留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同泵浦波长光纤激光器模式不稳定效应对比

万颖超 杨保来 奚小明 张汉伟 叶云 王小林

万颖超, 杨保来, 奚小明, 张汉伟, 叶云, 王小林. 不同泵浦波长光纤激光器模式不稳定效应对比[J]. 红外与激光工程, 2022, 51(4): 20210256. doi: 10.3788/IRLA20210256
引用本文: 万颖超, 杨保来, 奚小明, 张汉伟, 叶云, 王小林. 不同泵浦波长光纤激光器模式不稳定效应对比[J]. 红外与激光工程, 2022, 51(4): 20210256. doi: 10.3788/IRLA20210256
Wan Yingchao, Yang Baolai, Xi Xiaoming, Zhang Hanwei, Ye Yun, Wang Xiaolin. Transverse mode instability effect of fiber lasers with different pump wavelengths[J]. Infrared and Laser Engineering, 2022, 51(4): 20210256. doi: 10.3788/IRLA20210256
Citation: Wan Yingchao, Yang Baolai, Xi Xiaoming, Zhang Hanwei, Ye Yun, Wang Xiaolin. Transverse mode instability effect of fiber lasers with different pump wavelengths[J]. Infrared and Laser Engineering, 2022, 51(4): 20210256. doi: 10.3788/IRLA20210256

不同泵浦波长光纤激光器模式不稳定效应对比

doi: 10.3788/IRLA20210256
基金项目: 国家自然科学基金青年科学基金(62005315);长沙市杰出创新青年培养计划(kq2009004)
详细信息
    作者简介:

    万颖超,男,硕士生,主要从事高功率光纤激光器技术方面的研究

    通讯作者: 王小林,男,副研究员,博士,主要从事高功率光纤激光器技术方面的研究。
  • 中图分类号: O436

Transverse mode instability effect of fiber lasers with different pump wavelengths

  • 摘要: 一般认为,光纤激光器模式不稳定效应主要来自于泵浦源量子亏损和增益光纤泵浦吸收所产生的热效应。理论分析了光纤中的热源,发现诱发模式不稳定的热效应主要来源于泵浦吸收、其次是量子亏损;利用课题组开发的仿真软件SeeFiberLaser对该结论进行仿真。仿真结果表明:泵浦吸收系数越低,光纤中的最高温度和温度梯度越低,越有利于抑制热致折射率光栅的形成,提高模式不稳定阈值。搭建了纤芯/包层直径为30/400 μm的前向泵浦掺镱光纤激光振荡器,对比研究了中心波长为976 nm 、915 nm和940 nm的泵浦源泵浦时激光器的模式不稳定阈值特性。结果表明,分别采用中心波长为976 nm 、915 nm和940 nm 的半导体激光器作为泵浦源时,激光器模式不稳定阈值分别为279 W、502 W和697 W,光光转化效率分别为67.7%、61%和63%。由此可以发现,泵浦吸收系数对模式不稳定阈值的影响大于量子亏损对模式不稳定阈值的影响,通过改变泵浦波长降低泵浦吸收系数可以有效提升模式不稳定阈值。优化泵浦波长,兼顾量子效率和泵浦吸收系数,是光纤激光器实现高光束质量高模式不稳定阈值的重要技术路线之一。
  • 图  1  SeeFiberLaser仿真结构图

    Figure  1.  SeeFiberLaser simulation structure diagram

    图  2  纤芯和包层中的温度变化

    Figure  2.  Variation of temperature in core and cladding

    图  3  光纤激光振荡器结构示意图

    Figure  3.  Schematic diagram of fiber laser oscillator

    图  4  976 nm LD泵浦时光纤激光振荡器输出特性。(a)不同泵浦功率条件下输出功率及光光转换效率;(b)输出功率为279 W时的光谱;(c)~(d)输出功率分别为279 W和235 W时的时频域信号;(e)泵浦功率为483 W时的光束质量因子及光斑形态

    Figure  4.  Output characteristic of fiber oscillator when pumped with 976 nm LD. (a) Output power and optical-to-optical(O-O) efficiency under different pump power; (b) Optical spectrum at the output power of 279 W; (c)-(d) Time domain signals and their Fourier spectra at the output power of 279 W and 235 W, respectively; (e) Beam quality factor and beam profile when the pump power is 483 W

    图  5  915 nm LD泵浦时光纤激光振荡器输出特性。(a)不同泵浦功率条件下输出功率及光光转换效率;(b)输出功率为502 W时的光谱;(c)~(d)输出功率分别为502 W和468 W时的时频域信号;(e)泵浦功率为952 W时的光束质量因子及光斑形态

