留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋光学系统中的时空方法

张雨凡 徐敬

张雨凡, 徐敬. 海洋光学系统中的时空方法[J]. 红外与激光工程, 2020, 49(2): 0203003-0203003. doi: 10.3788/IRLA202049.0203003
引用本文: 张雨凡, 徐敬. 海洋光学系统中的时空方法[J]. 红外与激光工程, 2020, 49(2): 0203003-0203003. doi: 10.3788/IRLA202049.0203003
Zhang Yufan, Xu Jing. Temporal and spatial methods in ocean optical systems[J]. Infrared and Laser Engineering, 2020, 49(2): 0203003-0203003. doi: 10.3788/IRLA202049.0203003
Citation: Zhang Yufan, Xu Jing. Temporal and spatial methods in ocean optical systems[J]. Infrared and Laser Engineering, 2020, 49(2): 0203003-0203003. doi: 10.3788/IRLA202049.0203003

海洋光学系统中的时空方法

doi: 10.3788/IRLA202049.0203003
基金项目: 

国家重点研发计划(2016YFC1401202,2017YFC0306601);国家自然科学基金(61971378,61671409);中国科学院战略性先导科技专项(A类)(XDA22030208)

详细信息
    作者简介:

    张雨凡(1998-),男,本科生,主要从事水下无线光通信、水下激光雷达方面的研究。Email:3160102403@zju.edu.cn

  • 中图分类号: P733.3

Temporal and spatial methods in ocean optical systems

  • 摘要: 海洋光学系统在海洋探索、开发和监测中起到了越来越重要的作用。水下无线光通信、水下激光雷达是两种迅速发展且有良好应用前景的海洋光学系统。水下无线光通信凭借高速率与低延迟的特点在中短距离应用中成为理想的通信选择;水下激光雷达在获取地理信息、目标探测等应用中也是常用的高精度、高效率的观测方法。然而,海水信道的复杂光学特性为海洋光学系统性能的进一步提升带来了挑战。在海水信道中,不仅吸收与散射作用较强,而且信道中可能有湍流、气泡等动态变化的干扰因素。为应对这些挑战,一方面可通过时间或空间方法提高信噪比;另一方面,时空信息转换的方法有利于提升系统的性能。文中对以上解决方案进行综述,并指出海洋光学系统的发展趋势。
  • [1] Churnside J H. Review of profiling oceanographic lidar[J]. Optical Engineering, 2013, 53(5):051405.
    [2] Xu J. Underwater wireless optical communication:why, what, and how?[J]. Chinese Optics Letters, 2019, 17(10):100007.
    [3] Qu F, Wang Z, Yang L, et al. A journey toward modeling and resolving doppler in underwater acoustic communications[J]. IEEE Communications Magazine, 2016, 54(2):49-55.
    [4] Liu D, Xu P, Zhou Y, et al. Lidar remote sensing of seawater optical properties:experiment and monte carlo simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9489-9498.
    [5] Abualhin K. Mapping of underwater seabed morphology of the gaza strip coastal zone using remote sensing technique[J]. Earth Sciences Research Journal, 2016, 20(2):1-7.
    [6] Kerfoot W C, Hobmeier M M, Green S A, et al. Coastal ecosystem investigations with LiDAR (Light Detection and Ranging) and bottom reflectance:lake superior reef threatened by migrating tailings[J]. Remote Sensing, 2019, 11(9):1076.
    [7] Su D, Yang F, Ma Y, et al. Classification of coral reefs in the south china sea by combining Airborne LiDAR bathymetry bottom waveforms and bathymetric features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(2):815-828.
    [8] Alem N, Pellen F, Le Jeune B. New microwave modulation LIDAR scheme for naval mine detection[C]//Electro-Optical Remote Sensing XI. International Society for Optics and Photonics, 2017:1043403.
    [9] Filisetti A, Marouchos A, Martini A, et al. Developments and applications of underwater LiDAR systems in support of ocean science[C]//OCEANS 2018 MTS/IEEE Charleston. IEEE, 2018:1-10.
    [10] Liu Bingyi, Li Ruiqi, Yang Qian, et al. Estimation of global detection depth of spaceborne oceanographic lidar in blue-green spectral region[J]. Infrared and Laser Engineering, 2019, 48(1):128-133. (in Chinese)
    [11] Ottaviani M, Foster R, Gilerson A, et al. Airborne and shipborne polarimetric measurements over open ocean and coastal waters:intercomparisons and implications for spaceborne observations[J]. Remote Sensing of Environment, 2018, 206:375-390.
    [12] Zeng Z, Fu S, Zhang H, et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2016, 19(1):204-238.
    [13] Wang J, Lu C, Li S, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9):12171-12181.
    [14] Hong X, Fei C, Zhang G, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit[J]. Optics Letters, 2019, 44(3):558-561.
