留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率碘稳频He-Ne激光波长参考源

王建波 殷聪 石春英 王捍平 蔡山 舒慧

王建波, 殷聪, 石春英, 王捍平, 蔡山, 舒慧. 高功率碘稳频He-Ne激光波长参考源[J]. 红外与激光工程, 2021, 50(4): 20200111. doi: 10.3788/IRLA20200111
引用本文: 王建波, 殷聪, 石春英, 王捍平, 蔡山, 舒慧. 高功率碘稳频He-Ne激光波长参考源[J]. 红外与激光工程, 2021, 50(4): 20200111. doi: 10.3788/IRLA20200111
Wang Jianbo, Yin Cong, Shi Chunying, Wang Hanping, Cai Shan, Shu Hui. Powerful iodine stabilized He-Ne laser as wavelength reference[J]. Infrared and Laser Engineering, 2021, 50(4): 20200111. doi: 10.3788/IRLA20200111
Citation: Wang Jianbo, Yin Cong, Shi Chunying, Wang Hanping, Cai Shan, Shu Hui. Powerful iodine stabilized He-Ne laser as wavelength reference[J]. Infrared and Laser Engineering, 2021, 50(4): 20200111. doi: 10.3788/IRLA20200111

高功率碘稳频He-Ne激光波长参考源

doi: 10.3788/IRLA20200111
基金项目: 国家重点研发计划(2016YFF0200302)
详细信息
    作者简介:

    王建波(1986−),男,副研究员,博士,2009年于北京化工大学获得学士学位,2012年于中国计量科学研究院获得硕士学位,2016年底于同济大学获得博士学位,主要从事稳频激光波长基标准及其在精密测量中的应用等研究。

    殷聪(1977−),男,博士,1999年、2002年从北京理工大学分别获得物理电子学学士和光学工程硕士学位,2008年从清华大学获得光学工程博士学位。主要从事长度量计量基标准及精密测量方面的研究。

    通讯作者: 殷聪
  • 中图分类号: O433.1;O561.3;TN248.2

Powerful iodine stabilized He-Ne laser as wavelength reference

  • 摘要: 为满足精密测量对高稳定激光单色光源功率的要求,研制了全封闭、一体化结构的高功率碘稳频He-Ne激光系统。对该系统所采用的饱和光谱探测原理、吸收峰识别与锁定方法以及激光波长的稳频效果进行了研究。首先,介绍了三次谐波方法探测饱和吸收光谱的基本原理,分析了其消除功率背景的方法。接着,分析了碘稳频激光中一体化谐振腔的稳定性,详细讨论了谐振腔轴向膨胀和横向非对称形变对输出功率的影响。然后,分析了激光输出功率与碘分子饱和吸收峰之间的对应关系,介绍了利用二次谐波信号实现吸收峰识别的可行性,并展示了高稳定谐振腔的长时间锁定能力。最后,分析了高功率碘稳频He-Ne激光波长的稳定度与复现性。实验结果表明:高功率碘稳频He-Ne激光波长抖动标准差为33 kHz,1 000 s稳定度达到4.1×10−13;三个月内激光波长的复现性达到3.3 kHz (7.0×10−12),与国际计量委员会推荐的频率差为3.0 kHz。
  • 图  1  三次谐波探测饱和吸收光谱示意图

    Figure  1.  Schematic diagram of detecting saturation absorption spectroscopy by third harmonics method

    图  2  高功率碘稳频He-Ne激光示意图

    Figure  2.  Schematic of high output power iodine stabilized He-Ne laser

    图  3  碘稳频激光谐振腔腔长漂移

    Figure  3.  Cavity length drift of iodine stabilized laser

    图  4  碘稳频激光输出功率漂移

    Figure  4.  Output power drift of iodine stabilized laser

    图  5  碘稳频激光输出功率在两个月内的复现性

    Figure  5.  Reproducibility of the output power of iodine stabilized laser within two months

    图  6  (a)碘稳频激光的三次谐波误差信号;(b)激光输出功率

    Figure  6.  (a) Third harmonics error signal of iodine stabilized laser; (b) laser output power

    图  7  (a)扫描腔长碘稳频激光的二次谐波信号;(b)扫描腔长的PZT电压

    Figure  7.  (a) Second harmonics signal of iodine stabilized laser with cavity scanning; (b) PZT voltage for cavity scanning

