留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字闭环光纤电流传感器暂态特性仿真研究

曹辉 许慎诺 马建刚 石念宝 徐金涛

曹辉, 许慎诺, 马建刚, 石念宝, 徐金涛. 数字闭环光纤电流传感器暂态特性仿真研究[J]. 红外与激光工程, 2022, 51(7): 20210615. doi: 10.3788/IRLA20210615
引用本文: 曹辉, 许慎诺, 马建刚, 石念宝, 徐金涛. 数字闭环光纤电流传感器暂态特性仿真研究[J]. 红外与激光工程, 2022, 51(7): 20210615. doi: 10.3788/IRLA20210615
Cao Hui, Xu Shennuo, Ma Jiangang, Shi Nianbao, Xu Jintao. Simulation research of the transient characteristics of a digital closed-loop fiber optic current sensor[J]. Infrared and Laser Engineering, 2022, 51(7): 20210615. doi: 10.3788/IRLA20210615
Citation: Cao Hui, Xu Shennuo, Ma Jiangang, Shi Nianbao, Xu Jintao. Simulation research of the transient characteristics of a digital closed-loop fiber optic current sensor[J]. Infrared and Laser Engineering, 2022, 51(7): 20210615. doi: 10.3788/IRLA20210615

数字闭环光纤电流传感器暂态特性仿真研究

doi: 10.3788/IRLA20210615
详细信息
    作者简介:

    曹辉,男,硕士,助理研究员,主要从事光纤传感、光学测量等方面的研究

  • 中图分类号: TN29

Simulation research of the transient characteristics of a digital closed-loop fiber optic current sensor

  • 摘要: 数字闭环光纤电流传感器暂态特性主要包含频率响应与阶跃响应,对于电力系统的继电保护控制、故障录波等应用领域至关重要。在工程应用中,传统的测试方法由于其测试系统复杂、测试电流信号小等问题,不利于评估光纤电流传感器的暂态特性。利用数字闭环光纤电流传感器的闭环控制机理,提出一种在数字闭环光纤电流传感器反馈回路中添加相位调制激励的方法。首先,分析数字闭环光纤电流传感器的相位调制原理,通过建立数学模型验证相位调制激励的等效性;其次,根据数字闭环光纤电流传感器闭环控制算法,提出频率响应与阶跃响应的调制激励产生方法;最后,利用现有数字闭环光纤电流传感器产品平台完成频率响应与阶跃响应的仿真与测试。结果表明:采用相位调制激励的仿真数据与试验数据最大误差为0.12%,该调制激励方法不需要搭建复杂的测试系统,在现有硬件平台中即可实现不同电流信号的仿真测试。
  • 图  1  光纤电流传感器结构框图

    Figure  1.  Diagram of fiber optic current sensor structure

    图  2  光纤电流传感器数据控制模型

    Figure  2.  Data control model of fiber optic current sensor

    图  3  光纤电流传感器的数学模型

    Figure  3.  Mathematical model of optical fiber current sensor

    图  4  光纤电流传感器添加测试激励的数学模型

    Figure  4.  Mathematical model of optical fiber current sensor with test excitation

    图  5  光纤电流传感器阶跃响应调制激励

    Figure  5.  Step response modulation excitation of FOCS

    图  6  光纤电流传感器正弦调制激励

    Figure  6.  Sinusoidal modulation excitation of FOCS

    图  7  光纤电流传感器阶跃响应仿真与试验曲线

    Figure  7.  Step response simulation and test curve of fiber optic current sensor

    图  8  LLG−1100光纤电流传感器幅值误差-频率特性仿真与试验曲线

    Figure  8.  Simulation and testing curves of amplitude error-frequency characteristic for LLG−1100

    表  1  阶跃响应仿真数据对比

    Table  1.   Comparison of step response simulation data

    DataOvershoot percent Rise time/μs
    Experimental data0%100-200
    Simulation data0%100-200
    下载: 导出CSV

