201948.S204001
引用本文: 张旭, 金伟其, 李力, 王霞, 秦超. 天然气泄漏被动式红外成像检测技术及系统性能评价研究进展[J]. 红外与激光工程, 2019, 48(S2): 47-59. doi: 10.3788/IRLA201948.S204001
Zhang Xu, Jin Weiqi, Li Li, Wang Xia, Qin Chao. Research progress on passive infrared imaging detection technology and system performance evaluation of natural gas leakage[J]. Infrared and Laser Engineering, 2019, 48(S2): 47-59. doi: 10.3788/IRLA201948.S204001
Citation: Zhang Xu, Jin Weiqi, Li Li, Wang Xia, Qin Chao. Research progress on passive infrared imaging detection technology and system performance evaluation of natural gas leakage[J]. Infrared and Laser Engineering, 2019, 48(S2): 47-59. doi: 10.3788/IRLA201948.S204001

天然气泄漏被动式红外成像检测技术及系统性能评价研究进展

doi: 10.3788/IRLA201948.S204001
基金项目: 

首都科技平台科学仪器开发培育项目(Z171100002817011)

详细信息
    作者简介:

    张旭(1991-),男,博士生,主要从事气体泄漏红外成像检测技术、数字图像与视频处理技术方面的研究。Email:zhangxu610521@163.com

  • 中图分类号: TN247

Research progress on passive infrared imaging detection technology and system performance evaluation of natural gas leakage