    [15] Liu X, Yi S, Zhou X, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22):27937-27947.
    [16] Strand M P. Imaging model for underwater range-gated imaging systems[C]//Underwater Imaging, Photography, and Visibility. International Society for Optics and Photonics, 1991:151-160.
    [17] Ooi B S, Sun X, Alkhazragi O, et al. Visible diode lasers for high bitrate underwater wireless optical communications[C]//Optical Fiber Communication Conference. Optical Society of America, 2019:M3I. 1.
    [18] Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4):513-521.
    [19] Massot-Campos M, Oliver-Codina G. Optical sensors and methods for underwater 3D reconstruction[J]. Sensors, 2015, 15(12):31525-31557.
    [20] Song Hong, Zhang Yunfei, Wu Chaopeng, et al. Calibration method of underwater phase laser ranging[J]. Infrared and Laser Engineering, 2019, 48(4):0406008. (in Chinese)
    [21] Mullen L J, Contarino V M. Hybrid lidar-radar:seeing through the scatter[J]. IEEE Microwave Magazine, 2000, 1(3):42-48.
    [22] Zha B-T, Yuan H-I, Tan Y-Y. Ranging precision for underwater laser proximity pulsed laser target detection[J]. Optics Communications, 2019, 431:81-87.
    [23] Cao Fengmei, Jin Weiqi, Huang Youwei, et al. Review of underwater opto-electrical imaging technology and equipment (I)-Underwater laser range-gated Imaging technology[J]. Infrared Technology, 2011, 33(2):63-69. (in Chinese)
    [24] McLean E, Burris H, Strand M. Short-pulse range-gated optical imaging in turbid water[J]. Applied Optics, 1995, 34(21):4343-4351.
    [25] He D-M, Seet G G. Divergent-beam lidar imaging in turbid water[J]. Optics and Lasers in Engineering, 2004, 41(1):217-231.
    [26] Busck J. Underwater 3-D optical imaging with a gated viewing laser radar[J]. Optical Engineering, 2005, 44(11):116001.
    [27] Wang Yinfei, Zhang Xiaohui, Zhong Wei, et al. Contrast Signal-to-noise model of underwater full range-gated imaging radar based on high-repetion-rate pulse laser[J]. Chinese Journl of Lasers, 2019, 46(7):21-28.(in Chinese)
    [28] Jin D, Ji C, Chu X, et al. Simulation analysis of signal-to-noise ratio of the underwater range gating imaging system[C]//Fifth Symposium on Novel Optoelectronic Detection Technology and Application. International Society for Optics and Photonics, 2019:1102357.
    [29] Zhuang B, Li C, Wu N, et al. First demonstration of 400 Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//2017 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2017:1-2.
    [30] Li J, Huang Z, Liu X, et al. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems[J]. Optics Express, 2015, 23(1):611-619.
    [31] Li X, Chen H, Li S, et al. Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC[C]//2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). IEEE, 2017:616-621.
    [32] Fei C, Hong X, Zhang G, et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26):34060-34069.
    [33] Moore K D, Jaffe J S, Ochoa B L. Development of a new underwater bathymetric laser imaging system:L-bath[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(8):1106-1117.
    [34] Jantzi A, Rumbaugh L, Jemison W. Spatial coherence filtering for scatter rejection in underwater laser systems[C]//Ocean Sensing and Monitoring XI. International Society for Optics and Photonics, 2019:1101406.
    [35] Tang S, Dong Y, Zhang X. On link misalignment for underwater wireless optical communications[J]. IEEE Communications Letters, 2012, 10(16):1688-1690.
    [36] Kong M, Sun B, Sarwar R, et al. Underwater wireless optical communication using a lens-free solar panel receiver[J]. Optics Communications, 2018, 426:94-98.
