-
随着红外光子技术的迅速发展,材料科学的研究方向之一是寻找具有高红外透过率(特别是在一些重要的大气窗口)[1]和高非线性的光学材料,以实现一些关键的光子学应用,如红外激光源、红外传感器、超连续介质产生等。而满足上述特性的硫系玻璃则是以元素周期表中的第六主族元素中除氧和钋以外的硫、硒、碲三种元素和其他元素或它们之间相互组合构成的材料,具有较大的折射率和红外透过性、且红外透过范围广、非线性效应强[2-3]。目前针对硫系玻璃的光学非线性已经有了大量研究[4-8],尽管具有较高的光学非线性效应,但是针对硫系玻璃的光学非线性增强仍是一个值得研究的话题。近年来,以局域表面等离激元(Localized Surface Plasmons, LSP)对材料光学非线性增强的潜能正在越来越多地被发掘[9-10]。局域表面等离激元起源于金属或高掺杂半导体纳米颗粒表面的自由电子在入射光的激发下,电子的集体运动与电磁场相互作用产生的共谐振荡,具有局域光捕获[11]、电磁场增强[12],高的光热转换效率[13]等优秀特性,使得LSP在诸多领域中得到广泛研究,如光电器件制造、成像、检测表面增强光谱学[14-16]、非线性光学[17-18]、生物医学[19]等各个领域。其中,开发LSP增强硫系玻璃光学非线性的光子学器件仍需大量的研究工作。
文中采用真空热蒸发以及退火工艺制备了支持LSP的微纳结构,实现了硫系玻璃Ge28Sb12Se60薄膜的非线性的增强,探究了其光学非线性随激光波长的变化。首先通过热蒸镀和退火的方法制备支撑LSP的微纳银结构,并在该微纳结构上表面热蒸镀GSS薄膜,以形成待测样品。然后使用飞秒Z-扫描技术对已制备样品的三阶光学非线性进行测量,分别测量有无LSP微纳银结构的硫系玻璃薄膜,并进行对比研究LSP微纳银结构对硫系玻璃薄膜非线性的增强效果。随后,为了研究GSS薄膜非线性吸收增强的物理机制,利用扫描电子显微镜(Scanning Electron Microscope, SEM)研究退火银结构的微观形貌,并通过分析样品的透过光谱表征,来研究已制作样品的LSP特性。此外,通过利用不同波长的激光器作为激励光源,研究了样品的三阶光学非线性随激光波长的变化情况。
-
首先对待测样品进行制备(包括退火银结构、GSS薄膜、退火银结构加GSS薄膜):先用去离子水冲洗石英基片,然后依次用碱液和酸液煮沸5 min。其中碱液的成分为:氨水、过氧化氢、去离子水体积比1∶2∶5;酸液的成分为:盐酸、过氧化氢、去离子水体积比1∶2∶8。随后采用真空热蒸发方法在清洗过的石英基底上镀膜,其流程如图1所示。
样品1:直接在石英基片上热蒸镀50 nm厚的GSS薄膜;
样品2:先在石英基底上热蒸镀20 nm厚的Ag膜,然后放到马弗炉中退火(升温到270 ℃后持续1 min,自然冷却),形成随机岛状银结构[20],随后立刻镀50 nm厚的GSS薄膜。
实验中,采用Z扫描法测量已制备样品的三阶非线性,Z-扫描测试的装置示意图如图2所示。选用中心波长1030 nm的飞秒激光系统(锁模Yb:KGW型光纤激光器)作为泵浦源,经光学参量放大器(Optical Parametric Amplifier,OPA)输出可调的脉冲激光,其脉宽为190 fs,重复频率为20 Hz。光束经过一个宽带半透半反分光镜分成两束光,一束光作为参考光源,由探测器1接收,另一束光经过一个双凸透镜聚焦并照射到制备的样品上,透过的光束被探测器2接收。光探测器1和2为 Rjp-765 能量探测器配合 Rj-7620能量比率计和激光探头。实验时通过步进电机调整样品的位置,记录功率计的读数,从而得到一组Z位置和透过率一一对应的Z-扫描数据。其中闭孔Z-扫描需要加小孔光阑,用于测量非线性折射率;开孔Z-扫描需要去掉小孔光阑,用于测量非线性吸收。
-
样品的非线性折射率n2以及非线性吸收系数
$\; \beta$ [21]可由下式得出:$$ \Delta {T_{P - V}} \approx 0.406\Delta {\phi _0} = 0.406k{n_2}{I_0}{L_{\rm eff}} $$ (1) $$ \Delta {T_V} = \beta {I_0}{L_{\rm eff}}/2 $$ (2) 式中:
$k = 2\pi /\lambda $ 为激光在真空中的波矢;${I_0}$ 为激光束腰处光强;${L_{\rm eff}} = [1 - \exp ( - \alpha L)]/\alpha$ 为玻璃样品的有效长度。首先,为了验证Z-扫描系统的准确性,对标准样品ZnSe进行开孔的Z-扫描测试,结果符合数据标准。下面对已制备的两个样品进行开孔Z-扫描测试。图3(a)、(b)分别为样品1 (只有50 nm的GSS)和样品2 (20 nm厚的退火银结构加50 nm厚的GSS)在850 nm激光波长下的开孔Z-扫描数据。黑色方块数据和蓝色三角数据为两次测量的结果,红色曲线为matlab拟合得到的结果,从图3中可以看出样品1和样品2均产生了十分明显的反饱和吸收现象[22]。通过公式(1)计算得到样品1、2的非线性吸收系数分别为
$\;{\beta _{\text{1}}}{\text{ = 1}} \times {\text{1}}{{\text{0}}^{{{ - 9}}}}$ m/W,$\;{\beta _{\text{2}}}{\text{ = 2}}{\text{.6}} \times {\text{1}}{{\text{0}}^{{{ - 9}}}}$ m/W。通过比较两组结果可以看出,经过退火处理后的20 nm银膜对GSS膜的非线性吸收系数增强了近2.6倍。图 3 850 nm波长下开孔Z-扫描实验与拟合结果。(a)样品1:GSS 50 nm;(b)样品2:20 nm退火银结构加GSS 50 nm
