留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可见-近红外无热化连续变焦光学系统设计

曲锐 郭惠楠 曹剑中 杨建峰

曲锐, 郭惠楠, 曹剑中, 杨建峰. 可见-近红外无热化连续变焦光学系统设计[J]. 红外与激光工程, 2021, 50(9): 20210090. doi: 10.3788/IRLA20210090
引用本文: 曲锐, 郭惠楠, 曹剑中, 杨建峰. 可见-近红外无热化连续变焦光学系统设计[J]. 红外与激光工程, 2021, 50(9): 20210090. doi: 10.3788/IRLA20210090
Qu Rui, Guo Huinan, Cao Jianzhong, Yang Jianfeng. Design of visible-near infrared athermal continuous zoom optical system[J]. Infrared and Laser Engineering, 2021, 50(9): 20210090. doi: 10.3788/IRLA20210090
Citation: Qu Rui, Guo Huinan, Cao Jianzhong, Yang Jianfeng. Design of visible-near infrared athermal continuous zoom optical system[J]. Infrared and Laser Engineering, 2021, 50(9): 20210090. doi: 10.3788/IRLA20210090

可见-近红外无热化连续变焦光学系统设计

doi: 10.3788/IRLA20210090
基金项目: 国家重点研发计划(Y610P41B08)
详细信息
    作者简介:

    曲锐,男,助理研究员,博士,主要从事光学系统设计方面的研究

  • 中图分类号: O436

Design of visible-near infrared athermal continuous zoom optical system

  • 摘要: 变焦系统中,动组间相对位置的变化会导致各镜组的初级像差特性发生变化,环境温度的变化还会导致各焦距位置热差的改变,给无热化连续变焦系统的设计造成较大困难。针对该问题,从光学系统像差模型出发,将变焦系统像差分为定组像差、动组内像差和动组间像差三类,并结合变焦系统的消色差和消热差模型,讨论了无热化连续变焦光学系统的设计原则,及变焦系统设计中各组元的光焦度分配和材料选用方法,给出了一个宽波段连续变焦光学系统设计实例,该系统F数为5、焦距范围为8~120 mm、焦面对角线长6.2 mm、波长范围为0.48~0.68 μm和0.7~0.9 μm。所述系统仅采用了七种普通光学玻璃材料,透镜总数12组16片,总长仅90 mm,在−40~60 ℃范围内,变焦全程均具有较好的成像质量和公差特性。
  • 图  1  典型两组元变焦系统结构示意图

    Figure  1.  Schematic diagram of typical two part zoom lens system

    图  2  可见-近红外连续变焦光学系统优化结果示意图

    Figure  2.  Optimization results diagram of visible-near infrared continuous zoom optical system

    图  3  设计完成的变焦系统凸轮曲线

    Figure  3.  Resulted cam curve of the zoom lens system

    图  4  可见谱段的MTF的累积概率分布

    Figure  4.  Cumulative probability of MTF in 0.48-0.68 μm

    表  1  设计指标

    Table  1.   Design requirements

    ParameterValue
    Work wavelength/μm 0.48-0.68 and 0.7-0.9
    Field of view (FOV)/(°) 38.1×22.0-2.5×1.4
    Effective focal length/mm 8-120
    F-number 5
    Overall length/mm ≤90
    Back focal length/mm ≥5.5
    Work temperature/℃ −40-60
    下载: 导出CSV

    表  2  −40 ℃, 20 ℃ 和 60 ℃时,变焦光学系统在0.48~0.68 μm谱段内的MTF

    Table  2.   MTF of the zoom optical system in 0.48-0.68 μm at −40 ℃, 20 ℃ and 60 ℃