    表  2  频率响应试验与仿真数据

    Table  2.   Experimental and simulation data of frequency response

    Frequency/HzExperimental data errorSimulation data error
    50 −0.03% 0.01%
    150 0.06% −0.05%
    600 −0.06% −0.06%
    800 −0.13% −0.11%
    1200 −0.39% −0.27%
    1600 −0.76% −0.73%
    1800 −1.05% −1.08%
    2000 −1.55% −1.52%
    下载: 导出CSV
  • [1] Li H, Zhang C X, Li L J, et al. Design of a robust controller for fiber optic current transformer system [J]. High Voltage Apparatus, 2009, 45(6): 28-30.
    [2] Xu J T, Wang Y L, Wang J, et al. All-fiber current sensor application in the smart grid [J]. China Electrical Equipment Industry, 2011(1): 53-57. (in Chinese)
    [3] Wang L, Wang B, Wu S, et al. Study on transient characteristics test method of electronic current transformer [J]. High Voltage Apparatus, 2014, 50(11): 86-91. (in Chinese)
    [4] Guo S Y. Analysis on the frequency characteristics of an industrial current transformer [J]. Electrotechnical Application, 2006, 25(11): 29-31. (in Chinese)
    [5] Lu Y Q, Fan S T, Li X Q. New method on the measurement of frequency characteristic of current transformer [J]. Journal of Beijing Institute of Petro-chemical Technology, 2009, 17(2): 45-48. (in Chinese)
    [6] Li C S, Shao H M, Zhao W, et al. Wide-frequency measurement characteristics of DC fiber-optic current transformer [J]. Automation of Electric Power Systems, 2017, 41(20): 151-156. (in Chinese)
    [7] Wang N, Wan Q, Shao X, et al. Research on the modeling and simulation techniques of fiber optical current transformer [J]. Journal of Hunan University (Natural Sciences), 2011, 38(10): 44-49. (in Chinese)
    [8] Wang X X, Wang Y, Wang X C, et al. Experimental research on dynamic characteristic of fiber optical current transformer [J]. Power System Protection and Control, 2014, 42(3): 9-14. (in Chinese)
    [9] Wang L H, Yang Z X, Yin M H, et al. Simulation and test of dynamic performances of digital closed-loop fiber optic current transducer [J]. Chinese Journal of Scientific Instrument, 2010, 31(8): 1890-1895. (in Chinese)
    [10] Song M, Zhang H. Research on the modeling and simulation techniques of digital all-fiber current transformer [J]. Optical Instruments, 2013, 35(1): 60-64. (in Chinese)
    [11] Cao H, Shi N B, Xu J T. A novel design of fiber-optic Sagnac current sensor[C]//Proceeding of 2012 5th International Symposium on Computational Intelligence and Design, 2012.
    [12] Cao H, Yang Y F, Liu S B, et al. Temperature control system for SLD optical source of FOCS [J]. Infrared and Laser Engineering, 2014, 43(3): 920-926. (in Chinese)
    [13] Li Y Y. Research of the noise suppression for fiber optic current transformer[D]. Beijing: University of Chinese Academy of Sciences, 2014. (in Chinese)