  • 摘要: 由于被动式气体红外成像检测技术具有检测效率高、直观可视和不需要激光照明等特点,成为石油天然气泄漏检测的重要手段。从红外成像检测石油天然气等烷类气体泄漏的原理出发,重点介绍了国内外具有代表性的红外探测器、气体泄漏红外成像检测系统,分析了其技术特点和成像系统中的一些关键技术;归纳总结了气体探测系统性能评价技术的发展现状,对于气体检测技术应用和系统性能改善具有较大的参考作用。最后,分析了烷类气体泄漏红外成像检测技术发展的方向及存在的问题。
  • [1] Liu Xiu, Wang Lingxue, Jin Weiqi, et al. The development of optical remote measurement for hazardous gas leakage[J]. Infrared Technology, 2009, 31(10):563-567. (in Chinese)刘秀, 王岭雪, 金伟其, 等. 危险气体泄漏的光学遥测技术及其进展[J]. 红外技术, 2009, 31(10):563-567.
    [2] Li Jiakun,Jin Weiqi,Wang Xia, et al. Review of gas leak infrared imaging detection technology[J]. Infrared Technology, 2014, 36(7):513-520. (in Chinese)李家琨, 金伟其, 王霞, 等. 气体泄漏红外成像检测技术发展综述[J]. 红外技术, 2014, 36(7):513-520.
    [3] Tan Yuting, Li Jiakun, Jin Weiqi, et al. Model analysis of the sensitivity of single-point sensor and IRFPA detectors used in gas leakage detection[J]. Infrared and Laser Engineering, 2014, 43(8):2489-2495. (in Chinese)谭雨婷, 李家琨, 金伟其, 等. 气体泄漏的单点探测器与红外成像检测的灵敏度模拟分析[J]. 红外与激光工程, 2014, 43(8):2489-2495.
    [4] Vollmer M, Mllmann K P. Infrared Thermal Imaging:Fundamentals, Research and Applications[M]. Germany:WILEY-VCH Verlag GmbhCo. KGaA, 2018:107-350.
    [5] Furry D, Richards A, Lucier R, et al. Detection of volatile organic compounds (VOC's) with a spectrally filtered cooled mid-wave infrared camera[C]//Infra Mation 2005 Proceedings, 2005.
    [6] https://www.flir.cn/browse/industrial/gas-detection-cameras.[2018-12-20].
    [7] Mammen C H, Benson R G. Thermography camera configured for gas leak detection:US, 7, 649, 174[P]. 2010-01-19.
    [8] Kasai N, Tsuchiya C, Fukuda T, et al. Propane gas leak detection by infrared absorption using carbon infrared emitter and infrared camera[J]. NDT E International, 2011, 44(1):57-60.
    [9] Zeng Y, Morris J. Calibration and quantification method for gas imaging camera:US, 225, 915[P]. 2015-12-29.
    [10] Zeng Y, Morris J, Sanders A, et al. Methods to determine response factors for infrared gas imagers used as quantitative measurement devices[J]. Journal of the Air Waste Management Association, 2017, 67(11):1180-1191.
    [11] Abdel-Moati Hazem, Morris Jonathan, Zeng Yousheng, et al. New optical gas-imaging technology for quantifying fugitive-emission rates[J]. Journal of Petroleum Technology, 2016, 68(8):78-79.
    [12] Sandsten J, Weibring P, Edner H, et al. Real-time gas-correlation imaging employing thermal background radiation[J]. Optics Express, 2000, 6(4):92-103.
    [13] Sandsten J, Andersson M. Volume flow calculations on gas leaks imaged with infrared gas-correlation[J]. Optics Express, 2012, 20(18):20318-20329.
    [14] Cabib D, Lavi M, Orr H. Revival of circular variable filters[C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications IV. International Society for Optics and Photonics, 2010, 7835:78350O.
    [15] Cabib D, Orr H. Circular Variable Filters (CVF) at CI, progress and new performance[C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI. Interna-tional Society for Optics and Photonics, 2012, 8542:85420U.
    [16] Cabib D, Lavi M, Gil A, et al. A Long Wave Infrared (LWIR) spectral imager (7.7 to 12.3) based on cooled detector array and high resolution Circular Variable Filter (CVF)[C]//Electro-Optical and Infrared Systems:Technology and Applications X. International Society for Optics and Photonics, 2013, 8896:88960R.