Figure 3. 850 nm Z-scan experiment and fitting results. (a) Sample 1: GSS 50 nm; (b) Sample 2: 20 nm annealed silver structure with 50 nm GSS
为了研究该非线性增强现象的原理,首先利用SEM研究银膜退火前后的微观形貌变化。如图4所示,给出了20 nm银膜退火前后的SEM图。从图中可以明显看出,退火前20 nm厚的银膜结构比较致密,间隙较小。而退火后,岛状结构的间距变大,表面更加光滑,更有利于形成明显的局域表面等离激元现象。由此判断:银膜经过退火后,可以形成支持局域表面等离激元的微纳结构。微纳结构与入射光相互作用形成局域表面等离激元共振,其局域电场增强效果是导致GSS薄膜非线性吸收现象增强的主要原因[23-24]。
图 4 (a) 20 nm银膜SEM图;(b) 20 nm退火银膜SEM图
Figure 4. (a) SEM images of silver films at 20 nm; (b) SEM images of silver films annealed at 20 nm
为了更清楚地解释表面等离激元共振现象,研究了样品的透射光谱性质。首先由光谱仪测得样品的透过率谱,再通过Matlab Savitzky-Golay滤波器滤掉噪声,其结果如图5所示。其中,黑色曲线为20 nm厚的退火银膜透过率曲线,在462 nm处出现了明显的谷值,表明了退火后的银结构在462 nm处产生的局域表面等离激元共振效果最强,降低了透过率。而20 nm厚的退火银结构加50 nm厚的GSS薄膜(样品2)透过率曲线相对20 nm厚的退火银膜透过率曲线和50 nm厚的GSS薄膜(样品1)透过率曲线发生了透射谷展宽和红移,笔者认为这是由于退火银结构的随机性导致其可在较宽的光谱范围内激发局域等离激元共振,进而可在较宽的光谱范围内增强非线性吸收
$\;\beta $ 。图 5 50 nm GSS、20 nm退火银结构、20 nm退火银结构加50 nm GSS样品的透过率谱
Figure 5. Transmittance spectra of 50 nm GSS, 20 nm annealed silver structure, 20 nm annealed silver structure and 50 nm GSS sample
最后,研究不同激光波长对已制备样品光学非线性性能的影响。非线性折射率n2和非线性吸收
$\;\beta $ 与入射光频率的函数关系如下[25]:$$ {n_2} = \frac{{3K'}}{{4c{\varepsilon _0}n_0^2}}\frac{{{\omega _{\rm to}} - \omega }}{{{{({\omega _{\rm to}} - \omega )}^2} + {\varGamma ^2}}} $$ (3) $$ \beta = \frac{{ - 3\pi K'}}{{c{\varepsilon _0}n_0^2{\lambda _0}}}\frac{\varGamma }{{{{({\omega _{\rm to}} - \omega )}^2} + {\varGamma ^2}}} $$ (4) $$ \begin{gathered} K' = \frac{{({N_\rm o} - {N_\rm t}){{({p_0})}_{\rm to}}}}{{{\varepsilon _0}6{\hbar ^3}}}\sum\limits_{\rm b,c} {({p_0}} {)_{\rm ob}}{({p_0})_{\rm bc}}{({p_0})_{\rm ct}}\cdot\\ \left[ {\frac{2}{{({\omega _{\rm bo}} - \omega ){\omega _{\rm co}}}} + \frac{2}{{({\omega _{\rm bo}} + \omega ){\omega _{\rm co}}}} + \frac{2}{{({\omega _{\rm bo}} - \omega )({\omega _{\rm co}} - 2\omega )}}} \right] \\ \end{gathered} $$ (5) 式中:
${\omega _{\rm to}}$ 为分子从基态(o)向激发态(t)的跃迁频率;$\varGamma$ 为线宽因子;$K'$ 为常数;角标b和c代表分子所有可能的分子能级。由公式(3)可得出,当入射光频率从共振中心频率的低频方向调谐到高频方向时,折射率的变化将改变符号,在准确共振概率位置时,折射率的共振增强量为零,此时单光子吸收概率最大。实验选取了不同波长的飞秒激光作为光源对已制备样品进行开孔和闭孔的Z-扫描实验。测得样品的非线性折射率和吸收结果如图6(a)、(b)所示。图6(a)为测得的样品1 (红色点,50 nm GSS薄膜)和样品2 (蓝色点线,20 nm退火银膜加50 nm GSS薄膜)的非线性折射率随波长变化情况。首先,对比样品1和样品2的结果发现,在850 nm波段,样品1和样品2的非线性折射率无明显差异;而在650 nm波段,样品2的非线性折射率相对于样品1的非线性符号发生了改变。