    图  8  激光锁定后的跟踪电压

    Figure  8.  Tracking voltage while laser locked

    图  9  (a)激光锁定f峰的频率抖动;(b)频率抖动的直方图

    Figure  9.  (a) Frequency fluctuation of the f component while laser locked; (b) histogram of frequency fluctuation

    图  10  碘稳频激光频率稳定度

    Figure  10.  Frequency stability of iodine stabilized laser

    图  11  碘稳频激光的频率复现性

    Figure  11.  Frequency reproducibility of iodine stabilized laser

  • [1] Quinn T J. Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001) [J]. Metrologia, 2003, 40(2): 103-133. doi:  10.1088/0026-1394/40/2/316
    [2] Pisani M, Yacoot A, Balling P, et al. Comparison of the performance of the next generation of optical interferometers [J]. Metrologia, 2012, 49(4): 455-467. doi:  10.1088/0026-1394/49/4/455
    [3] Orr B J, He Y. Rapidly swept continuous-wave cavity-ringdown spectroscopy [J]. Chemical Physics Letters, 2011, 512(1–3): 1-20.
    [4] Wu S, Feng J, Li C, et al. The results of CCM.G-K2.2017 key comparison [J]. Metrologia, 2020, 57(1A): 07002. doi:  10.1088/0026-1394/57/1A/07002
    [5] Michael M, Petr B, Petr K, et al. The CCL-K11 ongoing key comparison: final report for the year 2010 [J]. Metrologia, 2011, 48(1A): 04001. doi:  10.1088/0026-1394/48/1A/04001
    [6] Didier A, Ignatovich S, Benkler E, et al. 946-nm Nd:YAG digital-locked laser at 1.1×10−16 in 1 s and transfer-locked to a cryogenic silicon cavity [J]. Optics Letters, 2019, 44(7): 1781-1784. doi:  10.1364/OL.44.001781
    [7] Morzynski P, Wcislo P, Ablewski P, et al. Absolute frequency measurement of rubidium 5S-7S two-photon transitions [J]. Optics Letters, 2013, 38(22): 4581-4584. doi:  10.1364/OL.38.004581
    [8] Petru F, Popela B, Vesela Z. Design and performance of compact iodine stabilized He-Ne lasers at lambda =633 nm with a short optical resonator [J]. Measurement Science and Technology, 1993, 4(4): 506. doi:  10.1088/0957-0233/4/4/012
    [9] Chartier J M, Labot J, Sasagawa G, et al. A portable iodine stabilized He-Ne laser and its use in an absolute gravimeter [J]. Instrumentation and Measurement, IEEE Transactions on, 1993, 42(2): 420-422. doi:  10.1109/19.278595
    [10] Ishikawa J. Portable national length standards designed and constructed using commercially available parts: An advanced mechanical design for the iodine stabilized He-Ne laser [J]. Synthesiology (English Edition), 2010, 2(4): 246-257.
    [11] Qian J, Liu Z Y, Zhang X P, et al. A new type of iodne stabilized He-Ne laser at 633 nm [J]. Acta Metrologica Sinica, 2008, 29(1): 10-13. (in Chinese)
    [12] Tian W, Zhang W M, Qian J, et al. Test result of the NIM frequency stabilized laser on the FG5-112 absolute gravimeter [J]. Journal of Geodesy and Geodynamics, 2015, 35(6): 1057-1059.