    [37] Kong M, Lin J, Kang C H, et al. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells[J]. Optics Express, 2019, 27(24):34542-34551.
    [38] Huang X, Yang F, Song J. Hybrid LD and LED-based underwater optical communication:state-of-the-art, opportunities, challenges, and trends[J]. Chinese Optics Letters, 2019, 17(10):100002.
    [39] Al-Rubaiai M, Tan X. Design and development of an LED-based optical communication system with active alignment control[C]//2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2016:160-165.
    [40] Cai C, Zhao Y, Zhang J, et al. Experimental demonstration of an underwater wireless optical link employing orbital angular momentum (OAM) modes with fast auto-alignment system[C]//Optical Fiber Communication Conference. Optical Society of America, 2019:M3I. 4.
    [41] Brandl P, Schidl S, Polzer A, et al. Optical wireless communication with adaptive focus and MEMS-based beam steering[J]. IEEE Photonics Technology Letters, 2013, 25(15):1428-1431.
    [42] Duan X, Song D, Zou J. Steering Co-centered and Co-directional optical and acoustic beams with a water-immersible MEMS scanning mirror for underwater ranging and communication[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019:6582-6587.
    [43] Zhang H, Dong Y, Hui L. On capacity of downlink underwater wireless optical MIMO systems with random sea surface[J]. IEEE Communications Letters, 2015, 19(12):2166-2169.
    [44] Jamali M V, Salehi J A, Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity:MIMO scheme[J]. IEEE Transactions on Communications, 2016, 65(3):1176-1192.
    [45] Jamali M V, Nabavi P, Salehi J A. MIMO underwater visible light communications:Comprehensive channel study, performance analysis, and multiple-symbol detection[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9):8223-8237.
    [46] Song Y, Lu W, Sun B, et al. Experimental demonstration of MIMO-OFDM underwater wireless optical communication[J]. Optics Communications, 2017, 403:205-210.
    [47] Chen X, Lyu W, Yu C, et al. Diversity-reception UWOC system using solar panel array and maximum ratio combining[J]. Optics Express, 2019, 27(23):34284-34297.
    [48] Nevis A J, Hilton R J, Taylor Jr J S, et al. Advantages of three-dimensional electro-optic imaging sensors[C]//Detection and Remediation Technologies for Mines and Minelike Targets VIII. International Society for Optics and Photonics, 2003:225-237.
    [49] Sun Jianfeng, Gao Jian, Wei Jingsong, et al. Research development of under-water detection imaging based on streak tube imaging lidar[J]. Infrared and Laser Engineering, 2010, 39(5):811-814. (in Chinese)
    [50] McLean J W. High-resolution 3D underwater imaging[C]//Airborne and in-Water Underwater Imaging. International Society for Optics and Photonics, 1999:10-19.
    [51] Gleckler A D. Multiple-slit streak tube imaging lidar (MS-STIL) applications[C]//Laser Radar Technology and Applications V. International Society for Optics and Photonics, 2000:266-278.
    [52] Ge Mingda, Sun Jianfeng, Wang Tianjiao, et al. Denoising methods for streak tube imaging lidar range imagebased on contrast-modulation method[J]. Infrared and Laser Engineering, 2013, 42(6):1448-1452. (in Chinese)
    [53] Cui Z, Tian Z, Zhang Y, et al. Research on the underwater target imaging based on the streak tube laser lidar[C]//Young Scientists Forum 2017. International Society for Optics and Photonics, 2018:107103G.
    [54] Hui D, Tian J, Lu Y, et al. Streak tube with large work area and small size used in lidar detection system[J]. Acta Optica Sinica, 2015, 35(12):318-324. (in Chinese)
