留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不同晶粒尺寸的PVDZnSe红外光学材料制备工艺研究

张高峰 张荣实 刘孟寅 廉伟艳 甘硕文 李特 张彤 高原

张高峰, 张荣实, 刘孟寅, 廉伟艳, 甘硕文, 李特, 张彤, 高原. 基于不同晶粒尺寸的PVDZnSe红外光学材料制备工艺研究[J]. 红外与激光工程, 2022, 51(7): 20210565. doi: 10.3788/IRLA20210565
引用本文: 张高峰, 张荣实, 刘孟寅, 廉伟艳, 甘硕文, 李特, 张彤, 高原. 基于不同晶粒尺寸的PVDZnSe红外光学材料制备工艺研究[J]. 红外与激光工程, 2022, 51(7): 20210565. doi: 10.3788/IRLA20210565
Zhang Gaofeng, Zhang Rongshi, Liu Mengyin, Lian Weiyan, Gan Shuowen, Li Te, Zhang Tong, Gao Yuan. Study of preparation process of PVDZnSe infrared optical materials based on different grain sizes[J]. Infrared and Laser Engineering, 2022, 51(7): 20210565. doi: 10.3788/IRLA20210565
Citation: Zhang Gaofeng, Zhang Rongshi, Liu Mengyin, Lian Weiyan, Gan Shuowen, Li Te, Zhang Tong, Gao Yuan. Study of preparation process of PVDZnSe infrared optical materials based on different grain sizes[J]. Infrared and Laser Engineering, 2022, 51(7): 20210565. doi: 10.3788/IRLA20210565

基于不同晶粒尺寸的PVDZnSe红外光学材料制备工艺研究

doi: 10.3788/IRLA20210565
基金项目: 国家自然科学基金(61905179,61975150);天津市人才发展专项支持计划高层次创新团队
详细信息
    作者简介:

    张高峰,男,高级工程师,硕士,主要从事红外光学材料制备技术与应用性能方面的研究

  • 中图分类号: TN213

Study of preparation process of PVDZnSe infrared optical materials based on different grain sizes

Funds: National Natural Science Foundation of China (61905179,61975150);High-level Innovation team of Tianjin Talent Development Special Support Plan
  • 摘要: ZnSe以其优异的光学性能与机械性能,一直是光学零件的首选材料之一。光学窗口、光学透镜等光学零件的制作成本很大程度上取决于光学材料的可加工性,加工成本占制作总成本的50%以上。从微观结构上来看,光学晶体材料的可加工性又与晶粒尺寸相关。文中采用物理气相沉积(PVD)法制备了PVDZnSe红外光学材料,并从沉积温度与原料性能两个方面研究了PVDZnSe制备工艺对其晶粒尺寸和可加工性的影响。研究表明:在920、960、1 000 ℃三个温度条件下,随着沉积温度升高,PVDZnSe材料晶粒呈现增加的趋势,其尺寸范围分别为20~180 μm、300~2000 μm和1 200~2 800 μm。在相同工艺参数条件下,选用粒径分别为2~10 μm、10~20 μm和300~2 000 μm的三种ZnSe原料制备PVDZnSe。随着原料ZnSe晶粒尺寸的增加,所得PVDZnSe的晶粒尺寸显著增大。结果表明,随着晶粒尺寸增加,脆性指数也相应增加,即PVDZnSe可加工性能在逐渐变差。研究还发现,在一定的晶粒尺寸范围内,材料的透过率差别不大,在2~14 μm波长范围内,PVDZnSe材料的平均透过率均能达到70%以上。该研究为PVDZnSe材料在光学零件领域的应用提供了实践经验和有力的技术支撑。
  • 图  1  不同温度条件下制备的PVDZnSe材料的表面形貌图

    Figure  1.  Surface morphology of PVDZnSe prepared at different temperatures

    图  2  三个不同温度下的ZnSe材料的光学性能

    Figure  2.  Optical properties of ZnSe materials at three differernt temperatures

    图  3  三种原料的微观形貌图

    Figure  3.  Micromorphology of the three raw materials

    图  4  选用三种原料(I、II和III)的X射线衍射图

    Figure  4.  X-ray diffraction patterns of the three raw materials (I, II and III)