    [13] Wallard A J. Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour [J]. Journal of Physics E: Scientific Instruments, 1972, 5(9): 926-930. doi:  10.1088/0022-3735/5/9/025
  • [1] 刘墨林, 刘嘉仪, 王怡哲, 喻学昊, 方晓东, 游利兵.  合束方式提高准分子激光输出脉冲能量稳定性 . 红外与激光工程, 2024, 53(1): 20230309-1-20230309-9. doi: 10.3788/IRLA20230309
    [2] 刘宇森, 王建波, 殷聪, 韩绍坤, 毕文文, 俞秋叶, 邹金澎.  基于声光调制器的光学锁相环He-Ne激光稳频方法研究 . 红外与激光工程, 2024, 53(3): 20240003-1-20240003-9. doi: 10.3788/IRLA20240003
    [3] 李乘, 吴德成, 刘爽, 邓迁, 秘国江, 王邦新, 王珍珠, 刘东, 王英俭.  铁共振荧光多普勒激光雷达光源的频率稳定性研究 . 红外与激光工程, 2023, 52(10): 20230025-1-20230025-8. doi: 10.3788/IRLA20230025
    [4] 李路, 庄鹏, 谢晨波, 王邦新, 邢昆明.  采用温控和碘吸收池技术的发射激光稳频技术 . 红外与激光工程, 2021, 50(3): 20200289-1-20200289-8. doi: 10.3788/IRLA20200289
    [5] 徐宁, 秦水介.  正交偏振激光回馈干涉仪稳定性提高方法研究 . 红外与激光工程, 2019, 48(3): 320003-0320003(6). doi: 10.3788/IRLA201948.0320003
    [6] 王明军, 于记华, 刘雁翔, 高香香, 张华永.  多激光波长在不同稀薄随机分布冰晶粒子层的散射特性 . 红外与激光工程, 2019, 48(3): 311002-0311002(6). doi: 10.3788/IRLA201948.0311002
    [7] 蒋荣秋, 邓伟芬, 汪倩倩, 侯月, 陈晨.  用于红外气体检测的高稳定性DFB激光器驱动电源 . 红外与激光工程, 2018, 47(5): 505004-0505004(7). doi: 10.3788/IRLA201847.0505004
    [8] 李超, 王永杰, 李芳.  基于F-P温控标准具的高稳定性FBG波长解调系统 . 红外与激光工程, 2017, 46(1): 122002-0122002(5). doi: 10.3788/IRLA201746.0122002
    [9] 赵读亮, 李文洁, 梁勖, 方晓东.  准分子激光皮肤治疗仪能量稳定性研究 . 红外与激光工程, 2017, 46(12): 1206001-1206001(7). doi: 10.3788/IRLA201746.1206001
    [10] 王国成, 张飞飞, 钱正祥, 杜跃, 舒志峰, 孙东松.  直接测风激光雷达外场实验稳频方法 . 红外与激光工程, 2016, 45(9): 906004-0906004(8). doi: 10.3788/IRLA201645.0906004
    [11] 田振国, 张立, 张书练.  He-Ne双折射塞曼双频激光器的等光强稳频研究 . 红外与激光工程, 2016, 45(5): 505001-0505001(5). doi: 10.3788/IRLA201645.0505001
    [12] 李彦, 孙彦凤, 王旭, 姜漫.  采用光纤滤波器的高波长稳定性掺铒光纤光源 . 红外与激光工程, 2015, 44(1): 244-248.
    [13] 曾召利, 张书练.  激光强回馈系统的动态调制稳频技术 . 红外与激光工程, 2015, 44(5): 1402-1407.
    [14] 战俊彤, 付强, 段锦, 张肃, 高铎瑞, 姜会林.  利用位置式数字PID 算法提高DFB 激光器驱动电源稳定性 . 红外与激光工程, 2015, 44(6): 1757-1761.
    [15] 石海燕, 赵江山, 宋兴亮, 沙鹏飞, 单耀莹, 王倩, 翟晔, 周翊.  光刻用准分子激光器能量稳定性影响因素分析 . 红外与激光工程, 2014, 43(11): 3540-3546.
    [16] 刘建, 吴立志, 蒋小华, 沈瑞琪, 张伟, 步磊.  激光波长对含能材料起爆阈值的影响 . 红外与激光工程, 2014, 43(10): 3309-3312.
    [17] 朱守深, 刘维新, 张书练.  全内腔He-Ne激光器开机光强调谐曲线及激光器性能 . 红外与激光工程, 2014, 43(4): 1106-1110.
    [18] 韩顺利, 仵欣, 林强.  半导体激光器稳频技术 . 红外与激光工程, 2013, 42(5): 1189-1193.
    [19] 刘长青, 聂晓明, 傅杨颖, 周健.  双纵模He-Ne激光器的多普勒测速系统 . 红外与激光工程, 2013, 42(4): 921-924.
    [20] 张亦男, 谈宜东, 张书练.  用于全内腔微片激光器稳频的温度控制系统 . 红外与激光工程, 2012, 41(1): 101-106.
  • 加载中
图(11)
计量
  • 文章访问数:  1760
  • HTML全文浏览量:  759
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-07
  • 修回日期:  2020-12-28
  • 网络出版日期:  2020-05-18
  • 刊出日期:  2021-04-30