    −40 ℃20 ℃60 ℃
    EFL=8 mm
    EFL=70 mm
    EFL=120 mm
    下载: 导出CSV

    表  3  −40 ℃, 20 ℃ 和 60 ℃时,变焦光学系统在0.7~0.9 μm谱段内的MTF

    Table  3.   MTF of the zoom optical system in 0.7-0.9 μm at −40 ℃, 20 ℃ and 60 ℃

    −40 ℃20 ℃60 ℃
    EFL=8 mm
    EFL=70 mm
    EFL=120 mm
    下载: 导出CSV
  • [1] Hu Jixian, Hu Feng. Design of miniaturization for fog transmission zoom lens [J]. Journal of Applied Optics, 2009, 30(4): 547-551. (in Chinese)
    [2] Xie Na, Cui Qingfeng. Athermalization design of visible light optical system based on grouping by weight [J]. Acta Optica Sinica, 2018, 38(12): 1222001. (in Chinese) doi:  10.3788/AOS201838.1222001
    [3] Du Weifeng, Liu Yongzhi, Gao Wenjie, et al. Analysis of passive athermalization structure design and integrated opto-mechanical-thermal of zoom lens of photoelectric countermeasure platform [J]. Laser & Optoelectronics Progress, 2020, 57(13): 131204. (in Chinese)
    [4] Wu Xiaojin, Sun Chiquan, Meng junhe. Relationship between athermalizing infrared optical system and zoom lens [J]. Infrared and Laser Engineering, 2002, 31(3): 249-252. (in Chinese) doi:  10.3969/j.issn.1007-2276.2002.03.014
    [5] Sasián J. Aberrations of zoom lens Kernel [C]//SPIE, 2019, 11106: 1110604.
    [6] Sasián J. Introduction to Aberrations in Optical Imaging Systems[M]. Cambridge: Cambridge University Press, 2002.
    [7] Hu Yuxi, Zhou Shaoxiang, Xiangli Bin, et al. Design of athermal optical system [J]. Acta Optica Sinica, 2000, 20(10): 1386-1391. (in Chinese) doi:  10.3321/j.issn:0253-2239.2000.10.016
    [8] Qu Rui, Deng Jian, Peng Xiaole, et al. 0.4-1.7 μm wideband fast f-number optical system design [J]. Acta Optica Sinica, 2015, 35(8): 0806006. (in Chinese) doi:  10.3788/AOS201535.0806006
    [9] Xi Xiao, Cen Zhaofeng, Li Xiaotong. Application of athermalisation in optical systems [J]. Infrared and Laser Engineering, 2005, 34(4): 388-390. (in Chinese) doi:  10.3969/j.issn.1007-2276.2005.04.003
    [10] Kingslake R, Johnson R B. Lens Design Fundamentals[M]. Burlington: Academic Press, 2010: 137-167.
    [11] Ellis I B, James B C, Iain A N, et al. Zoom lens system: US, 6961188[P]. 2005-11-01.
    [12] Aurelian D. Toward the global optimum in zoom lens design [C]//SPIE, 2012, 8488: 848802.
    [13] 陶纯堪. 变焦距光学系统设计[M]. 北京: 国防工业出版社, 1988: 49-153.