    [17] Malm H, Gamfeldt A, von Wrtemberg R M, et al. High image quality type-Ⅱ superlattice detector for 3.3m detection of volatile organic compounds[J]. Infrared Physics Technology, 2015, 70:34-39.
    [18] https://irnova.se/products/.[2018-12-20].
    [19] Gagnon M A, Tremblay P, Savary S, et al. Direct imaging of shale gas leaks using passive thermal infrared hyperspectral imaging[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017:4479-4481.
    [20] Products and services available at Telops[EB/OL].[2018-12-20].https://www.telops.com/products/.
    [21] Gagnon M A, Jahjah K A, Marcotte F, et al. Time-resolved thermal infrared multispectral imaging of gases and minerals[C]//Electro-Optical and Infrared Systems:Technology and Applications XI. International Society for Optics and Photonics, 2014, 9249:92490U.
    [22] http:/www.softadir.com/application/commercial/.[2019-01-05].
    [23] PICO640E-041[EB/OL].[2011-12-12].www.ulis-ir.com.
    [24] Naranjo E, Baliga S, Bernascolle P. IR gas imaging in an industrial setting[C]//Thermosense XXXⅡ. International Society for Optics and Photonics, 2010, 7661:76610K.
    [25] Naranjo E, Baliga S, Park J, et al. IR gas cloud imaging in oil and gas applications:immunity to false stimuli[C]//Thermosense:Thermal Infrared Applications XXXⅢ. International Society for Optics and Photonics, 2011, 8013:80130B.
    [26] Bernascolle P F, Elichabe A, Fervel F, et al. Stand-off CWA imaging system:second sight MS[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XⅢ. International Society for Optics and Photonics, 2012, 8358:83581B.
    [27] Hagen N, Kester R T, Walker C. Real-time quantitative hydrocarbon gas imaging with the gas cloud imager (GCI)[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XⅢ. Interna-tional Society for Optics and Photonics, 2012, 8358:83581J.
    [28] Kester R T. A real-time gas cloud imaging camera for fugitive emission detection and monitoring[C]//Applied Industrial Optics:Spectroscopy, Imaging and Metrology. Optical Society of America, 2012:AW1B. 1.
    [29] Hagen N, Kester R T, Morlier C G, et al. Video-rate spectral imaging of gas leaks in the longwave infrared[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV. International Society for Optics and Photonics, 2013, 8710:871005.
    [30] VOX Imager BB (Broad Band)-Broadband uncooled IR video core[EB/OL].[2019-01-10].www.scd.co.il.
    [31] Klipstein P, Mizrahi U, Fraenkel A, et al. Status of cooled and uncooled infrared detectors at SCD, Israel[J]. Defence Science Journal, 2013, 63(6):555-570.
    [32] Barber R, Rodriguez-Conejo M A, Melendez J, et al. Design of an infrared imaging system for robotic inspection of gas leaks in industrial environments[J]. International Journal of Advanced Robotic Systems, 2015, 12(3):23.
    [33] Linares R, Vergara G, Gutirrez R, et al. Gas and flame detection and identification using uncooled MWIR imaging sensors[C]//Thermosense:Thermal Infrared Applications XXXVⅡ. International Society for Optics and Photonics, 2015, 9485:94851F.