高功率碘稳频He-Ne激光波长参考源

doi: 10.3788/IRLA20200111
    作者简介:

    王建波(1986−),男,副研究员,博士,2009年于北京化工大学获得学士学位,2012年于中国计量科学研究院获得硕士学位,2016年底于同济大学获得博士学位,主要从事稳频激光波长基标准及其在精密测量中的应用等研究。

    殷聪(1977−),男,博士,1999年、2002年从北京理工大学分别获得物理电子学学士和光学工程硕士学位,2008年从清华大学获得光学工程博士学位。主要从事长度量计量基标准及精密测量方面的研究。

    通讯作者: 殷聪
基金项目:  国家重点研发计划(2016YFF0200302)
  • 中图分类号: O433.1;O561.3;TN248.2

摘要: 为满足精密测量对高稳定激光单色光源功率的要求,研制了全封闭、一体化结构的高功率碘稳频He-Ne激光系统。对该系统所采用的饱和光谱探测原理、吸收峰识别与锁定方法以及激光波长的稳频效果进行了研究。首先,介绍了三次谐波方法探测饱和吸收光谱的基本原理,分析了其消除功率背景的方法。接着,分析了碘稳频激光中一体化谐振腔的稳定性,详细讨论了谐振腔轴向膨胀和横向非对称形变对输出功率的影响。然后,分析了激光输出功率与碘分子饱和吸收峰之间的对应关系,介绍了利用二次谐波信号实现吸收峰识别的可行性,并展示了高稳定谐振腔的长时间锁定能力。最后,分析了高功率碘稳频He-Ne激光波长的稳定度与复现性。实验结果表明:高功率碘稳频He-Ne激光波长抖动标准差为33 kHz,1 000 s稳定度达到4.1×10−13;三个月内激光波长的复现性达到3.3 kHz (7.0×10−12),与国际计量委员会推荐的频率差为3.0 kHz。

English Abstract

    • 高稳定激光波长标准在几何量计量[1]、精密干涉测量[2]、原子分子光谱探测[3]以及重力测量[4]等领域具有重要的应用价值。它的波长不确定度与稳定度均能达到10−11量级以上,能够满足当前绝大多数精密测量场合对光源稳定性的要求,是目前最为便捷和可靠的高准确度激光波长参考光源。

      目前已经开展的高稳定稳频激光波长标准源涵盖气体激光[5]、固体激光[6]以及半导体激光[7]等激光类型,波长范围覆盖了可见光波段、近红外波段以及中红外波段。在众多种类的稳频激光中,基于碘分子饱和吸收稳频的633 nm He-Ne激光应用最为广泛。与固体激光腔外吸收稳频方式相比较,He-Ne激光采用了腔内饱和吸收方式,能够在激光谐振腔内实现碘分子饱和吸收光谱探测,因此整体结构更为简单与紧凑,有利于激光器的长期可靠运行,提高了环境适应性,降低了整个系统的使用代价[8-11]

      但是目前广泛使用的国外碘稳频He-Ne激光均采用了可调谐振腔镜与碘吸收室结构[9],空间光输出功率较低,通常为100 μW 左右,其典型波长稳定度优于5×10−11(1 s),复现性优于5×10−11。由于受到运输过程中振动、温差等影响,以及长期机械漂移,导致激光器在使用过程中由于谐振腔失谐或碘吸收室空间位置发生轻微改变,使得激光输出功率逐渐减弱,严重影响激光的长期使用[12]。更有甚者,全新到货的激光器因为谐振腔严重失谐,无激光输出,需再次返厂维修。因此,尽管这种可调谐振腔镜的方式有利于调试与后续维护,但提高了用户的使用难度,限制了该类激光的应用场合。