    Figure  5.  Output characteristic of fiber oscillator when pumped with 915 nm LD. (a) Output power and O-O efficiency under different pump power; (b) Optical spectrum at the output power of 502 W; (c)-(d) Time domain signals and their Fourier spectra at the output power of 502 W and 468 W, respectively; (e) Beam quality factor and beam profile when the pump power is 952 W

    图  6  940 nm LD泵浦时光纤激光振荡器输出特性。(a)不同泵浦功率条件下输出功率及光光转换效率;(b)输出功率为697 W时的光谱;(c)~(d)输出功率分别为697 W和693 W时的时频域信号;(e)泵浦功率为1149 W时的光束质量因子及光斑形态

    Figure  6.  Output characteristic of fiber oscillator when pumped with 940 nm LD. (a) Output power and O-O efficiency under different pump power; (b) Optical spectrum at the output power of 697 W; (c)-(d) Time domain signals and their Fourier spectra at the output power of 697 W and 693 W, respectively; (e) Beam quality factor and beam profile when the pump power is 1149 W

    表  1  不同泵浦波长TMI阈值

    Table  1.   TMI threshold for different pump wavelengths

    Pump wavelength/nmPump absorption coefficient/dB.m−1Active fiber maximum temperature/℃TMI threshold/WO-O conversion efficiency
    9762.73110.8927967.7%
    9150.8870.9350261%
    9400.6853.2669763%
    下载: 导出CSV
  • [1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: Current status and future perspectives [Invited] [J]. Journal of the Optical Society of America B, 2010, 27(11): B63. doi:  10.1364/JOSAB.27.000B63
    [2] Zervas Michalis N, Codemard Christophe A. High power fiber lasers: A review [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi:  10.1109/JSTQE.2014.2321279
    [3] Stutzki Fabian, Jansen Florian, Otto Hans-Jürgen, et al. Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems [J]. Optica, 2014, 1(4): 233. doi:  10.1364/OPTICA.1.000233
    [4] Lingfa Zeng, Xi Xiaoming, Ye Yun. Near-single-mode 3 kW monolithic fiber oscillator based on a longitudinally spindle-shaped Yb-doped fiber [J]. Optics Express, 2020, 45(20): 5792-5795.
    [5] Xiaoming Xi, Peng Wang, Baolai Yang, et al. The output power of the all-fiber laser oscillator exceeds 7 kW [J]. Chinese Journal of Lasers, 2021, 48(1): 0116001. (in Chinese) doi:  10.3788/CJL202148.0116001
    [6] Wang Y, Kitahara R, Kiyoyama W, et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[C]//Proc of SPIE, 2020, 11260: 1126022.
    [7] Ma Pengfei, Xiao Hu, Leng Jinyong, et al. Narrow linewidth fiber laser breaks through 4 kW near single mode output [J]. Infrared and Laser Engineering, 2021, 50(1): 20200421. (in Chinese)
    [8] Ma Pengfei, Ma Yanxin, Su Rongtao, et al. Coherent synthesis of 8 kW fiber laser with high quality and high efficiency (brief news) [J]. Infrared and Laser Engineering, 2020, 49(5): 20200577. (in Chinese)
    [9] Christian Wirth, Thomas Schreiber, Miroslaw Rekas, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier[C]//Proc of SPIE, 2010, 7580: 75801H.
    [10] Tao Rumao, Su Rongtao, Ma Pengfei, et al. Suppressing mode instabilities by optimizing the fiber coiling methods [J]. Laser Physics Letters, 2017, 14(2): 25101. doi:  10.1088/1612-202X/aa4fbf
    [11] Ye Yun, Xi Xiaoming, Shi Chen, et al. Comparative study on transverse mode instability of fiber amplifiers based on long tapered fiber and conventional uniform fiber [J]. Laser Physics Letters, 2019, 16(8): 85109. doi:  10.1088/1612-202X/ab2acf
    [12] Lin Aoxiang, Zhan Huan, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber [J]. High Power Laser and Particle Beams, 2018, 30(6): 180110. (in Chinese)
    [13] Wang Jianjun, Liu Yu, Li Min, et al. Ten-year review and prospect on mode instability research of fiber lasers [J]. High Power Laser and Particle Beams, 2020, 32(12): 121003. (in Chinese)
    [14] Xiaolin Wang, Pin Lv, Hanwei Zhang, et al. Fiber laser simulation software see fiber laser and fiber laser tool collection SFTool [J]. Chinese Journal of Lasers, 2017, 44(5): 0506002. (in Chinese)