    图  5  分别采用三种原料在相同工艺条件下制得的PVDZnSe材料的表面形貌

    Figure  5.  Surface morphology of PVDZnSe materials from three kinds of raw materials respectively under the same process

    图  6  三种ZnSe原料在室温至1200 ℃温度范围内的热重曲线

    Figure  6.  Thermogravimetric curves of the three kinds of ZnSe raw materials in the temperature range from room temperature to 1 200 ℃

    图  7  相同工艺条件下由三种原料制备的PVDZnSe样品光学性能

    Figure  7.  Optical properties of PVDZnSe prepared with three kinds of raw materials under the same process

    图  8  PVDZnSe光学零件的实物样件图

    Figure  8.  Sample of PVDZnSe optical parts

    表  1  不同温度条件下制备的PVDZnSe材料的可加工性相关数据

    Table  1.   Machinability data of PVDZnSe materials prepared at different temperatures

    No.T/ ℃Grain size/μm HV/GPaKIC/MPa·m1/2HV/KIC/μm−1/2
    192020 -1800.93--
    2960300-20001.020.631.62
    310001200-28001.070.462.32
    下载: 导出CSV

    表  2  三种原料制备的PVDZnSe材料的可加工性数据

    Table  2.   Machinability data of PVDZnSe materials prepared with three kinds of raw materials