      文中报道了一种改进的基于腔内饱和吸收稳频的高稳定He-Ne激光。该激光采用全封闭式、一体化的激光腔内结构,腔内激光增益管、碘分子吸收室、激光腔镜与间隔器均采用精密光学研磨粘接,实现激光器整体的刚性连接,极大地提高了激光腔的稳定性以及抗干扰能力。通过优化控制腔内损耗,显著提高空间光直接输出功率至240 μW左右。该激光采用半内腔结构的腔内饱和吸收方式,利用碘分子反兰姆凹陷光谱实现激光频率的精确锁定。文中系统分析了激光的热漂移特性以及功率输出特性,获得了高信噪比的饱和光谱锁定信号。通过与碘稳频激光波长基准的拍频测量,结果显示该激光的1 s波长稳定度为1.3×10−11,1 000 s达到4.1×10−13,复现性优于1.0×10−11

    • 碘稳频He-Ne激光波长参考源采用腔内吸收方式,根据激光小信号增益模型,此时激光输出功率$P(\omega )$可写为如下形式[13]

      $$\begin{split} P(\omega ) \propto \Bigg\{ & G(\omega - {\omega _1}) - \\ & \left. {\alpha ^0}(\omega )\left[ {1 - \frac{{{S_0}}}{2}(1 + \frac{{{{({\gamma _s}/2)}^2}}}{{{{(\omega - {\omega _0})}^2} + {{({\gamma _s}/2)}^2}}})} \right] \right\} \end{split} $$ (1)

      式中:$\omega $为激光输出频率;$G(\omega - {\omega _1})$为激光小信号增益系数,${\omega _{\rm{1}}}$为增益系数中心频率;${\alpha ^0}(\omega )$为腔内吸收介质的吸收系数;${\omega _{\rm{0}}}$${\gamma _s}$分别为饱和吸收峰的中心频率与半高全宽;${S_0}$为饱和吸收参数。公式(1)在${\omega _{\rm{0}}}$附近可近似写为:

      $$P(\omega ) = A{\omega ^2} + B\omega + C + \frac{D}{{{{(\omega {\rm{ - }}{\omega _0})}^2}{\rm{ + (}}{\gamma _{\rm{s}}}{\rm{/2}}{{\rm{)}}^2}}}$$ (2)

      式中:系数ABCD${\omega _{\rm{0}}}$${\omega _{\rm{1}}}$${\gamma _s}$${S_0}$相关。公式(2)的微分函数可表示为:

      $${P^{(n)}}(\omega ) = \frac{{{{\rm{d}}^n}P(\omega )}}{{{\rm{d}}{\omega ^n}}},(n = 1,2,3,....)$$ (3)

      则其一、二和三次微分函数可分别写为:

      $${P^{(1)}}(\omega ) = 2A\omega + B - \frac{{2D(\omega {\rm{ - }}{\omega _0})}}{{{{\left[ {{{(\omega {\rm{ - }}{\omega _0})}^2}{\rm{ + (}}{\gamma _{\rm{s}}}{\rm{/2}}{{\rm{)}}^2}} \right]}^2}}}$$ (4)
      $${P^{({\rm{2}})}}(\omega ) = 2A + \frac{{{\rm{6}}D{{(\omega {\rm{ - }}{\omega _0})}^{\rm{2}}}{\rm{ - 2}}D{{{\rm{(}}{\gamma _{\rm{s}}}{\rm{/2)}}}^2}}}{{{{\left[ {{{(\omega {\rm{ - }}{\omega _0})}^2}{\rm{ + (}}{\gamma _{\rm{s}}}{\rm{/2}}{{\rm{)}}^2}} \right]}^3}}}$$ (5)
      $${P^{(3)}}(\omega ) = \frac{{24D(\omega {\rm{ - }}{\omega _0})[{{(\omega {\rm{ - }}{\omega _0})}^2} - {{{\rm{(}}{\gamma _{\rm{s}}}{\rm{/2)}}}^2}]}}{{{{\left[ {{{(\omega {\rm{ - }}{\omega _0})}^2}{\rm{ + (}}{\gamma _{\rm{s}}}{\rm{/2}}{{\rm{)}}^2}} \right]}^4}}}$$ (6)