    [14] Cao H. Research on temperature control and compensation of digital closed-Loop fiber optic gyroscope[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese)
    [15] Zhao Honggang. Large DC current calibration and ''equal ampere-turn series-parallel method'' [J]. Chinese Journal of Scientific Instrument, 2010, 31(8): 172-174. (in Chinese)
  • [1] 勾万祥, 佟帅, 贾靖玉, 秦梓轩, 孙吉福, 李崇辉.  全天时星敏感器光学响应波段优化设计及试验验证 . 红外与激光工程, 2023, 52(11): 20230221-1-20230221-11. doi: 10.3788/IRLA20230221
    [2] 廖清君, 胡晓宁, 黄爱波, 陈洪雷, 叶振华, 丁瑞军.  拼接型短波红外探测器的光谱响应特性 . 红外与激光工程, 2023, 52(9): 20220890-1-20220890-8. doi: 10.3788/IRLA20220890
    [3] 廖英琦, 杨苏辉, 宋健, 郝燕, 徐震.  利用涡旋光场计算水中前向散射的频率响应 . 红外与激光工程, 2023, 52(9): 20220831-1-20220831-10. doi: 10.3788/IRLA20220831
    [4] 孙志宇, 陆健, 张宏超, 李广济, 谢知健.  激光传能协同信号传输下的太阳能电池性能测试 . 红外与激光工程, 2022, 51(2): 20210888-1-20210888-8. doi: 10.3788/IRLA20210888
    [5] 薛芳, 陈永权, 段亚轩, 蔺辉, 达争尚.  高能激光测量中的光强探测器面响应校正方法 . 红外与激光工程, 2021, 50(S2): 20210215-1-20210215-8. doi: 10.3788/IRLA20210215
    [6] 韩凯, 崔文达, 奚小明, 李志鸿.  弱导阶跃折射率光纤中的模式简并问题 . 红外与激光工程, 2020, 49(4): 0405001-0405001-11. doi: 10.3788/IRLA202049.0405001
    [7] 徐作冬, 张检民, 林新伟, 邵碧波.  纳秒激光辐照下HgCdTe光伏探测器的瞬态响应特性退化 . 红外与激光工程, 2018, 47(1): 106001-0106001(5). doi: 10.3788/IRLA201847.0106001
    [8] 谭巧, 徐启峰, 黄奕钒, 项宇锴.  一种基于径向偏振解调的线性光学电流传感器 . 红外与激光工程, 2018, 47(2): 222003-0222003(6). doi: 10.3788/IRLA201847.0222003
    [9] 许中杰, 程湘爱, 江天, 苗锡奎, 胡伟达, 陈效双.  强光辐照下面阵探测器响应特性全流程仿真框架研究 . 红外与激光工程, 2017, 46(S1): 56-62. doi: 10.3788/IRLA201746.S106010
    [10] 许晓飞, 张丽, 王森.  光子计数探测器的响应函数标定及校正方法 . 红外与激光工程, 2017, 46(12): 1217005-1217005(6). doi: 10.3788/IRLA201746.1217005
    [11] 陈海东, 赵坤, 史学舜, 刘长明, 刘玉龙, 刘红博.  基于长波红外探测器绝对光谱响应度测量的激光源 . 红外与激光工程, 2017, 46(12): 1205002-1205002(7). doi: 10.3788/IRLA201746.1205002
    [12] 侯治锦, 傅莉, 王巍, 吕衍秋, 鲁正雄, 王锦春.  用响应和串音识别焦平面探测器相连缺陷元研究 . 红外与激光工程, 2017, 46(4): 420002-0420002(5). doi: 10.3788/IRLA201746.0420002
    [13] 车兴森, 侯立飞, 杨轶濛, 杜华冰, 杨国洪, 韦敏习.  用于平响应X光探测器的复合滤片参数优化 . 红外与激光工程, 2017, 46(10): 1017008-1017008(5). doi: 10.3788/IRLA201776.1017008
    [14] 赵坤, 史学舜, 刘长明, 刘玉龙, 陈海东, 刘红博, 陈坤峰, 李立功.  用于探测器中红外绝对光谱响应度测量的激光源 . 红外与激光工程, 2016, 45(7): 705005-0705005(7). doi: 10.3788/IRLA201645.0705005
    [15] 丁秀昕, 张晞, 王洪波, 李立京, 李勤, 钟翔.  调制频率对φ-OTDR 分布式光纤扰动传感系统动态性能的影响 . 红外与激光工程, 2015, 44(1): 210-214.
    [16] 王英利, 康梦华, 任立勇, 任凯利.  用于全光纤电流传感器的扭转高双折射光纤设计 . 红外与激光工程, 2015, 44(1): 170-175.
    [17] 范哲, 张春熹, 牛燕雄, 孙绪印, 罗娜, 潘建业.  光电探测器非线性响应对相干激光多普勒测速仪的影响 . 红外与激光工程, 2014, 43(7): 2103-2107.
    [18] 王文娟, 王少伟, 陆卫, 陈飞良, 张英, 孙晓岚, 李宁, 李志锋, 李雪.  激光选择聚焦的响应增强型光电探测器 . 红外与激光工程, 2014, 43(5): 1416-1420.
    [19] 曹辉, 杨一凤, 刘尚波, 徐金涛, 赵卫.  用于光纤电流传感器SLD光源的温度控制系统 . 红外与激光工程, 2014, 43(3): 920-926.
    [20] 徐鹏飞, 张建辉, 孟祥然, 马可贞, 赵宇, 张文栋, 薛晨阳, 闫树斌.  光纤腔动态谐振响应特性 . 红外与激光工程, 2013, 42(3): 599-604.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  44
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 修回日期:  2022-03-15
  • 刊出日期:  2022-08-05