    Tao Chunkan. Zoom Lens Design[M]. Beijing: National Defense Industry Press, 1988: 49-153. (in Chinese)
    [14] Wang Cunyan, Wang Zhijian, Zhou Qingcai. Solving the cam curve of the compensation group about zoom lens using dynamic optical theory [J]. Acta Optica Sinica, 2006, 26(6): 891-894. (in Chinese) doi:  10.3321/j.issn:0253-2239.2006.06.019
    [15] Optical Research Associates. Code V Reference Manual[M]. Pasadena: Optical Research Associates, 2009.
  • [1] 马德超, 朴明旭, 谢亚峰, 赵渊明, 牛群, 张承然, 王喆, 张博.  环形孔径折叠成像系统的光-数联合无热化设计(封面文章·特邀) . 红外与激光工程, 2024, 53(3): 20240013-1-20240013-9. doi: 10.3788/IRLA20240013
    [2] 杜伟峰, 王燕清, 郑循江, 吴永康, 谢廷安.  甚高精度微型星敏感器光学系统设计与验证 . 红外与激光工程, 2023, 52(11): 20230104-1-20230104-10. doi: 10.3788/IRLA20230104
    [3] 唐晗, 郑万祥, 曾兴容, 杨丹, 周春芬, 曹凌, 徐曼, 李洪兵, 杨开宇.  紧凑低成本非制冷长波红外连续变焦光学设计 . 红外与激光工程, 2023, 52(4): 20220607-1-20220607-11. doi: 10.3788/IRLA20220607
    [4] 曲锐, 杨建峰, 曹剑中, 刘博.  水下大视场连续变焦光学系统设计 . 红外与激光工程, 2021, 50(7): 20200468-1-20200468-7. doi: 10.3788/IRLA20200468
    [5] 杨洪涛, 杨晓帆, 梅超, 陈卫宁.  折衍混合红外双波段变焦光学系统设计 . 红外与激光工程, 2020, 49(10): 20200036-1-20200036-8. doi: 10.3788/IRLA20200036
    [6] 刘鑫, 常军, 陈蔚霖, 杜杉, 武楚晗, 许祥馨, 朱懿.  连续变焦偏振视频显微物镜设计 . 红外与激光工程, 2020, 49(8): 20200003-1-20200003-6. doi: 10.3788/IRLA20200003
    [7] 伍雁雄, 乔健, 王丽萍.  长焦距无热化星敏感器光学系统设计 . 红外与激光工程, 2020, 49(9): 20200061-1-20200061-10. doi: 10.3788/IRLA20200061
    [8] 刘智颖, 高柳絮, 黄蕴涵.  offner型连续变焦中波红外光谱成像系统设计 . 红外与激光工程, 2019, 48(7): 718003-0718003(9). doi: 10.3788/IRLA201948.0718003
    [9] 邓强, 李升辉.  高分辨率像方远心连续变焦投影镜头的设计 . 红外与激光工程, 2019, 48(11): 1114005-1114005(8). doi: 10.3788/IRLA201948.1114005
    [10] 孟祥月, 王洋, 张磊, 付跃刚, 顾志远.  大相对孔径宽光谱星敏感器光学镜头设计 . 红外与激光工程, 2019, 48(7): 718005-0718005(8). doi: 10.3788/IRLA201948.0718005
    [11] 李生好.  红外目标模拟器动态校准系统光学系统设计 . 红外与激光工程, 2018, 47(9): 918007-0918007(7). doi: 10.3788/IRLA201847.0918007
    [12] 王静, 吴越豪, 戴世勋, 徐铁峰, 木锐.  硫系玻璃在长波红外无热化连续变焦广角镜头设计中的应用 . 红外与激光工程, 2018, 47(3): 321001-0321001(7). doi: 10.3788/IRLA201847.0321001
    [13] 朱嘉诚, 靳阳明, 黄绪杰, 刘全, 沈为民.  宽波段凸面闪耀光栅优化设计 . 红外与激光工程, 2017, 46(11): 1120003-1120003(7). doi: 10.3788/IRLA201746.1120003
    [14] 曲锐, 梅超, 杨洪涛, 曹剑中, 赵延.  紧凑型大变倍比红外光学系统设计 . 红外与激光工程, 2017, 46(11): 1104002-1104002(5). doi: 10.3788/IRLA201746.1104002
    [15] 杨利华, 赵侃, 于双双, 徐大维, 韩星, 孟军合.  立体手术显微镜连续变焦大物镜设计 . 红外与激光工程, 2016, 45(1): 118008-0118008(5). doi: 10.3788/IRLA201645.0118008
    [16] 米士隆, 牟达, 牟蒙.  紧凑型长波红外光学系统无热化设计 . 红外与激光工程, 2015, 44(10): 3032-3036.
    [17] 王保华, 刘英, 孙强, 王媛媛, 张建忠, 姜洋.  折射/衍射混合长波红外连续变焦光学系统设计 . 红外与激光工程, 2013, 42(1): 148-153.
    [18] 陈津津, 金宁, 周立钢, 贾星蕊.  高清晰大变倍比中波红外连续变焦光学系统设计 . 红外与激光工程, 2013, 42(10): 2742-2747.
    [19] 周昊, 刘英, 孙强.  高变焦比中波红外连续变焦光学系统 . 红外与激光工程, 2013, 42(3): 663-668.
    [20] 姜凯, 周泗忠, 李刚, 杨晓许, 赵睿, 张恒金.  折反式中波红外双视场变焦系统无热化设计 . 红外与激光工程, 2013, 42(2): 403-407.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  158
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-04-11
  • 刊出日期:  2021-09-23