这里推测是由于硫系玻璃GSS镀膜到退火银结构时,局部的银与硫系玻璃互相发生渗透,使硫系玻璃由N型半导体转变为P型半导体[26]。其次,研究波长对样品1和样品2非线性折射率的影响。样品2的非线性折射率在650~800 nm之间符号发生改变,样品1的非线性折射率在650 nm之后为正值,由公式(3)可知,样品的非线性折射率随波长的增加由负到正[25],所以样品2的共振中心频率相对样品1发生了偏移。图6(b)为测得的样品1和样品2的非线性吸收随波长变化情况。对比样品1和样品2的结果发现,在650 nm和850 nm波段处,样品2的非线性吸收系数均高于样品1,说明退火银膜均能激发局域表面等离激元共振来增强GSS薄膜的非线性吸收。而由蓝色曲线可知,样品2的非线性吸收
$\; \beta $ 随波长的增加符号由负变正。这是因为随着波长的增加,非线性吸收由单光子吸收为主逐渐转变为双光子吸收为主。并且可以明显看出,随着光子能量的减小,样品2的非线性吸收系数$\; \beta $ 逐渐接近0值。由此推断,当波长大于850 nm时,非线性吸收逐渐趋于0。 -
文中研究了退火银膜产生的微纳结构对硫系玻璃GSS在飞秒激光作用下三阶非线性的影响及其随激光波长的变化。实验结果表明,通过银膜退火形成支持局域表面等离激元的微纳结构,可在650 nm和850 nm波段下产生局域表面等离激元共振来增强非线性吸收。非线性吸收随着波长的增加由单光子吸收为主逐渐转变为双光子吸收为主。非线性折射率随着波长的增加由负变正,且20 nm退火银膜加50 nm GSS薄膜相对50 nm GSS薄膜的共振中心频率发生了偏移。笔者的工作是对硫系玻璃在飞秒激光作用下光学非线性的较深入研究,对基于硫系玻璃非线性器件的研究具有较高的参考价值。
Dispersion characteristics of optical nonlinearity enhancement of chalcogenide glass Ge28Sb12Se60 film
-
摘要: 采用真空热蒸发以及退火工艺制备了支持局域表面等离激元的微纳结构薄膜,在此薄膜上蒸镀了硫系玻璃Ge28Sb12Se60薄膜。应用Z-扫描技术,在飞秒激光脉冲激发下研究其光学非线性增强的色散特性,在650 nm和850 nm波段观察到了非线性吸收增强;非线性折射率随着波长的增加由负变正。通过扫描电子显微镜和透过光谱表征和分析了硫系玻璃Ge28Sb12Se60薄膜非线性吸收增强的原理,非线性吸收随着波长的增加由单光子吸收为主逐渐转变为双光子吸收为主;银膜的微纳结构导致硫系玻璃薄膜的共振中心频率发生了偏移。实验制备的用于增强硫系玻璃非线性的微纳结构制作简单,无需复杂光刻工艺,为非线性光子学器件的设计提供了新的思路。Abstract: Micronano structure films supporting local surface plasmons were prepared by vacuum thermal evaporation and annealing, and the chalcogenide glass Ge28Sb12Se60 film was evaporated on this film. The dispersion characteristics of optical nonlinear enhancement were studied by the Z-scan technique under femtosecond laser pulse excitation. Nonlinear absorption enhancement was observed at 650 nm and 850 nm. The nonlinear refractive index changes from negative to positive with increasing wavelength. The principle of nonlinear absorption enhancement of chalcogenide glass Ge28Sb12Se60 thin films was characterized and analysed by scanning electron microscopy and transmission spectroscopy. The nonlinear absorption gradually changed from single photon absorption to two-photon absorption with increasing wavelength. The resonance center frequency of chalcogenide glass films shifted due to the micro/nanostructures of silver films. The preparation of micro/nanostructures for enhancing the nonlinearity of chalcogenide glass is simple without a complex lithography process, which provides a new idea for the design of nonlinear photonic devices.