      图1给出了公式(2),(4),(5),(6)的计算曲线,计算参数为$A,B,C,D,{\gamma _s} = 1$${\omega _0} = 0$。由图可知,在插入吸收介质时,激光输出功率存在明显饱和吸收信号,该信号叠加在激光的输出功率的背景信号上。对该信号采用一次微分处理时,并不能完全消除背景信号,只有采用三次微分或更高阶的奇数次微分时,才能够完全消除背景信号。这种数学处理方式通过对比公式(2),(4),(6)的表达式也可以做出判断。特别在$\omega = {\omega _0}$时,$P(\omega )$${P^{(1)}}(\omega )$均有非零的背景信号,而${P^{(3)}}(\omega )$为零无背景信号。因此$P(\omega )$的三次微分产生的误差信号的过零点与饱和吸收光谱的中心频率严格地对应,以此作为反馈信号的参考点能够有效地消除背景信号引入的锁定点误差,真正实现激光波长锁定至吸收介质的饱和吸收光谱线中心频率点。

      图  1  三次谐波探测饱和吸收光谱示意图

      Figure 1.  Schematic diagram of detecting saturation absorption spectroscopy by third harmonics method

    • 高功率碘稳频He-Ne激光腔结构如图2所示。为了提高激光输出功率的稳定性,激光谐振腔采用低膨胀系数的石英玻璃管作为间隔器,激光高反镜与输出耦合镜通过与低膨胀系数的玻璃板研磨粘接,然后整体与石英间隔器端面垂直粘接而成。为降低激光腔内损耗,提高激光输出功率,激光增益管采用半内腔封接方式,一端封接输出耦合镜,另一端封接布鲁斯特窗。相比国外普遍采用的全外腔方式(两端均为布鲁斯特窗封接),减小了布鲁斯特窗角度误差引入的腔内损耗,同时提升了增益管与谐振腔镜的稳定性。

      图  2  高功率碘稳频He-Ne激光示意图

      Figure 2.  Schematic of high output power iodine stabilized He-Ne laser

      此外,由于采用腔内插入碘分子吸收室的方式来实现饱和光谱探测,碘分子吸收室的细微角度误差都会引起腔内损耗急剧上升,导致激光输出功率快速下降。因此实验中采用六轴精密调节结构,以精确调整碘分子吸收室布鲁斯特窗与激光增益管布斯角度重合的一致性,并通过光学粘合的方式实现碘分子吸收室与激光增益管的一体化连接,有效地降低了吸收室引入的腔内损耗,提升了光谱探测单元的稳定性。

      实验中碘吸收室采用非饱和蒸气压碘分子封接而成,吸收室内无固态碘分子结晶体,完全为游离态碘分子。与传统饱和蒸气压碘分子吸收室相比,碘分子在腔内吸收损耗更小,更有利于提升激光输出功率。此外,这种吸收室不需要对冷指端和管壁进行精确控温,使得整个饱和光谱单元的结构更加简单和稳定,提高了整个激光谐振腔的可靠性。

    • 全封闭、一体化设计的激光腔的稳定性是评价激光长期保持锁定能力的重要指标。碘稳频激光谐振腔腔长在冷开机情况下的漂移特性如图3所示。由图可知,冷开机情况下激光器谐振腔长一直处于膨胀状态,整个预热过程中谐振腔腔长共漂移4.2 μm。前40 min几乎呈线性膨胀,膨胀率为87 nm/min,此后腔长漂移速度明显变慢,80 min以后腔长基本保持稳定,这表明此时刻开始锁定激光即可保持激光谐振腔的长期锁定。

      激光谐振腔的腔长膨胀主要来自于激光增益管发热引起的材料热膨胀。如图2所示的激光腔结构,因为激光器谐振腔镜完全与石英间隔器硬性连结,石英间隔器受增益管加热会引起轴向热膨胀,而这种热膨胀会直接传递至谐振腔,进而导致腔长漂移。由此可见,选择具有低膨胀系数的材料作为间隔器,以及优良的谐振腔设计对于激光的长期稳定性具有决定性作用。

      图  3  碘稳频激光谐振腔腔长漂移

      Figure 3.  Cavity length drift of iodine stabilized laser

      激光输出功率漂移特性如图4所示,对比图3可知,两者之间的变化趋势高度一致。但是它们之间的影响因素却完全不同,前者主要由间隔器的轴向膨胀引起腔长漂移,而输出功率的漂移过程却主要由激光管在垂直方向的非对称形变引起。在激光器运转过程中,增益管内毛细管均匀向四周辐射热量,持续加热增益管内部密封的He、Ne气体,引起气体热对流,导致增益管上表面温度显著高于下表面,进而使得增益管在垂直方向的非对称形变。这种非对称形变有效地降低了腔内损耗,例如提高了布氏角度和毛细管与谐振腔轴向角度的一致性,进而提高了激光的输出功率。