    [55] Wang C, Yu H-Y, Zhu Y-J, et al. Experimental study on SPAD-based VLC systems with an LED status indicator[J]. Optics Express, 2017, 25(23):28783-28793.
    [56] Shen J, Wang J, Chen X, et al. Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter[J]. Optics Express, 2018, 26(18):23565-23571.
    [57] Kong M, Chen Y, Sarwar R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3):3087-3097.
    [58] Hamza T, Khalighi M-A, Bourennane S, et al. On the suitability of employing silicon photomultipliers for underwater wireless optical communication links[C]//2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2016:1-5.
    [59] Khalighi M-A, Hamza T, Bourennane S, et al. Underwater wireless optical communications using silicon photo-multipliers[J]. IEEE Photonics Journal, 2017, 9(4):1-10.
    [60] Léon P, Roland F, Brignone L, et al. A new underwater optical modem based on highly sensitive Silicon Photomultipliers[C]//OCEANS 2017-Aberdeen. IEEE, 2017:1-6.
    [61] Shen J, Wang J, Yu C, et al. Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output[J]. Optics Communications, 2019, 438:78-82.
    [62] Nie Ruijie, Xu Zhiyong, Zhang Qiheng, et al. Model of electrical characteristics of SiPM array and optimization of front-end design for three-dimensional depth sounder[J]. Optics and Precision Engineering, 2012, 20(8):1661-1668. (in Chinese)
  • [1] 范伟, 刘博, 蒋贇.  基于体光栅窄带光学滤波的激光雷达收发波长动态匹配技术研究 . 红外与激光工程, 2022, 51(7): 20210639-1-20210639-7. doi: 10.3788/IRLA20210639
    [2] 文豪, 曹阳, 党宇超.  无线光通信下极化码DNN-NOMS译码方法研究 . 红外与激光工程, 2022, 51(5): 20210420-1-20210420-11. doi: 10.3788/IRLA20210420
    [3] 曲锐, 杨建峰, 曹剑中, 刘博.  水下大视场连续变焦光学系统设计 . 红外与激光工程, 2021, 50(7): 20200468-1-20200468-7. doi: 10.3788/IRLA20200468
    [4] 刘壮, 王超, 江伦, 史浩东.  低空高分辨率激光雷达光学系统设计 . 红外与激光工程, 2021, 50(1): 20200117-1-20200117-7. doi: 10.3788/IRLA20200117
    [5] 黄宜帆, 贺岩, 胡善江, 侯春鹤, 朱小磊, 李凯鹏, 刘芳华, 陈勇强, 郭守川.  海洋激光雷达图像处理提取海水深度的方法 . 红外与激光工程, 2021, 50(6): 20211034-1-20211034-8. doi: 10.3788/IRLA20211034
    [6] 汪自军, 张扬, 刘东, 王晓波, 袁金如, 潘超, 赵一鸣, 韩晓爽, 周雨迪, 刘群, 王成.  新型多波束陆-海激光雷达探测卫星技术发展研究 . 红外与激光工程, 2021, 50(7): 20211041-1-20211041-11. doi: 10.3788/IRLA20211041
    [7] 李晓龙, 赵朝方.  激光雷达探测海洋物质垂直分布的应用及发展趋势 . 红外与激光工程, 2020, 49(S2): 20200381-20200381. doi: 10.3788/IRLA20200381
    [8] 刘心溥, 元志安, 王玲, 许可, 万建伟.  副载波调制水下激光雷达测距性能仿真 . 红外与激光工程, 2020, 49(S2): 20200193-20200193. doi: 10.3788/IRLA20200193
    [9] 李晶, 车英, 宋暖, 翟艳男, 陈大川, 李君.  三维激光雷达共光路液体透镜变焦光学系统设计 . 红外与激光工程, 2019, 48(4): 418002-0418002(9). doi: 10.3788/IRLA201948.0418002
    [10] 华灯鑫, 王骏.  海洋激光遥感技术研究进展(特邀) . 红外与激光工程, 2018, 47(9): 903003-0903003(7). doi: 10.3788/IRLA201847.0903003
    [11] 张宇飞, 贺岩, 刘梦庚, 陈卫标.  基于伪随机码调制的测距通信一体化激光雷达 . 红外与激光工程, 2018, 47(9): 930003-0930003(6). doi: 10.3788/IRLA201847.0930003
    [12] 朱进一, 谢永军.  采用衍射主镜的大口径激光雷达接收光学系统 . 红外与激光工程, 2017, 46(5): 518001-0518001(8). doi: 10.3788/IRLA201746.0518001
    [13] 柯熙政, 李梦帆.  无载波幅度相位调制无线光通信系统研究 . 红外与激光工程, 2017, 46(12): 1222004-1222004(8). doi: 10.3788/IRLA201746.1222004
    [14] 张欣婷, 安志勇, 亢磊.  三维激光雷达发射/接收共光路光学系统设计 . 红外与激光工程, 2016, 45(6): 618004-0618004(5). doi: 10.3788/IRLA201645.0618004
    [15] 陈丹, 柯熙政, 乔薇.  基于子空间的无线光通信副载波盲均衡算法研究 . 红外与激光工程, 2015, 44(8): 2528-2534.
    [16] 柯熙政, 雷思琛, 邵军虎, 陈强.  基于极化码的无线光通信副载波误码性能分析 . 红外与激光工程, 2015, 44(6): 1849-1853.
    [17] 柯熙政, 谌娟, 邓莉君.  无线光通信中的空时编码研究进展(一) . 红外与激光工程, 2013, 42(7): 1882-1889.
    [18] 柯熙政, 谌娟, 李征.  无线光通信中的空时编码研究进展(三) . 红外与激光工程, 2013, 42(9): 2496-2504.
    [19] 柯熙政, 袁蕾, 李芳.  无线光通信中的空时编码研究进展(二) . 红外与激光工程, 2013, 42(8): 2137-2145.
    [20] 柯熙政, 谌娟, 陈丹.  无线光通信中的空时编码研究进展(四) . 红外与激光工程, 2013, 42(10): 2765-2771.
  • 加载中
计量
  • 文章访问数:  895
  • HTML全文浏览量:  206
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-05
  • 修回日期:  2019-11-03