可见-近红外无热化连续变焦光学系统设计

doi: 10.3788/IRLA20210090
    作者简介:

    曲锐,男,助理研究员,博士,主要从事光学系统设计方面的研究

基金项目:  国家重点研发计划(Y610P41B08)
  • 中图分类号: O436

摘要: 变焦系统中,动组间相对位置的变化会导致各镜组的初级像差特性发生变化,环境温度的变化还会导致各焦距位置热差的改变,给无热化连续变焦系统的设计造成较大困难。针对该问题,从光学系统像差模型出发,将变焦系统像差分为定组像差、动组内像差和动组间像差三类,并结合变焦系统的消色差和消热差模型,讨论了无热化连续变焦光学系统的设计原则,及变焦系统设计中各组元的光焦度分配和材料选用方法,给出了一个宽波段连续变焦光学系统设计实例,该系统F数为5、焦距范围为8~120 mm、焦面对角线长6.2 mm、波长范围为0.48~0.68 μm和0.7~0.9 μm。所述系统仅采用了七种普通光学玻璃材料,透镜总数12组16片,总长仅90 mm,在−40~60 ℃范围内,变焦全程均具有较好的成像质量和公差特性。

English Abstract

    • 可见-近红外连续变焦光学系统兼具大视场搜索与小视场详查功能,还可通过工作谱段的切换实现光学透雾,通过调焦功能实现对不同温度环境的适应,在诸多场景获得广泛应用,但对诸如航空摄影、侦察跟踪等特殊应用场景,反复调焦可能导致目标丢失,影响功能实现,这就要求光学系统具备无热化功能,保证光学系统在不同温度环境下无需调焦均可清晰成像[1-4]

      另外,对于连续变焦光学系统,在焦距连续变化过程中动组间相对位置发生变化,成像系统放大倍率、像差特性等均随之改变,各焦距位置的热差和色差也发生变化,而且光学系统的大相对孔径化导致系统焦深范围变窄,也对消热设计提出了更大的挑战。

      针对以上问题,文中结合变焦系统像差模型和变焦系统的消色差、热差模型,阐述了一种宽波段无热化连续变焦系统的设计方法,对类似光学系统的设计具有参考作用。

    • 变焦系统由定组和动组两部分组成,并将动组的组合称为变焦核,此时变焦光学系统的波像差函数$ W\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup},\gamma \right) $可表示为:

      $$ W\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup},\gamma \right)={W}_{P}\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup}\right)+{W}_{K}\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup}\right)+{W}_{K}\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup},\gamma \right) $$

      式中:$ {W}_{P}\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup}\right) $为定组的波像差函数;$ {W}_{K}\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup}\right) $为动组内的波像差函数;$ {W}_{K}\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup},\gamma \right) $为由动组移动产生的波像差函数,或称为变焦核波像差函数;$ \mathop H\limits^{\rightharpoonup} $为归一化视场矢量;$ \mathop {\rho }\limits^{\rightharpoonup} $为归一化光瞳矢量;$ \gamma $为归一化光焦度变化量。

      此时,变焦系统的像差函数分解为独立的三类像差,相应设计任务转变为:设计相应的变焦核,实现要求的变倍比,并控制$ {W}_{K}\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup},\gamma \right) $;设计相应的定组,满足其他设计要求,并控制$ {W}_{P}\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup}\right) $$ {W}_{K}\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup}\right) $。通过将变焦系统的像差分为依赖与不依赖焦距变化的三类像差,可有效简化整个变焦光学系统的设计过程[5-6]