      另一方面,增益管上下表面温差通过热传递也会引起石英间隔器上下表面温差,导致间隔器在垂直方向的非对称形变,这种形变在一定程度上提高了谐振腔腔镜反射面的平行度,降低了衍射损耗,进一步提升了激光输出功率。实际测量表明,在充分预热后,石英间隔器上下表面的温差可以达到15 °C以上,以熔融石英材料单位长度的膨胀系数为8×10−7/ °C为例,由此可推算出垂直方向的非对称形变差至少为0.5 μm。

      全封闭、一体化设计的激光输出功率的复现性如图5所示。两个月内共进行了22次冷开机的复现性实验,80 min预热后锁定碘稳频激光至同一吸收峰进行功率测量,测量时间为3 h,结果表明,在22次复现性测量中,激光输出功率的平均值为243 μW,极限波动小于10 μW。

      图  4  碘稳频激光输出功率漂移

      Figure 4.  Output power drift of iodine stabilized laser

      图  5  碘稳频激光输出功率在两个月内的复现性

      Figure 5.  Reproducibility of the output power of iodine stabilized laser within two months

    • 碘稳频He-Ne激光采用腔内饱和吸收方式实现对碘分子消多普勒光谱的精密探测,并采用三次谐波锁相的电子学方法实现对激光波长的高准确度锁定。

      实验中采用三次谐波方法探测碘稳频激光饱和吸收的误差信号,如图6(b)所示,图6(a)为扫描过程中激光器输出功率曲线。由图可知,尽管激光输出功率随着频率扫描而改变,但反兰姆凹陷的饱和吸收信号完全淹没在激光输出功率曲线中,无法直接监测。而三次谐波误差信号在饱和吸收峰附件呈现理想的S曲线,偏离吸收峰始终保持在零点上下。因此这种方法能够有效地消除激光器由于功率变化而引起的锁定误差(背景漂移),在没有吸收峰时,输出信号全为噪声信号;当饱和信号出现时,输出S形过零误差信号。误差信号的过零点与碘分子反兰姆凹陷吸收峰中心频率对应,且近似认为在过零点附件的区域内,频率扫描与误差信号变化呈线性关系,据此可推断出碘分子饱和吸收峰的半高全宽约为6 MHz。

      图  6  (a)碘稳频激光的三次谐波误差信号;(b)激光输出功率

      Figure 6.  (a) Third harmonics error signal of iodine stabilized laser; (b) laser output power

      碘稳频激光的饱和吸收峰频率值与输出功率存在对应关系,且碘分子吸收峰的出现顺序有明显的排列规律。因此,国外普遍采用记录扫描电压或者功率的方式去判定锁定的碘吸收峰。但是,由于压电陶瓷的电压扫描曲线具有非线性和磁滞效应,导致同一吸收峰在正向扫描和反向扫描时,对应的电压值不完全一致,引起吸收峰的识别与锁定误判。通过记录功率的方式,也会因为吸收峰之间的功率差异较小导致锁定吸收峰的识别难度较大。

      文中实验中采用二次谐波探测方法来准确识别与锁定激光的饱和吸收峰,实验结果如图7(a)所示,图7(b)为谐振腔长扫描的压电陶瓷电压信号。直流扫描电压范围为180~295 V,此时腔长变化一个半波长,对应频率范围为一个自由光谱范围,约为450 MHz,能够完全覆盖碘分子a~n峰。相较于三次谐波信号,二次谐波的信号幅度约为前者的10倍以上,且吸收峰中心频率处对应于二次谐波信号的最大幅值处。对于微弱的碘分子饱和吸收信号,可以在较低信号增益的情况下,实现高幅度的二次谐波电压输出。因此,利用二次谐波信号作为吸收峰识别的触发指示能够有效地降低吸收峰锁定误判,提升系统工作的稳定性和可靠性。