    [34] Jin Weiqi, Dun Xiong, Wang Xia, et al. An infrared MW/LW spectral imaging optical system:China, 201210490490[P]. 2013-03-20. (in Chinese)金伟其, 顿雄, 王霞, 等. 一种红外中长波光谱成像光学系统:中国, 201210490490[P]. 2013-03-20.
    [35] Jin W Q, Li J K, Dun X, et al. Wide-band gas leak imaging detection system using UFPA[C]//International Symposium on Optoelectronic Technology and Application 2014:Image Processing and Pattern Recognition. International Society for Optics and Photonics, 2014, 9301:930102.
    [36] Wang Meirong. Key technologies for methane gas imaging detection[D]. Beijing:Beijing Institute of Technology, 2012. (in Chinese)王美荣.甲烷气体成像探测关键技术研究[D]. 北京:北京理工大学, 2012.
    [37] Tang Jing, Luo Xiuli, Liu Shaohua, et al. Infrared imaging detection of oil and natural gas leakage[J]. Laser Infrared, 2016, 46(1):62-66. (in Chinese)唐璟, 罗秀丽, 刘绍华, 等. 石油和天然气红外成像检漏[J]. 激光与红外, 2016, 46(1):62-66.
    [38] Xu Z, Jin W, Li L, et al. Band optimization of passive methane gas leak detection based on uncooled infrared focal plane array[J]. Applied Optics, 2018, 57(15):3991-4001.
    [39] Xiong Shifu. Studies on key technology of infrared thermal imaging detection and identification system for methane gas[D]. Changchun:Changchun University of Science and Technology, 2018. (in Chinese)熊仕富.红外热成像甲烷气体探测与识别系统关键技术研究[D]. 长春:长春理工大学, 2018.
    [40] Sabbah S, Harig R, Rusch P, et al.Remote sensing of gases by hyperspectral imaging:system performance and measurements[J]. Optical Engineering, 2012, 51(11):111717.
    [41] Farley V, Vallires A, Chamberland M, et al. Performance of the FIRST:a long-wave infrared hyperspectral imaging sensor[C]//Optically Based Biological and Chemical Detection for Defence Ⅲ. International Society for Optics and Photonics, 2006, 6398:63980T.
    [42] Tegstam J F, Danjoux R. Gas leak detection in the oil and gas industry using infrared optical imaging[J]. Thermografie-Kolloquium, 2007(3):1-10.
    [43] Benson R, Madding R, Lucier R, et al. Standoff passive optical leak detection of volatile organic compounds using a cooled InSb based infrared imager[C]//AWMA 99th Annual Meeting Papers, 2006:131.
    [44] Ben-David A, Ifarraguerri A I, Samuels A C. Correlation spectroscopy with diffractive grating synthetic spectra and orthogonal subspace projection filters[J]. Optical Engineering, 2003, 42(2):325-334.
    [45] Anderson K K, Tardiff M F, Chilton L K. Predicting the detectability of thin gaseous plumes in hyperspectral images using basis vectors[J]. Sensors, 2010, 10(9):8652-8662.
    [46] Li J, Jin W, Wang X, et al. MRGC performance evaluation model of gas leak infrared imaging detection system[J]. Optics Express, 2014, 22(107):A1701-A1712.
    [47] Zhang X, Jin W, Li J, et al. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems[J]. Applied Optics, 2017, 56(10):2952-2959.
    [48] Benson R G, Panek J A, Drayton P. Direct measurements of minimum detectable vapor concentrations using passive infrared optical imaging systems[C]//Air and Waste Management Association's Annual Conference and Exhibition (AWMA), 2006.
    [49] Luo Xiuli, Tang Jing, Wang Lingxue, et al. Modeling and test of signal to noise ratio of leaking gas thermal imager[J]. Infrared and Laser Engineering, 2016, 45(12):1204003. (in Chinese)罗秀丽, 唐璟, 王岭雪, 等. 热像仪探测泄漏气体的信噪比建模与测试[J]. 红外与激光工程, 2016, 45(12):1204003.