海洋光学系统中的时空方法

doi: 10.3788/IRLA202049.0203003
    作者简介:

    张雨凡(1998-),男,本科生,主要从事水下无线光通信、水下激光雷达方面的研究。Email:3160102403@zju.edu.cn

基金项目:

国家重点研发计划(2016YFC1401202,2017YFC0306601);国家自然科学基金(61971378,61671409);中国科学院战略性先导科技专项(A类)(XDA22030208)

  • 中图分类号: P733.3

摘要: 海洋光学系统在海洋探索、开发和监测中起到了越来越重要的作用。水下无线光通信、水下激光雷达是两种迅速发展且有良好应用前景的海洋光学系统。水下无线光通信凭借高速率与低延迟的特点在中短距离应用中成为理想的通信选择;水下激光雷达在获取地理信息、目标探测等应用中也是常用的高精度、高效率的观测方法。然而,海水信道的复杂光学特性为海洋光学系统性能的进一步提升带来了挑战。在海水信道中,不仅吸收与散射作用较强,而且信道中可能有湍流、气泡等动态变化的干扰因素。为应对这些挑战,一方面可通过时间或空间方法提高信噪比;另一方面,时空信息转换的方法有利于提升系统的性能。文中对以上解决方案进行综述,并指出海洋光学系统的发展趋势。

English Abstract

参考文献 (62)

目录

    /

    返回文章
    返回