    No. Raw materialGrain size/
    μm
    HV/
    GPa
    KIC/
    MPa·m1/2
    HV/
    KIC/μm−1/2
    1200-15000.980.661.48
    2300-20001.020.631.62
    3880-25001.040.611.70
    下载: 导出CSV
  • [1] Wang Y T, Sun H Q, Guo Z Y, et al. Structures and thermodynamic properties of ZnSe [J]. Journal of Function Material, 2010, 41(3): 481-483,487.
    [2] Wei N G, Jiang L P, Li D X, et al. Study on the defects of ZnSe polycrystalline materials prepared by chemical vapor deposition method [J]. Journal of Synthetic Crystals, 2020, 49(1): 152-157.
    [3] Chen Q, Fu X H, Jia Z H, et al. Research on processing technology of ZnS crystal [J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2013, 36(3-4): 119-123.
    [4] Zhang W Y, Gao H. Microstructure properties and fabrication of machinable ceramics [J]. Journal of Synthetic Crystals, 2005, 34(1): 169-173.
    [5] Lawn B R, Marshall D B. Hardness, toughness, and brittleness: an indentation analysis [J]. J Am Ceram Soc, 1979, 62(7-8): 347-350. doi:  10.1111/j.1151-2916.1979.tb19075.x
    [6] Boccaccini A R. Machin ability and brittleness of glassceramics [J]. J Mat Pro Tech, 1997, 65(1-3): 304-306.
    [7] Yu H Z. Infrared Optical Material [M]. Beijing: National Defense Industry Press, 2007: 143, 164, 183, 252. ( in Chinese)
    [8] Townsend D, Field J E. Fracture toughness and hardness of zinc sulphide as a function of grain size [J]. J Mater Sci, 1990, 25(2): 1347-1352. doi:  10.1007/BF00585448
    [9] Popov K B, Dimov S S, Pham D, et al. Micromilling: Material microstructure effects [J]. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 2006, 220(11): 1807-1813.
    [10] Yu J F, Wu G J, Zhu L. Research progress of the infrared material zinc selenide preparation methods [J]. Guangdong Chemical Industry, 2017, 16(44): 141-142.
    [11] Yang Y Y, Fang Z Y, Cai Y C, et al. Growth of transparent polycrstal zinc selenide by chemical vapor deposition [J]. Journal of the Chinese Ceramic Society, 2004, 32(8): 946-949.
    [12] Yang H, Guo L, Wei N G. Numerical simulation of CVDZnSe gas flow pattern and experimental study on optical properties [J]. Journal of Crystal Growth, 2020, 546: 125779.
    [13] Wei N G, Jiang L P, Li D X, et al. A hot isostatic pressing strategy for improving the optical transmission of polycrystalline CVD ZnSe [J]. Applied Physics A, 2019, 125: 777. doi:  10.1007/s00339-019-3080-0
  • [1] 蔡家轩, 万乐, 石世宏, 吴捷, 杨强, 石拓, 程梦颖.  激光熔化沉积AlSi10Mg温度场对显微组织性能的影响 . 红外与激光工程, 2022, 51(5): 20210366-1-20210366-10. doi: 10.3788/IRLA20210366
    [2] 王明军, 于记华, 刘雁翔, 高香香, 张华永.  多激光波长在不同稀薄随机分布冰晶粒子层的散射特性 . 红外与激光工程, 2019, 48(3): 311002-0311002(6). doi: 10.3788/IRLA201948.0311002
    [3] 柯程虎, 张辉, 保秀娟.  团聚形核壳结构冰晶粒子的激光散射特性 . 红外与激光工程, 2019, 48(8): 805008-0805008(7). doi: 10.3788/IRLA201948.0805008
    [4] 钦兰云, 徐丽丽, 杨光, 刘奇, 王维.  激光沉积成形熔池尺寸分析与预测 . 红外与激光工程, 2018, 47(11): 1106009-1106009(7). doi: 10.3788/IRLA201847.1106009
    [5] 常存, 高莹, 孔德贵, 张东帅, 常青.  CdTe和CdTe/CdS量子点的量子尺寸效应 . 红外与激光工程, 2017, 46(12): 1206006-1206006(6). doi: 10.3788/IRLA201746.1206006
    [6] 雷李华, 李源, 蔡潇雨, 魏佳斯, 傅云霞, 邵力.  基于变速扫描技术的大尺寸台阶测量 . 红外与激光工程, 2017, 46(7): 717003-0717003(8). doi: 10.3788/IRLA201746.0717003
    [7] 杨光, 王文东, 钦兰云, 任宇航, 李长富, 王维.  退火温度及保温时间对激光沉积制造TA15钛合金微观组织和显微硬度的影响 . 红外与激光工程, 2017, 46(8): 806006-0806006(6). doi: 10.3788/IRLA201746.0806006
    [8] 刘海庆, 杨凌辉, 任永杰, 邾继贵.  基于正交柱面成像相机的大尺寸三维坐标测量 . 红外与激光工程, 2016, 45(11): 1117002-1117002(6). doi: 10.3788/IRLA201645.1117002
    [9] 耿磊, 叶琨, 肖志涛, 李月龙, 邱玲.  上下边缘区分的平面钣金零件尺寸测量方法 . 红外与激光工程, 2016, 45(6): 617010-0617010(7). doi: 10.3788/IRLA201645.0617010
    [10] 宋大伟, 尚社, 李小军, 罗熹, 孙文锋, 范晓彦, 李栋.  空间高速小尺寸碎片目标二维分集融合成像方法 . 红外与激光工程, 2016, 45(S2): 71-76. doi: 10.3788/IRLA201645.S229007
    [11] 刘杰, 李华, 付西红.  大尺寸筒状设备圆度误差测量系统 . 红外与激光工程, 2016, 45(1): 117005-0117005(5). doi: 10.3788/IRLA201645.0117005
    [12] 陈芳, 方铉, 王双鹏, 牛守柱, 方芳, 房丹, 唐吉龙, 王晓华, 刘国军, 魏志鹏.  PEALD沉积温度对AlN的结构和表面特性的影响 . 红外与激光工程, 2016, 45(4): 421001-0421001(4). doi: 10.3788/IRLA201645.0421001
    [13] 母一宁, 王贺, 李平, 姜会林.  光斑尺寸对光轴检测的约束分析及验证试验 . 红外与激光工程, 2015, 44(3): 1061-1067.
    [14] 肖志涛, 朱莎莎, 耿磊, 李月龙, 刘文超, 叶琨.  深度约束的零件尺寸测量系统标定方法 . 红外与激光工程, 2015, 44(9): 2831-2836.
    [15] 闫树斌, 马可贞, 李明慧, 郭泽彬, 骆亮, 张安富, 王任鑫, 薛晨阳.  面向陀螺应用的硅基大尺寸楔角型谐振腔 . 红外与激光工程, 2015, 44(2): 747-751.
    [16] 江奇渊, 汤建勋, 袁保伦, 韩松来.  激光陀螺捷联惯导尺寸效应误差分析与补偿 . 红外与激光工程, 2015, 44(4): 1110-1114.
    [17] 李慧, 范文慧, 刘佳.  改变天线泵浦光斑尺寸对太赫兹辐射影响的研究 . 红外与激光工程, 2015, 44(2): 528-533.
    [18] 岳丽清, 张继友.  复合材料在热真空下的尺寸稳定性测试方法 . 红外与激光工程, 2014, 43(11): 3713-3717.
    [19] 王兆丰, 闫镔, 童莉, 陈健, 李建新.  自适应邻域尺寸选择的点云法向量估计算法 . 红外与激光工程, 2014, 43(4): 1322-1326.
    [20] 赵婧鑫, 周富强.  小尺寸光斑中心的高精度定位算法 . 红外与激光工程, 2014, 43(8): 2690-2693.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  37
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 修回日期:  2021-12-30
  • 刊出日期:  2022-08-05