    [15] Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers [J]. Optics Express, 2013, 21(3): 2606-2623. doi:  10.1364/OE.21.002606
    [16] Wang Xiaolin, Zhang Hanwei, Yang Baolai, et al. High-power ytterbium-doped fiber laser oscillator current situation and future developments [J]. Chinese Journal of Lasers, 2021, 48(4): 401001. (in Chinese) doi:  10.3788/CJL202148.0401001
    [17] Yang Baolai, Zhang Hanwei, Wang Xiaolin, et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW [J]. Journal of Optics, 2016, 18(10): 105803.
    [18] Li Xuewen, Yu Chunlei, Shen Hui, et al. Thermo-optic effect and mode instability threshold characteristics of high-power fiber laser [J]. Chinese Journal of Lasers, 2019, 46(10): 1001001. (in Chinese)
    [19] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers [J]. Optics Express, 2011, 19(14): 13218-13224. doi:  10.1364/OE.19.013218
    [20] Haarlammert Nicoletta, de Vries Oliver, Liem Andreas, et al. Build up and decay of mode instability in a high power fiber amplifier [J]. Optics Express, 2012, 20(12): 13274-13283. doi:  10.1364/OE.20.013274
    [21] Tao R, Ma P, Wang X, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength [J]. Journal of Optics, 2015, 17(4): 45504. doi:  10.1088/2040-8978/17/4/045504
    [22] Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-19.
  • [1] 高德辛, 吕昶见, 吕东明, 于旺, 秦伟平.  面向超短脉冲激光器泵浦源的驱动系统设计及应用 . 红外与激光工程, 2022, 51(4): 20210153-1-20210153-10. doi: 10.3788/IRLA20210153
    [2] 张奕, 侯玉斌, 张倩, 王璞.  基于四波混频效应的1.5 μm多波长单频光纤激光器(特邀) . 红外与激光工程, 2022, 51(6): 20220401-1-20220401-7. doi: 10.3788/IRLA20220401
    [3] 李志杰, 孔庆庆, 张明栋, 金子蘅, 卞殷旭, 沈华, 朱日宏.  万瓦级激光光闸的热效应分析及处理 . 红外与激光工程, 2022, 51(2): 20210909-1-20210909-8. doi: 10.3788/IRLA20210909
    [4] 柏刚, 董延涛, 张大庆, 陶坤宇, 沈辉, 漆云凤, 何兵, 周军.  弯曲限模对大模场光纤横模不稳定效应的影响 . 红外与激光工程, 2021, 50(1): 20200028-1-20200028-9. doi: 10.3788/IRLA20200028
    [5] 王娟, 黄海洲, 黄见洪, 葛燕, 戴殊韬, 邓晶, 林紫雄, 翁文, 林文雄.  泵浦线宽和波长飘移对全固态Tm激光器性能的影响 . 红外与激光工程, 2019, 48(4): 405002-0405002(9). doi: 10.3788/IRLA201948.0405002
    [6] 刘全喜, 任钢, 李轶国, 岳通, 王莉, 肖星, 邓翠, 李佳玲.  激光二极管端面抽运梯度浓度掺杂介质激光器热效应的有限元法分析 . 红外与激光工程, 2019, 48(11): 1105004-1105004(11). doi: 10.3788/IRLA201948.1105004
    [7] 张利明, 鄢楚平, 冯进军, 张昆, 张浩彬, 朱辰, 张大勇, 赵鸿, 陈念江, 李尧, 郝金坪, 王雄飞, 何晓彤, 周寿桓.  180 W单频全光纤激光器 . 红外与激光工程, 2018, 47(11): 1105001-1105001(9). doi: 10.3788/IRLA201847.1105001
    [8] 程雪, 王建立, 刘昌华.  高能光纤激光器光束合成技术 . 红外与激光工程, 2018, 47(1): 103011-0103011(11). doi: 10.3788/IRLA201847.0103011
    [9] 周广龙, 徐建明, 陆健, 李广济, 张宏超.  三结太阳电池栅线对激光辐照中的传热影响研究 . 红外与激光工程, 2018, 47(12): 1220001-1220001(5). doi: 10.3788/IRLA201847.1220001
    [10] 曾江辉, 张培晴, 张倩, 李杏, 许银生, 王训四, 戴世勋.  啁啾光纤光栅在硫系光纤激光器中的色散补偿 . 红外与激光工程, 2017, 46(10): 1005007-1005007(7). doi: 10.3788/IRLA201758.1005007
    [11] 史伟, 房强, 李锦辉, 付士杰, 李鑫, 盛泉, 姚建铨.  激光雷达用高性能光纤激光器 . 红外与激光工程, 2017, 46(8): 802001-0802001(5). doi: 10.3788/IRLA201746.0802001
    [12] 张海伟, 盛泉, 史伟, 白晓磊, 付士杰, 姚建铨.  高功率双包层掺铥光纤放大器温度分布特性 . 红外与激光工程, 2017, 46(6): 622004-0622004(8). doi: 10.3788/IRLA201746.062200
    [13] 肖凯博, 蒋新颖, 袁晓东, 郑建刚, 郑万国.  间隔掺杂低温Yb:YAG叠片放大器的热效应优化 . 红外与激光工程, 2016, 45(12): 1206004-1206004(8). doi: 10.3788/IRLA201645.1206004
    [14] 张德平, 吴超, 张蓉竹, 孙年春.  LD 端面泵浦分离式放大器结构的热效应研究 . 红外与激光工程, 2015, 44(8): 2250-2255.
    [15] 董繁龙, 赵方舟, 葛廷武, 王智勇.  光纤弯曲对掺镱光纤激光器光束质量的影响 . 红外与激光工程, 2014, 43(11): 3565-3569.
    [16] 许艳军, 赵宇宸, 沙巍, 齐光.  大尺寸SIC空间反射镜离子束加工热效应分析与抑制 . 红外与激光工程, 2014, 43(8): 2556-2561.
    [17] 葛颜绮, 罗娇林, 张书敏, 唐定远, 沈德元, 赵鹭明.  被动锁模光纤激光器中增益支配孤子的腔至峰值功率钳位效应 . 红外与激光工程, 2014, 43(11): 3533-3539.
    [18] 左林, 杨爱英, 赖俊森, 孙雨南.  非线性偏振旋转锁模光纤激光器数值模型 . 红外与激光工程, 2013, 42(1): 57-62.
    [19] 方秀丽, 童峥嵘, 曹晔, 杨秀峰.  采用F-P光纤环滤波器的窄线宽环形腔光纤激光器 . 红外与激光工程, 2013, 42(2): 329-333.
    [20] 龚智群, 王小林, 曹涧秋, 郭少锋, 江厚满.  国产高功率光纤泵浦合束器特性研究 . 红外与激光工程, 2013, 42(10): 2658-2662.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  29
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 录用日期:  2022-03-07
  • 修回日期:  2022-02-25
  • 刊出日期:  2022-05-06