      进一步的,可对变焦核初级波像差做三阶多项式展开,则有:

      $$ \begin{split} {W}_{K}\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup},\gamma \right) =& ({W}_{K111}^{1}+{W}_{K111}^{2}{\gamma }^{2}+{W}_{K11}^{3}{\gamma }^{3}) \left(\mathop H\limits^{\rightharpoonup} \cdot \mathop {\rho }\limits^{\rightharpoonup}\right) + \\ &({W}_{K020}^{1}+{W}_{K020}^{2}{\gamma }^{2}+{W}_{K020}^{3}{\gamma }^{3} ) \left(\mathop {\rho }\limits^{\rightharpoonup} \cdot \mathop {\rho }\limits^{\rightharpoonup}\right) +\\ & ({W}_{K040}^{1}+{W}_{K040}^{2}{\gamma }^{2}+{W}_{K040}^{3}{\gamma }^{3} ) {\left(\mathop {\rho }\limits^{\rightharpoonup} \cdot \mathop {\rho }\limits^{\rightharpoonup}\right)}^{2}+ \\ &({W}_{K131}^{1}+{W}_{K131}^{2}{\gamma }^{2}+{W}_{K131}^{3}{\gamma }^{3} ) \left(\mathop H\limits^{\rightharpoonup} \cdot \mathop {\rho }\limits^{\rightharpoonup}\right)\left(\mathop {\rho }\limits^{\rightharpoonup} \cdot \mathop {\rho }\limits^{\rightharpoonup}\right) +\\ & ({W}_{K222}^{1}+{W}_{K222}^{2}{\gamma }^{2}+{W}_{K222}^{3}{\gamma }^{3} ) {\left(\mathop H\limits^{\rightharpoonup} \cdot \mathop {\rho }\limits^{\rightharpoonup}\right)}^{2} +\\ & ({W}_{K220}^{1}+{W}_{K220}^{2}{\gamma }^{2}+{W}_{K220}^{3}{\gamma }^{3} ) \left(\mathop H\limits^{\rightharpoonup} \cdot \mathop H\limits^{\rightharpoonup}\right)\left(\mathop {\rho }\limits^{\rightharpoonup} \cdot \mathop {\rho }\limits^{\rightharpoonup}\right) +\\ & ({W}_{K311}^{1}+{W}_{K311}^{2}{\gamma }^{2}+{W}_{K311}^{3}{\gamma }^{3} ) \left(\mathop H\limits^{\rightharpoonup} \cdot \mathop H\limits^{\rightharpoonup}\right)\left(\mathop H\limits^{\rightharpoonup} \cdot \mathop {\rho }\limits^{\rightharpoonup}\right) \end{split} $$

      式中:前两项分别为变焦核的倍率色差和轴向色差;后五项分别为球差、彗差、像散、场曲和畸变。此时,$ {W}_{K}\left(\mathop H\limits^{\rightharpoonup},\mathop {\rho }\limits^{\rightharpoonup},\gamma \right) $转化为归化光焦度的多项式函数。

      据此,下面采用薄透镜理论简要讨论变焦系统中的消色差和消热差模型。对于其他类型的变焦系统,可通过类似的方法进行分析设计。

    • 对于电视观测类变焦系统,为了避免产生色离焦,设计阶段需特别关注轴向色差$ {W}_{020}^{}\left(\mathop {\rho }\limits^{\rightharpoonup} \cdot \mathop {\rho }\limits^{\rightharpoonup}\right) $。而对于 如图1所示的两动组型变焦系统,沿光路通常设置有前固定组、变倍组、补偿组和后固定组;各组元需同时满足光焦度方程和焦面恒定方程,即

      图  1  典型两组元变焦系统结构示意图

      Figure 1.  Schematic diagram of typical two part zoom lens system

      $$ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left\{\begin{array}{c}\;\;\;\;\;\;\;\;\;\;\;{f}_{1}^{'} \cdot {m}_{2} \cdot {m}_{3} \cdot {m}_{4}={f}^{'}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1)\\ \dfrac{1-{m}_{2}^{2}}{{m}_{2}^{2}}{f}_{2}^{'}{\rm{d}}{m}_{2}+\dfrac{1-{m}_{3}^{2}}{{m}_{3}^{2}}{f}_{3}^{'}{\rm{d}}{m}_{3}=0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)\end{array}\right. $$

      其中,设组合系统的焦距为$ {f}^{'} $;前固定镜组焦距为$ {f}_{1}^{'} $;变倍组焦距为$ {f}_{2}^{'} $,放大倍率为m2;补偿组焦距为$ {f}_{3}^{'} $,放大倍率为m3