基于不同晶粒尺寸的PVDZnSe红外光学材料制备工艺研究

doi: 10.3788/IRLA20210565
    作者简介:

    张高峰,男,高级工程师,硕士,主要从事红外光学材料制备技术与应用性能方面的研究

基金项目:  国家自然科学基金(61905179,61975150);天津市人才发展专项支持计划高层次创新团队
  • 中图分类号: TN213

摘要: ZnSe以其优异的光学性能与机械性能,一直是光学零件的首选材料之一。光学窗口、光学透镜等光学零件的制作成本很大程度上取决于光学材料的可加工性,加工成本占制作总成本的50%以上。从微观结构上来看,光学晶体材料的可加工性又与晶粒尺寸相关。文中采用物理气相沉积(PVD)法制备了PVDZnSe红外光学材料,并从沉积温度与原料性能两个方面研究了PVDZnSe制备工艺对其晶粒尺寸和可加工性的影响。研究表明:在920、960、1 000 ℃三个温度条件下,随着沉积温度升高,PVDZnSe材料晶粒呈现增加的趋势,其尺寸范围分别为20~180 μm、300~2000 μm和1 200~2 800 μm。在相同工艺参数条件下,选用粒径分别为2~10 μm、10~20 μm和300~2 000 μm的三种ZnSe原料制备PVDZnSe。随着原料ZnSe晶粒尺寸的增加,所得PVDZnSe的晶粒尺寸显著增大。结果表明,随着晶粒尺寸增加,脆性指数也相应增加,即PVDZnSe可加工性能在逐渐变差。研究还发现,在一定的晶粒尺寸范围内,材料的透过率差别不大,在2~14 μm波长范围内,PVDZnSe材料的平均透过率均能达到70%以上。该研究为PVDZnSe材料在光学零件领域的应用提供了实践经验和有力的技术支撑。

English Abstract

    • ZnSe材料是II-VI族半导体材料,面心立方结构,在光学上表现为各向同性,光学透过波段宽(0.5~14 μm),光学透过率高,是一种性能优异的红外光学材料[1]。以其热膨胀系数小、硬度高,在10.6 μm处吸收低的特点,成为高功率CO2激光系统中光学器件的首选材料[2]。并且,因其热光系数低,在高温环境下ZnSe窗口产生的热辐射效应对红外光学成像系统的影响很小,被加工成光学窗口、红外透镜、棱镜、滤光片等元件应用于不同的光学系统中[3]

      在实际的光学零部件材料选择中,除考虑材料的光学性能是否满足高精度光学器件的使用需求之外,材料的可加工性能也同样不可忽视。在红外成像和制导技术中采用的透镜、棱镜、窗口、滤光片、整流罩等高精度光学元件成本普遍偏高,其中加工成本占比达50%甚至更高[4]。作为激光系统光学元器件的首选材料,材料的可加工性能直接影响光学元件的加工成品率,进而决定着光学元件的加工成本。通常材料的脆性指数被用来评价材料可加工性能,脆性指数越高,材料的可加工性越差[5-6]。从光学陶瓷材料的微观结构上来看,在一定的晶粒尺寸范围内,材料的断裂韧性及硬度与材料的晶粒尺寸遵守Hall-Petch关系,晶粒尺寸越小,断裂韧性(KIC)越大,硬度(Hardness)越小,所以脆性指数(脆性指数=材料硬度/断裂韧性,HV/KIC)越小[7-8]。并且有文献报道,在微铣削过程中,材料晶粒尺寸越小,工件表面粗糙度越好[9]