不同泵浦波长光纤激光器模式不稳定效应对比

doi: 10.3788/IRLA20210256
    作者简介:

    万颖超,男,硕士生,主要从事高功率光纤激光器技术方面的研究

    通讯作者: 王小林,男,副研究员,博士,主要从事高功率光纤激光器技术方面的研究。
基金项目:  国家自然科学基金青年科学基金(62005315);长沙市杰出创新青年培养计划(kq2009004)
  • 中图分类号: O436

摘要: 一般认为,光纤激光器模式不稳定效应主要来自于泵浦源量子亏损和增益光纤泵浦吸收所产生的热效应。理论分析了光纤中的热源,发现诱发模式不稳定的热效应主要来源于泵浦吸收、其次是量子亏损;利用课题组开发的仿真软件SeeFiberLaser对该结论进行仿真。仿真结果表明:泵浦吸收系数越低,光纤中的最高温度和温度梯度越低,越有利于抑制热致折射率光栅的形成,提高模式不稳定阈值。搭建了纤芯/包层直径为30/400 μm的前向泵浦掺镱光纤激光振荡器,对比研究了中心波长为976 nm 、915 nm和940 nm的泵浦源泵浦时激光器的模式不稳定阈值特性。结果表明,分别采用中心波长为976 nm 、915 nm和940 nm 的半导体激光器作为泵浦源时,激光器模式不稳定阈值分别为279 W、502 W和697 W,光光转化效率分别为67.7%、61%和63%。由此可以发现,泵浦吸收系数对模式不稳定阈值的影响大于量子亏损对模式不稳定阈值的影响,通过改变泵浦波长降低泵浦吸收系数可以有效提升模式不稳定阈值。优化泵浦波长,兼顾量子效率和泵浦吸收系数,是光纤激光器实现高光束质量高模式不稳定阈值的重要技术路线之一。

English Abstract

    • 光纤激光器以其优良的光束质量、可柔性操作、热管理方便、结构紧凑等优点广泛应用于工业加工、医疗卫生、基础研究等领域[1-2]。近年来,随着高亮度泵浦源、光纤器件制造水平、光纤拉制工艺等技术的发展,光纤激光器的输出功率得到了迅速提升[3-8]。长期以来,受激拉曼散射等非线性效应和模式不稳定效应严重制约了光纤激光器功率水平的进一步提升。自2010年德国耶拿大学首次公开报道模式不稳定现象之后,研究人员逐步意识到模式不稳定效应已经成为限制高功率光纤激光器功率提升的重要因素之一[9]