      另外,当光学系统工作谱段较宽,由材料导致的色差不可忽略,各组元还需满足消色差条件,将公式(1)对折射率作全微分,可得变焦系统的轴向色差:

      $$ \begin{split} {\Delta f}_{c}^{'}=&\Delta {f}_{1c}^{'} \cdot {m}_{2} \cdot {m}_{3} \cdot {m}_{4}+{f}_{1}^{'} \cdot \Delta {m}_{2} \cdot {m}_{3} \cdot {m}_{4}+{f}_{1}^{'} \cdot {m}_{2} \cdot \Delta {m}_{3} \cdot\\ & {m}_{4}+{f}_{1}^{'} \cdot {m}_{2} \cdot {m}_{3} \cdot \Delta {m}_{4} \end{split} $$ (3)

      将公式(1)代入公式(3),并设后固定组焦距为$ {f}_{4}^{'} $,放大倍率为m4,各镜组的焦像距分别为$ {{x}}_{2}^{'}{\text{、}}{{x}}_{3}^{'}{\text{和}}{{x}}_{4}^{'} $,考虑各镜组放大率$ {m}_{2}=-\dfrac{{{x}}_{2}^{'}}{{f}_{2}^{'}} $$ {m}_{3}=-\dfrac{{{x}}_{3}^{'}}{{f}_{3}^{'}}{\text{和}}{m}_{4}=-\dfrac{{{x}}_{4}^{'}}{{f}_{4}^{'}} $,并采用二级近似,可得:

      $$ \begin{split} \dfrac{{\Delta f}_{c}^{'}}{{f}^{'}}=&\dfrac{\Delta {f}_{1c}^{'}}{{f}_{1}^{'}}+\dfrac{\Delta {f}_{2c}^{'}}{{f}_{2}^{'}}+\dfrac{\Delta {f}_{3c}^{'}}{{f}_{3}^{'}}+\dfrac{\Delta {f}_{4c}^{'}}{{f}_{4}^{'}}- \\ & {m}_{2}\dfrac{\Delta {f}_{1c}^{'}}{{f}_{2}^{'}}-{m}_{2}^{2}{m}_{3}\dfrac{\Delta {f}_{1c}^{'}}{{f}_{3}^{'}}-{m}_{2}^{2}{{m}_{3}^{2}m}_{4}\dfrac{\Delta {f}_{1c}^{'}}{{f}_{4}^{'}} \end{split} $$ (4)

      前四项为定组和动组内的轴向色差,后三项为变焦核的轴向色差。若定义$ \dfrac{\Delta {f}^{'}}{{f}^{'}} $为镜组色散能力,则变焦系统的轴向色散主要受各镜组的色散能力、前固定组的轴向色散和变倍补偿组的放大倍率限制。对单个薄透镜而言,$ \dfrac{{\Delta f}_{c}^{'}}{{f}^{'}} $在数值上等于阿贝数的倒数,为归化色差系数[7-9]

      此时,对于光学系统中的短焦位置,变倍补偿组的放大倍率m2m3通常均小于1,组元间色差影响较小,光学系统的轴向色差受各组元自身的归化色散能力限制;而在长焦位置,变倍补偿组的放大倍率m2m3通常均大于1,各镜组均对前置镜组的色差产生放大,往往导致光学系统色差变大。

      由此,采用像差独立校正设计原则,尤其是前固定组应单独校正或保持尽量小的色差;另外,合理选择和分配动组放大倍率区间有助于宽波段变焦系统色差的校正。

    • 光学系统中,光学材料的折射率色散会随温度发生变化产生热色差,而材料受热膨胀变形也会产生热离焦,均会导致成像质量退化而成为问题。若将热色散和热离焦统称为光学系统的热差,此时光学设计中各组元还需满足消热差条件,对温度作全微分(公式(1)),并做与1.2节相同的处理,可得变焦系统的轴向热差:

      $$ \begin{split} \dfrac{{\Delta f}_{T}^{'}}{{f}^{'}}=&\dfrac{\Delta {f}_{1T}^{'}}{{f}_{1}^{'}}+\dfrac{\Delta {f}_{2T}^{'}}{{f}_{2}^{'}}+\dfrac{\Delta {f}_{3T}^{'}}{{f}_{3}^{'}}+\dfrac{\Delta {f}_{4T}^{'}}{{f}_{4}^{'}}- \\ &{m}_{2}\dfrac{\Delta {f}_{1T}^{'}}{{f}_{2}^{'}}-{m}_{2}^{2}{m}_{3}\dfrac{\Delta {f}_{1T}^{'}}{{f}_{3}^{'}}-{m}_{2}^{2}{{m}_{3}^{2}m}_{4}\dfrac{\Delta {f}_{1T}^{'}}{{f}_{4}^{'}} \end{split} $$ (5)

      同样的,若定义$ \dfrac{{\Delta f}_{T}^{'}}{{f}^{'}} $为镜组归化热差,则变焦系统的轴向热差主要受各镜组的归化热差、前固定组的归化热差和变倍补偿组的放大倍率限制。对单个薄透镜而言,$ \dfrac{{\Delta f}_{T}^{'}}{{f}^{'}} $在数值上等于$ \left(\dfrac{{\rm{d}}n/{\rm{d}}t}{n-1}-{\alpha }_{\mathrm{g}}\right) $,为归化热差系数[7-9]

      可知,在变焦系统的消热差方面具有与消色差一样的设计原则:各组元,尤其是前固定组,应单独校正或保持尽量小的热差;合理选择和分配动组放大倍率区间有助于宽波段变焦系统热差的校正。

      另外,需要特别说明的是,归化热差系数综合考虑了材料的温度折射率系数和膨胀系数,因此,同样适用于红外波段的光学设计,并能有效指导无热化红外变焦光学系统中的材料选用。

    • 变焦系统中各组元应遵循色差热差独立校正原则,单独校正或保持尽量小的色差和热差。此时,各镜组内的光学元件需满足光焦度方程和宽波段消色差方程[5-6]

      结合负组变焦负组补偿(PNNP)、正组变焦负组补偿(PPNP)、含中间固定组的负组变焦负组补偿(PNPNP)等典型负组补偿型双动组变焦结构:具有正光焦度的前固定组或变组可采用色散系数较大的负光焦度元件(如HZF88、HLAF50等)予以平衡色差,采用热差系数较小的材料(如Silica等)来平衡热差;而具有负光焦度的补偿组结构应尽量简单,可采用色散系数较小的负光焦度元件(如HFK61等)和色散系数较大的正光焦度元件(如HZF88、HZF62等)来进行色差平衡;后固定组在变焦系统中主要起到校正系统残余单色像差的作用,材料选择上依赖于剩余像差的分布。

      在单一材料不能满足光焦度与色散特性要求的情况下,可选用两种材料作胶合元件获得等效特性的元件。另外,还要注意胶合元件可以具有反常的色散特性,即正光焦度元件可以具有负的色散系数,或相反。

    • 选用一个具体设计实例对上述方法进行说明讨论。设计实例选用0.48~0.68 μm和0.7~0.9 μm增强型CMOS面阵探测器,像元数为1920×1080,像元尺寸为2.8 μm×2.8 μm,对角线长度为6.2 mm。具体设计指标如表1所示。

      表 1  设计指标

      Table 1.  Design requirements

      ParameterValue
      Work wavelength/μm 0.48-0.68 and 0.7-0.9
      Field of view (FOV)/(°) 38.1×22.0-2.5×1.4
      Effective focal length/mm 8-120
      F-number 5
      Overall length/mm ≤90
      Back focal length/mm ≥5.5
      Work temperature/℃ −40-60