-
-
[1] 王形锋, 闫兴涛, 陈国庆, 等. 柔性硫系玻璃红外光纤传像束的制备与性能测试[J]. 光学精密工程, 2017, 25(12): 3137-3144. doi: 10.3788/OPE.20172512.3137 Wang Xingfeng, Yan Xingtao, Chen Guoqing, et al. Fabrication and optical performances measurements of flexible chalcogenide imaging fiber bundles [J]. Optics and Precision Engineering, 2017, 25(12): 3137-3144. (in Chinese) doi: 10.3788/OPE.20172512.3137 [2] 常青, 檀恒宇, 孟天明. 不同核心尺寸及壳层厚度CdTe/CdS量子点非线性光学及超快动力学特性[J]. 红外与激光工程, 2021, 50(2): 20200342. doi: 10.3788/IRLA20200342 Chang Qing, Tan Hengyu, Meng Tianming. Nonlinear optics and ultrafast dynamics characteristics of CdTe/CdS quantum dots with different core sizes and shell thickness [J]. Infrared and Laser Engineering, 2021, 50(2): 20200342. (in Chinese) doi: 10.3788/IRLA20200342 [3] 侯尚林, 雷景丽, 吴七灵, 等. 高非线性光子晶体光纤中飞秒脉冲压缩(特邀)[J]. 红外与激光工程, 2019, 48(1): 103004-0103004(6). doi: 10.3788/IRLA201948.0103004 Hou Shanglin, Lei Jingli, Wu Qiling, et al. Enhanced femtosecond optical pulses compression in highly nonlinear photonic crystal fibers (invited) [J]. Infrared and Laser Engineering, 2019, 48(1): 0103004. (in Chinese) doi: 10.3788/IRLA201948.0103004 [4] Yi C, Song Y. Recent advance in optical nonlinearity measurement technique with phase object [J]. Infrared and Laser Engineering, 2012, 41(6): 1610-1617. (in Chinese) [5] Wu X, Liu D, Yang J, et al. Optical nonlinear and optical limiting measurements of a new metal indium phthalocyanine [J]. Infrared and Laser Engineering, 2014, 43(1): 108-112. (in Chinese) [6] Wang Y, Li Y, Song Y. Advances in 4f phase coherent imaging technique for measuring the optical nonlinear index [J]. Infrared and Laser Engineering, 2008, 37(4): 667-691. (in Chinese) [7] Pradhan P, Khan P, Aswin J R, et al. Quantification of nonlinear absorption in ternary As-Sb-Se chalcogenide glasses [J]. Journal of Applied Physics, 2019, 125: 015105. doi: 10.1063/1.5063864 [8] Viswanathan A, Thomas S. Tunable linear and nonlinear optical properties of GeSeSb chalcogenide glass with solute concentration and with silver doping [J]. Journal of Alloys and Compounds, 2019, 798: 424-430. doi: 10.1016/j.jallcom.2019.05.261 [9] 王浩冰, 陶金, 吕金光, 等. 局域表面等离激元共振增强硅蓝光波段吸收特性研究[J]. 中国光学, 2020, 13(6): 1362-1384. doi: 10.37188/CO.2020-0056 Wang Haobing, Tao Jin, Lv Jinguang, et al. Absorption enhancement of silicon via localized surface plasmons resonance in blue band [J]. Chinese Optics, 2020, 13(6): 1362-1384. (in Chinese) doi: 10.37188/CO.2020-0056 [10] Sun T, Chen F, Lin C, et al. Local field effect influenced third-order optical nonlinearity of whole visible transparent chalcogenide glass ceramics [J]. Ceramics International, 2019, 45(8): 10840-10844. doi: 10.1016/j.ceramint.2019.02.160 [11] Haes A J, Lei C, Klein W L, et al. Detection of a biomarker for alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor [J]. Journal of the American Chemical Society, 2005, 127(7): 2264-2271. doi: 10.1021/ja044087q [12] Haes A J, Haynes C L, McFarland A D, et al. Plasmonic materials for surface-enhanced sensing and spectroscopy [J]. MRS Bulletin, 2005, 30: 368-375. [13] Willets K A, Duyne R P V. Localized surface plasmon resonance spectroscopy and sensing [J]. Annual Review of Physical Chemistry, 2007, 58: 268-297. [14] 计吉焘, 翟雨生, 吴志鹏, 等. 