      模式不稳定效应是指当激光器泵浦功率超过某一阈值时,激光器中的基模与高阶模发生动态耦合的现象。模式不稳定现象发生后,信号光经包层光滤除器之后会出现功率滞涨、时域起伏、光束质量退化等现象,严重影响了光纤激光器功率的提升。近年来,研究人员针对模式不稳定现象进行了大量的理论和实验研究,对模式不稳定物理机理和影响因素认识逐步深入并提出了一些有效的抑制方法[10-13]。目前,研究人员普遍认为光纤中废热导致的热效应是高功率光纤激光器中产生模式不稳定的根源。

      通常认为,激光介质内的主要发热因素是抽运光子与激光光子之间的能量亏损,即量子亏损。首先,从光纤中的热量计算公式出发,推理出光纤中的热量不仅与量子亏损有关,还与增益光纤的吸收系数相关。利用光纤激光器仿真软件SeeFiberLaser仿真了不同波长泵浦光纤激光器时增益光纤中的热量分布情况[14]。结果表明,采用不同泵浦源时,泵浦吸收系数越低增益光纤中的温度及温度梯度越低。这说明,泵浦吸收系数对光纤激光器模式不稳定阈值的影响比量子亏损对模式不稳定阈值的影响更大。最后,在理论研究基础上搭建了前向泵浦掺镱光纤激光振荡器,对比研究了915、940、976 nm LD分别泵浦时激光器的模式不稳定阈值特性,实验结果与理论相吻合,为进一步提高模式不稳定阈值,获得更高功率光纤激光器提供了有效参考。

    • 增益光纤中的热负荷是产生模式不稳定效应的根源。在增益光纤内部的热源可以描述为[15]

      $$ \begin{split} Q\left( {r,z} \right) =& \frac{{{\nu _p} - {\nu _s}}}{{{\nu _p}}}\left[ {{N_0}\sigma _{ap}^{} - \left( {\sigma _{ep}^{} + \sigma _{ap}^{}} \right){N_2}\left( {r,z} \right)} \right]\frac{{{P_p}\left( {r,z} \right)}}{{{A_p}}} +\\ &{\alpha _s}\left( r \right){I_s}\left( {r,z} \right) \end{split} $$ (1)

      式中:Q为光纤中的热量;r为光纤半径;z为光纤轴向距离;N0为掺杂粒子浓度;N2为上能级粒子数;vpvs为泵浦光和信号光的频率;σapσep为泵浦光的吸收和发射截面;Pp(r,z)为泵浦光功率;Ap为传输泵浦光的内包层面积;αs(r)为信号光吸收损耗系数;Is(r,z)为信号光强。

      在实际应用中,一般采用泵浦吸收系数βp(λ)对光纤的吸收特性进行描述,考虑到泵浦吸收系数与泵浦吸收截面之间的关系:

      $$ {\sigma _{ap}}\left( \lambda \right){\text{ = }}\frac{{{\beta _p}\left( \lambda \right)}}{{{N_0}{k_0}{\varGamma _p}}} $$ (2)

      将公式(2)代入公式(1),增益光纤内部的热源可以描述为[16]

      $$\begin{split} Q\left( {r,z} \right) =& \frac{{{\nu _p} - {\nu _s}}}{{{\nu _p}}}\left[ {\frac{{{\beta _p}\left( \lambda \right)}}{{{k_0}{\varGamma _p}}} - \left( {\sigma _{ep}^{} + \sigma _{ap}^{}} \right){N_2}\left( {r,z} \right)} \right]\frac{{{P_p}\left( {r,z} \right)}}{{{A_p}}} +\\ &{\alpha _s}\left( r \right){I_s}\left( {r,z} \right) \end{split} $$ (3)

      式中:k0为常数4.34;Γp为泵浦填充因子。

      从公式(3)可以看到,光纤中的热源不仅来源于量子亏损,还与增益光纤的泵浦吸收系数有关。为了降低光纤中的热量、抑制模式不稳定效应,一方面可以提高激光器的量子效率,另一方面还可以降低增益光纤的泵浦吸收系数。一直以来,人们都认可提高量子效率可以提升模式不稳定阈值的方案,但对于降低泵浦吸收系数提高模式不稳定阈值的认识不够深入。在实验中发现,光纤激光器在采用915 nm LD泵浦时比采用976 nm LD泵浦时具有更高的模式不稳定阈值[17]。这说明量子效率并不是影响光纤激光器热致模式不稳定阈值的主要因素,泵浦吸收系数对模式不稳定阈值的影响比量子亏损对模式不稳定阈值的影响可能更大。为进一步揭示量子亏损和泵浦吸收系数对模式不稳定阈值的影响,根据理论模型,利用课题组开发的光纤激光仿真软件SeeFiberLaser对不同泵浦波长情况下光纤激光器中的热量进行了仿真计算。