      光学系统前固定镜组(A-part)承担系统主要光焦度,采用四组五片式结构,其中首片正透镜采用HZF88材料,尾片负透镜采用HZF3来平衡色差和热差;变倍镜组(Z-part)行程较大,承担整个光学系统变倍作用,采用色散能力较强的HZF88做正透镜,进行色差补偿,保证整个变倍组具有较小的残余色差;中间固定组(M-part)为典型的单透镜+双胶合结构,具有正光焦度;补偿组(C-part)具有正光焦度,主要用作补偿因变倍组移动引起的像面偏移,其中的双胶合元件具有负的合成色散系数,可保证补偿组色差的独立校正;后固定镜组(B-part)靠近像面,构成场镜结构,主要用于校正系统场曲和畸变,另外较长的后截距也给系统的滤光片切换机构预留了足够的空间[8-12]

      采用CodeV软件对上述光学系统进行优化分析,图2为可见-近红外无热化连续变焦光学系统优化结果示意图。所述系统采用HZF88、HZF3、HFK95、HZPK1、HZLAF78等七种普通光学玻璃材料,共12组16片透镜,光机选用铝合金材料,光学系统靠近物面一侧表面至焦面,总长90 mm,单透镜最大口径小于45 mm,双胶合透镜最大口径小于40 mm。

      图  2  可见-近红外连续变焦光学系统优化结果示意图

      Figure 2.  Optimization results diagram of visible-near infrared continuous zoom optical system

      对上述光学系统不同温度、不同视场的MTF评价如表2表3所示。可以看出,所设计的光学系统在−40~60 ℃范围内,在长焦、中焦和短焦不同位置,空间频率为180 lp/mm处均具有较好的传函分布,表明该系统具有较好的成像质量,也证明了上述设计方法的可行性。利用编写的宏程序对上述宽波段连续变焦光学系统进行凸轮曲线优化设计,图3为优化完成的变焦系统凸轮曲线示意图,可知整个变焦系统变倍补偿过程平滑无拐点,可满足工程应用要求[13-15]

      表 2  −40 ℃, 20 ℃ 和 60 ℃时,变焦光学系统在0.48~0.68 μm谱段内的MTF

      Table 2.  MTF of the zoom optical system in 0.48-0.68 μm at −40 ℃, 20 ℃ and 60 ℃

      −40 ℃20 ℃60 ℃
      EFL=8 mm
      EFL=70 mm
      EFL=120 mm

      表 3  −40 ℃, 20 ℃ 和 60 ℃时,变焦光学系统在0.7~0.9 μm谱段内的MTF

      Table 3.  MTF of the zoom optical system in 0.7-0.9 μm at −40 ℃, 20 ℃ and 60 ℃

      −40 ℃20 ℃60 ℃
      EFL=8 mm
      EFL=70 mm
      EFL=120 mm

      图  3  设计完成的变焦系统凸轮曲线

      Figure 3.  Resulted cam curve of the zoom lens system

      取前固定镜组和焦面的轴向位置作为装调补偿,各镜组和镜组间的公差要求如下:各镜组内材料折射率公差为±0.001,阿贝数公差为±0.002;面型公差为N=3,ΔN=0.3;厚度公差为±0.03 mm;偏心公差为±0.01 mm;倾斜公差为±1′。镜组间用镜筒整合,整合公差:偏心公差为±0.03 mm,倾斜公差为±1′,均具有优良的可实现特性。对应公差条件下可见谱段的MTF概率累积分布如图4所示。

      图  4  可见谱段的MTF的累积概率分布

      Figure 4.  Cumulative probability of MTF in 0.48-0.68 μm

    • 从光学系统设计的像差模型出发,将变焦系统的像差分为定组像差、动组像差和动组间像差,结合变焦系统设计中的消色差和消热差条件,简要讨论了各像差特性,论述了一种无热化连续变焦光学系统的设计方法,降低了该类系统的设计难度。作为例证,给出了一个可见-近红外连续变焦光学系统设计实例。该光学系统在所用材料皆为普通光学玻璃材料的条件下实现了8~120 mm焦距范围,可见光和近红外双段波的共孔径共焦面集成,及−40~60 ℃宽温度条件内的光学被动无热化,并且该系统具有小巧的体积、紧凑的结构、高的透过率,在整个变焦范围内都具有较好的成像质量与公差特性,可望在观瞄、监控、多谱段成像等领域获得广泛应用。目前该方法已用于类似产品的设计开发当中。

参考文献 (15)

目录

    /

    返回文章
    返回