      ZnSe材料的晶粒尺寸与其制备工艺密切相关。根据制备方法的不同,ZnSe光学材料主要可以细分成热压ZnSe、CVDZnSe和PVDZnSe三大类[7,10-13]。通过真空热烧结的方法制备出的ZnSe材料称为热压ZnSe,其密度接近理论值,但存在晶粒尺寸不均匀、内部包含气泡和游离态硒及少数有机杂质的问题,导致热压ZnSe光学透过率较低,无法作为大功率激光窗口使用。通过化学气相沉积法(CVD)制备的ZnSe材料称为CVDZnSe,其特点是纯度高、致密度高、内部缺陷少,光学性能好。生长工艺已经非常成熟,且已经商业化。由物理气相沉积法(PVD)方法制备的ZnSe材料简称PVDZnSe,其生长过程仅涉及物理变化。PVDZnSe材料其优点是纯度高、光学性能优异,与CVD法相比,PVD沉积法制备ZnSe所需的工艺条件更为简单且周期短,极大地削减了ZnSe材料的制作成本。但PVDZnSe材料的不足之处是生长温度高,晶粒尺寸大,力学性能偏低。

      已有研究表明,原料蒸发温度、沉积温度、炉内压力[11]、用不同Se原料[12]以及进行热等静压处理[13]等因素均会对CVDZnSe材料的晶粒尺寸产生影响。对于PVDZnSe材料,由于生长温度过高的原因,晶粒尺寸较CVDZnSe材料大,可加工性相对偏差。如果能够通过改善工艺条件降低PVDZnSe晶粒尺寸,达到降低PVDZnSe材料脆性指数,在削减制备成本的同时改善PVDZnSe材料的可加工性能,对实现PVDZnSe的广泛应用起到积极地推动作用。但是,目前关于PVDZnSe制备工艺对其晶粒尺寸与性能影响却鲜有报道。

      综上,文中从沉积温度与原料性能两个方面系统地研究了制备工艺对PVD沉积法制备的ZnSe材料晶粒尺寸的影响,旨在为PVDZnSe材料在光学元器件中的应用提供技术经验与理论支撑。

    • PVDZnSe材料的制备工艺原理是将ZnSe原料放入蒸发区,在真空加热状态下,使ZnSe粉体原料气化升华,通过沉积腔体达到低温沉积区,从而沉积凝结形成所需要的ZnSe晶体材料。总的反应过程为:ZnSe(s)→ZnSe(g)→ZnSe(s)。

      PVDZnSe具体制备工艺如下:

      (1)将纯度不低于99.9%的ZnSe粉体原料置入沉积坩锅原料蒸发区,ZnSe粉体原料。

      (2)将炉腔真空度抽至1×10−3 Pa以下,以3 ℃/min的升温速率加热,通过调节沉积坩埚的的温区,使生长温度在920~1 000 ℃之间。

      (3)根据ZnSe晶体材料的生长厚度,选择保温时间,沉积速率在0.2~0.5 mm/h。当生长至目标厚度时开始缓慢降温,控制降温速率不高于100 ℃/h。

    • 采用日本理学D/max-2200型X射线衍射仪测定ZnSe晶体的晶相结构,X射线的靶材CuKa (λ=0.15405 nm),滤波片为Ni,测试管压为40 kV,管流为100 mS,扫描速度为2 (°)/min,扫描角度为20°~80°,角度间隔为0.1°。通过金相显微镜观察ZnSe样品的表面形貌,采用KYKY-2008 B型扫描电子显微镜分析样品的微观形貌。借助PE公司的傅利叶变换光谱仪,测试波数为400~4 000 cm−1,波数间隔为0.2 cm−1,测量了ZnSe样品的透过性能。