      由镱离子的吸收发射截面可知,当使用同一根光纤时,泵浦源波长不同,吸收系数则不同。根据实验室现有泵浦源,分别仿真了915、940、976 nm LD泵浦时增益光纤中的热量情况。在SeeFiberLaser软件中搭建激光器结构如图1所示,各连接点的损耗均为0,环境温度为25 ℃,换热系数为1200 W/(m2·K)。为更好的贴近现实,各器件参数设置参照实验所使用器件参数,主要参数设置如下:连续泵浦源波长分别为915、940、976 nm,注入功率为1200 W,3 dB带宽为3 nm;前向泵浦合束器平均泵浦效率98%,信号传输效率98%;双包层光纤光栅中心波长均为1080 nm,尾纤纤芯和包层直径分别为30 μm和400 μm,反射率分别为99.9%和10%,3 dB反射带宽为别为4 nm和1.7 nm;双包层掺镱光纤的纤芯包层直径分别为30 μm和400 μm,915 nm处的吸收系数为0.88 dB/m,在976 nm处的吸收系数为2.73 dB/m,940 nm处的吸收系数为0.68 dB/m,长度为20 m;光纤端帽反射率为0。

      图  1  SeeFiberLaser仿真结构图

      Figure 1.  SeeFiberLaser simulation structure diagram

      仿真结果如图2所示,其中图2(a)~(c)分别为915、940、976 nm LD泵浦时纤芯和包层中的温度变化图。从图中可以看到,光纤所达到的最高温度分别70.93、53.26、110.89 ℃,温度差异明显,最高相差约57 ℃,温差的主要来源为量子亏损和泵浦吸收系数。对比可以发现,量子效率最高的976 nm LD泵浦时,光纤的温度和温度梯度最高,量子效率最低的915 nm LD泵浦时,光纤中的温度和温度梯度处于中间位置;对比吸收系数,吸收系数最高的976 nm LD泵浦时,光纤中的温度和温度梯度最高,吸收系数最低的940 nm LD泵浦时,光纤中的温度和温度梯度最低。所以,相比于量子亏损,吸收系数对光纤中的温度及温度梯度影响更大。高功率光纤激光器的模式不稳定主要是由于光纤中的废热所产生的热致折射率光栅。而光纤中的温度和温度梯度越高,越容易引起光纤的热致折射率变化,从而形成热致折射率光栅,降低模式不稳定阈值[18]。综上,泵浦吸收系数对光纤激光器模式不稳定阈值的影响比量子亏损对模式不稳定阈值的影响更大。

      图  2  纤芯和包层中的温度变化

      Figure 2.  Variation of temperature in core and cladding

    • 为了研究不同波长泵浦时激光器的模式不稳定阈值特性,搭建了如图3所示的前向泵浦光纤激光振荡器。1组750 W的976 nm LD、2组750 W的915 nm LD和2组680 W的940 nm LD通过(6+1)×1前向合束器((6+1)×1 FPSC)注入到激光器谐振腔中。谐振腔由掺镱双包层光纤(YDF)和一对中心波长为1 080 nm的光纤光栅构成。其中高反射率光纤光栅(HR FBG)反射率为99.9%,3 dB带宽为4 nm;低反射率光纤光栅(OC FBG)反射率为10%,3 dB带宽为1.7 nm。掺镱双包层光纤的纤芯包层的直径分别为30 μm和400 μm,在915 nm处的吸收系数为0.88 dB/m,长度为20 m。实验中,为了增加高阶模式的损耗,将掺镱双包层光纤最小弯曲直径设定为85 mm。谐振腔中产生的激光经过包层光滤除器(CLS)后从光纤端帽(Endcap)输出。包层光滤除器将激光器中未吸收的泵浦光和诱发模式不稳定效应的高阶模式滤除。为了避免反馈光导致激光器自激,对(6+1)×1前向合束器的信号臂切8°斜角。输出激光经准直后,通过一个分束系统将激光注入功率计(PM)、光谱仪(OSA)、示波器(PD)和光束质量测试仪(Beam Squared)中,分别测量和记录输出功率、光谱、时域以及光束质量M2因子。