      图  7  (a)扫描腔长碘稳频激光的二次谐波信号;(b)扫描腔长的PZT电压

      Figure 7.  (a) Second harmonics signal of iodine stabilized laser with cavity scanning; (b) PZT voltage for cavity scanning

      图8所示为碘稳频激光锁定f峰后跟踪电压的变化曲线。充分预热后,跟踪电压在320 min内的波动为200 V左右,对应的腔长变化约为500 nm。激光锁定后谐振腔因膨胀或者环境温度变化导致腔长有增加或减小的趋势,此时为保持激光频率锁定,跟踪电压在PID(比例积分微分)控制下自动增加或减小,以补偿腔长漂移维持谐振腔长稳定。

      图  8  激光锁定后的跟踪电压

      Figure 8.  Tracking voltage while laser locked

    • 为评估研制的新型高功率碘稳频He-Ne激光的波长稳定度与复现性,实验中以碘稳频He-Ne激光国家长度基准作为参考激光进行拍频测量。碘稳频He-Ne激光波长基准(国家基准)的总不确定度为2.1×10−11(10 kHz),年漂移小于4.0×10−12(2.0 kHz),1 s频率稳定性优于1.0×10−11。拍频测量结果如图9所示,图(a)为测量得到的激光频率抖动;图(b)频率抖动的统计直方图,其中参考激光锁定至f峰,被测激光锁定至e峰。在3.5 h内,新型高功率碘稳频He-Ne激光波长抖动呈理想正态分布,标准差为33 kHz,平均频差为13.360 MHz。127I2分子R(127) 11-5能带中e峰与f峰的CIPM国际推荐值为13.363 MHz,由此可见新型碘稳频激光不仅实现了输出功率的增加,还保证了激光波长值的准确性。

      图  9  (a)激光锁定f峰的频率抖动;(b)频率抖动的直方图

      Figure 9.  (a) Frequency fluctuation of the f component while laser locked; (b) histogram of frequency fluctuation

      测量得到的激光波长稳定度(阿伦方差)如图10所示。1 000 s稳定度达到4.1×10−13,表现了良好的长期稳定性。在0.1~1 000 s的积分时间内,波长稳定度的拟合线为1.3×10−11(τ/s)−1/2,其中τ为积分时间(单位s),表明激光频率锁定达到了散粒噪声极限。

      图  10  碘稳频激光频率稳定度

      Figure 10.  Frequency stability of iodine stabilized laser

      为评估研制的高功率碘稳频激光波长的复现性,在3个月内进行了22次冷开机实验,每次预热80 min后锁定至e峰与参考激光拍频测量,复现性测量结果见图11。图中,纵坐标以CIPM推荐值13.363 MHz作为参考点,误差棒为10 s采样时间所对应的频率抖动极差值。由图可知,波长复现性的极差值为3.3 kHz,即7.0×10−12

      图  11  碘稳频激光的频率复现性

      Figure 11.  Frequency reproducibility of iodine stabilized laser

    • 文中报道了一种全封闭、一体化结构的高输出功率碘稳频He-Ne激光,其输出功率达到240 μW左右,比国内外普遍使用的碘稳频激光功率增加一倍以上。通过系统优化激光腔内损耗与输出率的匹配关系,在保证饱和信号探测信噪比的同时,实现了激光输出功率的大幅提升。文中从激光谐振腔的轴向膨胀和横向非对称形变两方面分析了腔长的稳定性,实验结果表明激光输出功率在两个月内的波动极限小于10 μW。文中还讨论了激光输出功率与吸收峰位置之间的对应关系,指出利用二次谐波识别碘稳频激光吸收峰的优势,并展示了激光维持长时间锁定的能力。通过碘稳频国家长度基准的拍频测量表明,新型高功率碘稳频He-Ne激光在3.5 h内波长抖动标准差为33 kHz,1 000 s稳定度达到4.1×10−13,3个月内激光波长复现性达到3.3 kHz,即7.0×10−12。研制的高稳定He-Ne激光波长参考光源展示了高功率特性和波长准确性,基本满足当前精密测量领域的应用要求。

      致 谢 感谢中国计量科学研究院退休研究员钱进老师、刘秀英老师以及刘忠有老师提供的实验帮助和数据评估方面的建议。

参考文献 (13)

目录

    /

    返回文章
    返回