    • 生长温度是指生长ZnSe晶体基板的温度,根据物理气相沉积的工艺原理,此温度为影响ZnSe晶体质量的关键因素。为了研究生长温度对PVDZnSe晶体尺寸的影响,选择920、960、1 000 ℃三个生长温度来进行样品沉积。图1是利用金相显微镜观察到的在三个不同生长温度下所制备样品的表面形貌,可以看出三种样品的晶粒尺寸存在明显差异。生长温度为920、960、1 000 ℃的ZnSe晶粒尺寸分别约为20~180、300~2 000、1 200~2 800 μm。可见随着生长温度的升高,PVDZnSe材料的晶粒尺寸也在变大。这是因为,随着生长温度的升高,粉体原料的蒸发速率增加,晶核在沉积基板上可以接触到更多的气体分子,从而加快了晶体生长速率。同时,晶粒还会将周围的小晶粒进行吞,即发生二次结晶现象。生长温度越高,晶粒的二次结晶现象就越明显。因此,ZnSe晶体材料的晶体尺寸随着沉积温度的增加而快速增大。生长温度越低得到的PVDZnSe材料晶粒尺寸越小。理论上讲,小晶粒尺寸利于优化ZnSe材料的可加工性。为了表征所制备材料的可加工性能,对材料的断裂韧性与硬度进行了测试,并根据测试数据对其脆性指数进行了计算。表1为不同温度条件下制备的PVDZnSe材料的可加工性数据情况,其中920 ℃条件下制备的PVDZnSe由于厚度较小,无法进行断裂韧性测试。从表1中可以看出,随着晶粒尺寸的增加,材料的硬度在缓慢增加,断裂韧性逐渐降低,所以其脆性指数在逐渐增加,可加工性能变差。

      图  1  不同温度条件下制备的PVDZnSe材料的表面形貌图

      Figure 1.  Surface morphology of PVDZnSe prepared at different temperatures

      表 1  不同温度条件下制备的PVDZnSe材料的可加工性相关数据

      Table 1.  Machinability data of PVDZnSe materials prepared at different temperatures

      No.T/ ℃Grain size/μm HV/GPaKIC/MPa·m1/2HV/KIC/μm−1/2
      192020 -1800.93--
      2960300-20001.020.631.62
      310001200-28001.070.462.32

      但实验过程中发现,当生长温度为920、960、1 000 ℃时,PVDZnSe晶粒的生长速率分别为0.1、0.5、0.6 mm/h,即PVDZnSe生长速率会随着生长温度的降低而显著减慢。生长速率过于缓慢会延长晶体生长周期,导致生产成本增加,并且在长时间生长条件下,晶粒也会慢慢长大,0.5 mm/h被认为是最佳的生长速度。因此,从晶粒尺寸与生长速度两方面综合考虑,960 ℃为PVDZnSe的最佳生长温度。

      对上述三种PVDZnSe材料进行光学性能测试,测试结果如图2所示。在2~14 μm波长范围内,三种材料的平均透光率分别为70.1%、70.3%、70.2%。说明晶粒尺寸对PVDZnSe材料在2~14 μm波段范围内的光学透过率基本没有影响。

      图  2  三个不同温度下的ZnSe材料的光学性能

      Figure 2.  Optical properties of ZnSe materials at three differernt temperatures

    • ZnSe的原料特性会影响其蒸发速率,而蒸发速率又会影响PVDZnSe材料的晶体生长过程进而影响材料的晶粒尺寸。对比分析相同沉积工艺条件下由不同ZnSe粉体原料制备的PVDZnSe材料的微观形貌。所选三种原料分别标记为Ⅰ、Ⅱ、Ⅲ,原料Ⅰ和Ⅱ为粉体原料,原料Ⅲ为块体材料。采用场发射扫描电子显微镜测得三种原料的微观形貌如图3所示。原料Ⅰ和原料II的微观形貌图放大倍数为5000×,是采用场发射扫描电子显微镜在5000×放大条件下获得。原料III为采用金相电子显微镜在50×放大条件下获得。从图3可以看出原料Ⅰ、Ⅱ、Ⅲ的晶粒尺寸范围分别为2~10 μm、10~20 μm和300~2 000 μm。

      图  3  三种原料的微观形貌图

      Figure 3.  Micromorphology of the three raw materials

      图4为所选三种原料的X射线衍射图。三种原料都在相同的位置出现衍射峰,与ZnSe的JCPDS 卡片库中PDF#37-1463标准卡片的特征峰位完全吻合。三种原料的晶粒尺寸尽管不同,但是均为微米级别,所以三种原料的XRD图谱均未出现宽化现象,峰型十分相似。