      图  3  光纤激光振荡器结构示意图

      Figure 3.  Schematic diagram of fiber laser oscillator

    • 自模式不稳定现象公开报道之后,研究人员从多个方面对模式不稳定现象展开分析,大量实验研究表明,高功率光纤激光器中模式不稳定阈值具有明显的“阈值性”[19]。模式不稳定阈值附近的时域特性具有“周期性”,特征频率耦合在kHz量级,输出信号光经包层光滤除器之后功率滞涨等特征[20]。利用模式不稳定这些特征属性,可以准确的判定模式不稳定阈值。实验中,由于采用了小弯曲结构盘绕增益光纤和包层光滤除器过滤高阶模,在达到模式不稳定阈值之后不会出现光束质量下降现象。

      实验中,首先采用工业高效率激光器泵浦源976 nm LD作为该振荡器的泵浦源进行实验,得到实验结果如图4所示。图4(a)为不同泵浦功率情况下输出功率及对应的光光转换效率。可以看到,在低功率时输出功率随泵浦功率成线性增长趋势,但是当泵浦功率达到412 W之后,输出功率出现下降,对应的光光转化效率由最高时的67%下降到48%。利用光谱仪测量得到的光谱数据如图4(b)所示,光谱中没有明显的拉曼成分,故功率降低与光光转化效率下降与受激拉曼散射效应无关。利用光电探测器测量输出功率为279 W时的时域信号以及傅里叶变换后的频域信号如图4(c)所示。在泵浦功率为412 W,输出功率为279 W时,时域上没有观测到明显的波动,频域也没有出现模式不稳定效应特征峰。图4(d)为泵浦功率483 W,输出功率235 W时的时频域信号,结果显示,在泵浦功率为483 W时,时域上出现周期性的起伏,频域上可以观察到明显的模式不稳定效应特征峰。在泵浦功率为483 W时测得光斑形态如图4(e)所示,对应的光束质量因子为M2x=1.4、M2y=1.4。根据实验中测得的功率和光光转化效率下降现象和时频域信号,可以判定976 nm LD作为泵浦源时,该振荡器的模式不稳定阈值约为279 W。

      图  4  976 nm LD泵浦时光纤激光振荡器输出特性。(a)不同泵浦功率条件下输出功率及光光转换效率;(b)输出功率为279 W时的光谱;(c)~(d)输出功率分别为279 W和235 W时的时频域信号;(e)泵浦功率为483 W时的光束质量因子及光斑形态

      Figure 4.  Output characteristic of fiber oscillator when pumped with 976 nm LD. (a) Output power and optical-to-optical(O-O) efficiency under different pump power; (b) Optical spectrum at the output power of 279 W; (c)-(d) Time domain signals and their Fourier spectra at the output power of 279 W and 235 W, respectively; (e) Beam quality factor and beam profile when the pump power is 483 W

      随后采用工业应用中稳定性较好的激光器泵浦源915 nm LD对光纤激光器进行泵浦,得到实验结果如图5所示。图5(a)为不同泵浦功率情况下输出功率及对应的光光转换效率曲线。可以看到,与976 nm LD泵浦时类似,在低功率时输出功率随泵浦功率成线性增长趋势,在泵浦功率为912 W时,最高输出功率达到502 W。当泵浦功率继续增加到952 W时,输出功率下降为468 W,对应的光光转化效率从最高时的61%下降到49%。利用光谱仪测量得到的光谱数据如图5(b)所示,由于功率较低光谱中没有明显的拉曼成分,故功率降低和光光转化效率下降与受激拉曼散射效应无关。利用光电探测器测量输出功率为399 W时的时域信号以及傅里叶变换后的频域信号如图5(c)所示。在泵浦功率为749 W,输出功率为399 W时,时域上没有观测到明显的波动,频域也没有出现模式不稳定特征峰。图5(d)为泵浦功率912 W,输出功率502 W时的时频域信号,可以看到,时域上出现周期性的起伏,频域上可以观察到明显的模式不稳定效应特征峰。在泵浦功率为952 W时测得激光器远场光斑形态如图5(e)的插图所示,对应的光束质量因子为M2x=1.5、M2y=1.5。根据实验中测得的功率和光光转化效率下降现象以及光谱和时频域信号,使用915 nm LD泵浦时,该激光器的模式不稳定阈值约为502 W。

      图  5  915 nm LD泵浦时光纤激光振荡器输出特性。(a)不同泵浦功率条件下输出功率及光光转换效率;(b)输出功率为502 W时的光谱;(c)~(d)输出功率分别为502 W和468 W时的时频域信号;(e)泵浦功率为952 W时的光束质量因子及光斑形态