基于周期性光栅结构的表面等离激元探测[J]. 光学精密工程, 2020, 28(3): 526-534. doi: 10.3788/OPE.20202803.0526 Ji Jitao, Zhai Yusheng, Wu Zhipeng, et al. Detection of surface plasmons based on periodic grating structure [J]. Optics and Precision Engineering, 2020, 28(3): 526-534. (in Chinese) doi: 10.3788/OPE.20202803.0526 [15] 韩晶, 高扬, 焦威严, 等. 基于石墨烯纳米带的中红外等离激元调控[J]. 中国光学, 2020, 13(3): 627-636. Han Jing, Gao Yang, Jiao Weiyan, et al. Mid-infrared plasmon regulation based on graphene nanoribbons [J]. Chinese Optics, 2020, 13(3): 627-636. (in Chinese) [16] Miao R, Zhang Y, Tang Y, et al. Photoluminescence enhancement and ultrafast relaxation dynamics in a lowdimensional heterostructure: effect of plasmon-exciton coupling [J]. Optics Letters, 2018, 43(24): 6093-6096. doi: https://doi.org/10.1364/OL.43.006093 [17] Wen X, Xu W, Zhao W, et al. Plasmonic hot carriers-controlled second harmonic generation in WSe2 Bilayers [J]. Nano Letters, 2018, 18(3): 1686-1692. doi: 10.1021/acs.nanolett.7b04707 [18] Hooper D C, Kuppe C, Wang D, et al. Second harmonic spectroscopy of surface lattice resonances [J]. Nano Letters, 2019, 19(1): 165-172. doi: 10.1021/acs.nanolett.8b03574 [19] Xin H, Namgung B, Lee L P. Nanoplasmonic optical antennas for life sciences and medicine [J]. Nature Reviews Materials, 2018, 3: 228-243. doi: 10.1038/s41578-018-0033-8 [20] Kong X, Fu Y, Zhang W, et al. Analysis of random antireflective structures fabricated by silver dewetting to enhance transmission [J]. Journal of Nanophotonics, 2017, 11(3): 036019. [21] Sheik-Bahae M, Said A A, Wei T H, et al. Sensitive measurement of optical nonlinearities using a single beam [J]. IEEE Journal of Quantum Electronics, 1990, 26(4): 760-769. doi: 10.1109/3.53394 [22] Wang X, Yao L, Li S, et al. Extraordinarily large third-order optical nonlinearity in Au nanorods under nanowatt laser excitation [J]. Journal of Physical Chemistry C, 2020, 124(12): 6838-6844. doi: 10.1021/acs.jpcc.0c00534 [23] Miao R, Shu Z, Hu Y, et al. Ultrafast nonlinear absorption enhancement of monolayer MoS2 with plasmonic Au nanoantennas [J]. Optics Letters, 2019, 44(13): 3198-3201. doi: 10.1364/OL.44.003198 [24] Alam M Z, Schulz S A, Upham J, et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material [J]. Nature Photonics, 2018, 12(2): 79-83. doi: 10.1038/s41566-017-0089-9 [25] He Guangsheng. Nonlinear Optics and Photonics [M]. Shanghai: Shanghai Scientific & Technial Publishers, 2019: 94. (in Chinese) [26] Huang Kun. Solid State Physics [M]. Beijing: Peking University Press, 2014: 200. (in Chinese) -