      图  4  选用三种原料(I、II和III)的X射线衍射图

      Figure 4.  X-ray diffraction patterns of the three raw materials (I, II and III)

      图5为利用金相显微镜观察到的三种原料在生长温度为960 ℃条件下制备出的PVDZnSe晶体材料的表面形貌图。从图中可以看出,采用Ⅰ、Ⅱ和Ⅲ三种原料制备得到PVDZnSe晶体材料的粒径分别为200~1 500 μm,300~2 000 μm以及880~2 500 μm。PVDZnSe晶体材料的粒径随着原料粒径的增加而呈现增加的趋势。这是因为,在相同温度下,原料粒径尺寸越大就越难蒸发,使得ZnSe气体分子在沉积基板上的生长速率远大于成核速率,沉积基板上的ZnSe晶核快速长大,从而导致晶粒尺寸偏大。图6为三种原料在室温至1200 ℃范围内的热重曲线。从图中可以看出,在760~820 ℃之间,三种原料的失重程度为原料Ⅰ>原料Ⅱ>原料Ⅲ。在820~940 ℃范围内,原料Ⅰ失重程度最大,原料Ⅱ和原料Ⅲ程度相近。在940~1 200 ℃之间,原料失重程度为原料Ⅰ>原料Ⅱ>原料Ⅲ。因此,可以推测出,当生长温度为960 ℃时,原料Ⅰ的蒸发速率最快,原料Ⅱ次之,原料Ⅲ最慢。这也解释了在相同制备工艺条件下,由原料Ⅰ制备的PVDZnSe晶粒尺寸最小的原因。

      图  5  分别采用三种原料在相同工艺条件下制得的PVDZnSe材料的表面形貌

      Figure 5.  Surface morphology of PVDZnSe materials from three kinds of raw materials respectively under the same process

      图  6  三种ZnSe原料在室温至1200 ℃温度范围内的热重曲线

      Figure 6.  Thermogravimetric curves of the three kinds of ZnSe raw materials in the temperature range from room temperature to 1 200 ℃

      表2为采用不同原料在相同生长条件下制备的PVDZnSe材料的可加工性数据情况,从表2中很容易可以看出,随着晶粒尺寸的增加,材料的硬度也在缓慢增加,断裂韧性逐渐降低,因此脆性指数增加,可加工性能变差。

      表 2  三种原料制备的PVDZnSe材料的可加工性数据

      Table 2.  Machinability data of PVDZnSe materials prepared with three kinds of raw materials

      No. Raw materialGrain size/
      μm
      HV/
      GPa
      KIC/
      MPa·m1/2
      HV/
      KIC/μm−1/2
      1200-15000.980.661.48
      2300-20001.020.631.62
      3880-25001.040.611.70

      图7为三种材料的透过率曲线值。采用原料Ⅰ、原料Ⅱ和原料Ⅲ 制备的PVDZnSe材料的透过率分别为70.1%、70.3%、70.3%。可见原料尺寸对PVDZnSe的透过率影响不大。

      图  7  相同工艺条件下由三种原料制备的PVDZnSe样品光学性能

      Figure 7.  Optical properties of PVDZnSe prepared with three kinds of raw materials under the same process

      由PVDZnSe材料加工得到的光学零件实物样件如图8所示。

      图  8  PVDZnSe光学零件的实物样件图

      Figure 8.  Sample of PVDZnSe optical parts

    • 文中从生长温度与沉积原料两个方面,研究了制备工艺对其晶粒尺寸的影响。研究结果如下:

      (1) 在选取的920、960、1 000 ℃三个温度条件下,随着沉积温度越来越高,所制备的PVDZnSe材料晶粒尺寸越来越大,晶粒尺寸分别为20~180、 300~2 000、1 200~2 800 μm。

      (2) 在相同工艺参数条件下,选用粒径分别为200~1 500、300~2 000、880~2 500 μm的三种原料进行ZnSe材料的制备。随着沉积原料的晶粒尺寸越大,所制备的晶体尺寸越大。

      (3) 随着晶粒尺寸的增加在不断增加,PVDZnSe材料的脆性指数增加,其可加工性能变差。

      (4) 在可调节的晶粒尺寸范围内,晶粒尺寸对材料透过率的影响不大,都能达到70%以上。

参考文献 (13)

目录

    /

    返回文章
    返回