    [50] Hinnrichs M, Gupta N. Comparison of QWIP to HgCdTe detectors for gas imaging[C]//Infrared Technology and Applications XXXIV. International Society for Optics and Photonics, 2008, 6940:69401Q.
    [51] Vollmer M, Mllmann K P. IR imaging of CO2:basics, experiments, and potential industrial applications[J]. Proceedings IRS2, 2011, 2011:59-64.
  • [1] 王利军, 关俊娟, 秦智勇, 陈建, 姬鹏远.  动力舱红外成像火情探测系统 . 红外与激光工程, 2022, 51(5): 20210384-1-20210384-6. doi: 10.3788/IRLA20210384
    [2] 荆根强, 段发阶, 彭璐.  在役光纤应变监测系统性能的在线评价方法 . 红外与激光工程, 2022, 51(4): 20210259-1-20210259-8. doi: 10.3788/IRLA20210259
    [3] 张宝辉, 李中文, 吴杰, 吉莉, 王炜毅, 蔡璐, 时亚辉, 法静怡.  中波1 280×1 024红外成像组件设计(特邀) . 红外与激光工程, 2021, 50(4): 20211023-1-20211023-9. doi: 10.3788/IRLA20211023
    [4] 吴绍华, 黄攀, 赵劲松, 赵跃进, 郑丽和, 董汝昆.  三温区梯度化学气相沉积ZnS制备 . 红外与激光工程, 2021, 50(10): 20210004-1-20210004-6. doi: 10.3788/IRLA20210004
    [5] 耿子海, 蔡晋生, 张卫国, 赵俊英.  红外成像与Michel模型在旋翼翼型转捩特性中的应用 . 红外与激光工程, 2019, 48(8): 803002-0803002(6). doi: 10.3788/IRLA201948.0803002
    [6] 武魁军, 何微微, 于光保, 熊远辉, 李发泉.  分子滤光红外成像技术及其在光电探测中的应用(特邀) . 红外与激光工程, 2019, 48(4): 402003-0402003(9). doi: 10.3788/IRLA201948.0402003
    [7] 王超哲, 李慎波, 黄聪会, 柴世杰, 贾文铜.  飞机成像目标的红外隐身效果评估 . 红外与激光工程, 2019, 48(10): 1004004-1004004(9). doi: 10.3788/IRLA201948.1004004
    [8] 刘宇哲, 张新宇, 张群, 杨勇, 彭慧莲, 杨自鹏.  空间相机次镜调整机构的性能评价及参数优化 . 红外与激光工程, 2019, 48(12): 1214004-1214004(8). doi: 10.3788/IRLA201948.1214004
    [9] 何显中, 袁强, 黄明其, 耿子海, 袁红刚.  红外成像技术在金属模型转捩测量中的应用 . 红外与激光工程, 2016, 45(6): 604004-0604004(5). doi: 10.3788/IRLA201645.0604004
    [10] 胡斌, 黄颖, 马永利, 李岩.  高分辨率红外成像仪五反无焦主系统设计 . 红外与激光工程, 2016, 45(5): 518001-0518001(5). doi: 10.3788/IRLA201645.0518001
    [11] 王炜强, 贾晓洪, 韩宇萌, 张晓阳, 付奎生.  定向干扰激光的红外成像建模与仿真 . 红外与激光工程, 2016, 45(6): 606005-0606005(6). doi: 10.3788/IRLA201645.0606005
    [12] 郝立超, 黄爱波, 赖灿雄, 陈星, 陈辉, 郝明明, 路国光, 黄云, 恩云飞.  盲元作为红外焦平面可靠性分析手段的探讨 . 红外与激光工程, 2016, 45(5): 504004-0504004(5). doi: 10.3788/IRLA201645.0504004
    [13] 唐艳秋, 孙强, 赵建, 姚凯男.  基于衬底温度的红外焦平面联合非均匀性校正 . 红外与激光工程, 2016, 45(3): 304002-0304002(6). doi: 10.3788/IRLA201645.0304002
    [14] 张傲, 汪清, 杨敬钰, 孙懿.  编码掩模红外成像的建模与性能分析 . 红外与激光工程, 2015, 44(10): 2891-2899.
    [15] 陈艳菲, 王利恒, 王洪伟.  估算红外成像作用空间分辨率的新方法 . 红外与激光工程, 2014, 43(1): 33-38.
    [16] 李家琨, 顿雄, 金明磊, 金伟其, 王霞, 夏润秋.  宽波段气体泄漏红外成像检测系统设计 . 红外与激光工程, 2014, 43(6): 1966-1971.
    [17] 王华伟, 曹剑中, 马彩文, 张辉, 武登山.  具有自适应校正功能的红外成像系统设计 . 红外与激光工程, 2014, 43(1): 61-66.
    [18] 孟卫华, 倪国强, 高昆, 向静波, 项建胜.  红外高光谱成像的光谱聚焦 . 红外与激光工程, 2013, 42(3): 774-779.
    [19] 闵超波, 张俊举, 常本康, 孙斌, 李英杰.  采用边界评价的红外视频运动目标时空域分割方法 . 红外与激光工程, 2013, 42(10): 2636-2641.
    [20] 崔建平, 王吉晖, 金伟其, 白廷柱, 高稚允.  焦平面热成像系统离散采样性能评价方法 . 红外与激光工程, 2013, 42(8): 1973-1978,2007.
  • 加载中
计量
  • 文章访问数:  772
  • HTML全文浏览量:  159
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 修回日期:  2019-05-14
  • 刊出日期:  2019-09-30

天然气泄漏被动式红外成像检测技术及系统性能评价研究进展

doi: 10.3788/IRLA201948.S204001
    作者简介:

    张旭(1991-),男,博士生,主要从事气体泄漏红外成像检测技术、数字图像与视频处理技术方面的研究。Email:zhangxu610521@163.com

基金项目:

首都科技平台科学仪器开发培育项目(Z171100002817011)

  • 中图分类号: TN247

摘要: 由于被动式气体红外成像检测技术具有检测效率高、直观可视和不需要激光照明等特点,成为石油天然气泄漏检测的重要手段。从红外成像检测石油天然气等烷类气体泄漏的原理出发,重点介绍了国内外具有代表性的红外探测器、气体泄漏红外成像检测系统,分析了其技术特点和成像系统中的一些关键技术;归纳总结了气体探测系统性能评价技术的发展现状,对于气体检测技术应用和系统性能改善具有较大的参考作用。最后,分析了烷类气体泄漏红外成像检测技术发展的方向及存在的问题。

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回