      Figure 5.  Output characteristic of fiber oscillator when pumped with 915 nm LD. (a) Output power and O-O efficiency under different pump power; (b) Optical spectrum at the output power of 502 W; (c)-(d) Time domain signals and their Fourier spectra at the output power of 502 W and 468 W, respectively; (e) Beam quality factor and beam profile when the pump power is 952 W

      最后,采用工业应用不多,但有望提高模式不稳定阈值的940 nm LD作为该振荡器的泵浦源进行实验,得到实验结果如图6所示。图6(a)为不同泵浦功率情况下输出功率及对应的光光转换效率。与976 nm LD和915 nm LD泵浦时类似,在低功率时输出功率随泵浦功率成线性增长趋势,但是当泵浦功率达到1144 W之后,输出功率出现下降,对应的光光转化效率由最高时的63%下降到59%。利用光谱仪测量得到的光谱数据如图6(b)所示,光谱中没有明显的拉曼成分,故功率降低与光光转化效率下降与受激拉曼散射效应无关。利用光电探测器测量泵浦功率1144 W,输出功率为697 W时的时域信号以及傅里叶变换后的频域信号如图6(c)所示。在输出功率为697 W时,时域上没有观测到明显的波动,频域也没有出现模式不稳定效应特征峰。图6(d)为泵浦功率1149 W,输出功率693 W时的时频域信号,结果显示,在输出功率为693 W时,时域上出现周期性的起伏,频域上可以观察到明显的模式不稳定效应特征峰。在泵浦功率为1149 W时测得光斑形态如图6(e)所示,对应的光束质量因子为M2x=1.4、M2y=1.4。根据实验中测得的功率和光光转化效率下降现象和时频域信号,可以判定,940 nm LD作为泵浦源时,该振荡器的模式不稳定阈值约为697 W。

      图  6  940 nm LD泵浦时光纤激光振荡器输出特性。(a)不同泵浦功率条件下输出功率及光光转换效率;(b)输出功率为697 W时的光谱;(c)~(d)输出功率分别为697 W和693 W时的时频域信号;(e)泵浦功率为1149 W时的光束质量因子及光斑形态

      Figure 6.  Output characteristic of fiber oscillator when pumped with 940 nm LD. (a) Output power and O-O efficiency under different pump power; (b) Optical spectrum at the output power of 697 W; (c)-(d) Time domain signals and their Fourier spectra at the output power of 697 W and 693 W, respectively; (e) Beam quality factor and beam profile when the pump power is 1149 W

      表1所示,分别利用976、915、940 nm LD泵浦纤芯/包层直径为30/400 μm的掺镱光纤振荡器时,激光器的模式不稳定阈值分别为279、502、697 W,光光转化效率分别为67.7%、61%和63%,且均能保持近单模光束质量。对比仿真结果可以看到,泵浦吸收系数越高,相同泵浦功率水平下增益光纤温度越高,激光器实际模式不稳定阈值越低,理论与实验结果相吻合。

      表 1  不同泵浦波长TMI阈值

      Table 1.  TMI threshold for different pump wavelengths

      Pump wavelength/nmPump absorption coefficient/dB.m−1Active fiber maximum temperature/℃TMI threshold/WO-O conversion efficiency
      9762.73110.8927967.7%
      9150.8870.9350261%
      9400.6853.2669763%
    • 实验结果表明,泵浦吸收系数最低的940 nm LD具有最高的模式不稳定阈值,泵浦吸收系数最高的976 nm LD模式不稳定阈值最低。分析主要原因有以下三点:一是吸收系数较低的泵浦波长使得增益光纤温度梯度较低,有利于抑制热致折射率光栅的形成,提高模式不稳定阈值;二是吸收系数较低的泵浦波长对应较低的吸收截面,使得激光器的上能级粒子数较低,增加了空间烧孔效应,提高了模式不稳定阈值[21];三是吸收系数较低的泵浦波长增强了增益饱和效应,提高了模式不稳定阈值[22]。所以,通过改变泵浦波长降低泵浦吸收系数可以有效提升模式不稳定阈值。

      随着大模场光纤的使用,模式不稳定效应已经成为高功率光纤激光器功率提升的重要限制因素。在理论推导的基础上结合仿真设计实验,得出影响光纤激光器模式不稳定的热效应主要来自于泵浦吸收,而不是量子亏损。这一项新的研究表明,目前所广泛采用的976 nm LD可能不是实现高功率激光输出的理想泵浦源。下一步将根据实验结果,优化泵浦波长,兼顾量子效率和泵浦吸收系数,实现高模式不稳定阈值和光光转化效率,为实现5~10 kW高功率高光束质量光纤激光器提供新的泵浦源。

参考文献 (22)

目录

    /

    返回文章
    返回