数字闭环光纤电流传感器暂态特性仿真研究

doi: 10.3788/IRLA20210615
    作者简介:

    曹辉,男,硕士,助理研究员,主要从事光纤传感、光学测量等方面的研究

  • 中图分类号: TN29

摘要: 数字闭环光纤电流传感器暂态特性主要包含频率响应与阶跃响应,对于电力系统的继电保护控制、故障录波等应用领域至关重要。在工程应用中,传统的测试方法由于其测试系统复杂、测试电流信号小等问题,不利于评估光纤电流传感器的暂态特性。利用数字闭环光纤电流传感器的闭环控制机理,提出一种在数字闭环光纤电流传感器反馈回路中添加相位调制激励的方法。首先,分析数字闭环光纤电流传感器的相位调制原理,通过建立数学模型验证相位调制激励的等效性;其次,根据数字闭环光纤电流传感器闭环控制算法,提出频率响应与阶跃响应的调制激励产生方法;最后,利用现有数字闭环光纤电流传感器产品平台完成频率响应与阶跃响应的仿真与测试。结果表明:采用相位调制激励的仿真数据与试验数据最大误差为0.12%,该调制激励方法不需要搭建复杂的测试系统,在现有硬件平台中即可实现不同电流信号的仿真测试。

English Abstract

    • 随着电力系统容量与绝缘等级的提高,对电流传感器的暂态响应性能的要求越来越高。基于电磁感应的传统电流互感器,已经呈现出许多不可克服的问题,不能满足新一代电力系统的要求[1]。采用数字闭环控制的光纤电流传感器具有绝缘性好、动态范围大、频带宽等特点,受到了越来越广泛的关注[2]

      频率响应与阶跃响应是评价电流传感器暂态性能的重要指标,对于继电保护控制、故障录波等应用领域具有较高的研究价值[3]。在工程应用中,通常采用高功率电流信号发生器产生测试波形实现对频率响应与阶跃响应的测试。但由于其测试系统复杂,并且产生的电流信号较小,无法准确评估电流传感器的动态特性[4-5]。为了分析光纤电流传感器的闭环控制效果,评价光纤电流传感器的动态响应特性,参考文献[6-10]通过建立光纤电流传感器的数学模型,对光纤电流传感器的动态特性进行了理论仿真分析。但考虑到系统设计的电路噪声、A/D 转换延时、数字滤波算法等都会对暂态特性产生影响,因此需要一种对现有系统暂态响应进行测试的方法。

      文中介绍了一种通过在光纤电流传感器光路上添加相位调制激励的方法,模拟外界电流信息,利用光纤电流传感器的信号处理算法,解调出光纤电流传感器对外界电流信息的响应曲线,从而实现对光纤电流传感器频率响应与阶跃响应的测试。通过试验对比,该激励测试方法与试验结果一致,并且无需搭建测试设备,可以实现光纤电流传感器对暂态电流测量的性能评估,是一种简单、适用、有效的光纤电流传感器暂态测试方法。

    • 光纤电流传感器是通过检测两束偏振光在Faraday磁场效应下的干涉光强来测量电流,其结构框图如图1所示[11]

      图  1  光纤电流传感器结构框图

      Figure 1.  Diagram of fiber optic current sensor structure

      超辐射发光二极管(SLD)输出的光通过2×2耦合器后分为两束光,其中一路光经过起偏器后输出为线偏振光,起偏器与相位调制器的保偏光纤采用45°熔接,从而形成两束正交等分的线偏振光沿保偏光纤的快轴和慢轴传输至相位调制器和光纤延迟线。两束线偏振光经过λ/4波片后转换为左旋圆偏振光和右旋圆偏振光,进入传感光纤。传感光纤缠绕在被测电流周围,用来敏感被测电流产生的磁场。根据法拉第磁光效应原理,传感光纤中沿着磁场传输的两束圆偏振光受到磁场影响后传输速率发生变化,从而产生法拉第相位差。两束带有相位差的圆偏振光经光纤端面反射镜、λ/4波片后恢复为线偏振光,在偏振器处发生干涉[12]。干涉光强的表达式为:

      $$ {P_{out}} = {P_{in}}\left( {\frac{1}{2} + \frac{1}{2}\cos \left( {4VNI} \right)} \right) $$ (1)

      式中:V为Verdet常数;I为待测电流;N为传感光纤的线圈匝数。

      干涉光通过耦合器后进入探测器转换为电信号,经信号处理电路调制与解调后输出测量电流值。为提升光纤电流传感器的电流测量范围,并且保证测量范围内的测量线性度,通常采用数字闭环方案,利用相位调制器的电光效应实现对法拉第相位差的方波调制与闭环反馈[13]

    • 根据光纤电流传感器闭环工作原理,可以建立光纤电流传感器的数字控制模型,如图2所示。光纤电流传感器系统利用采样数字量进行数字处理,因此该系统可以看作离散时间系统,如图3所示。图中,Ks为法拉第效应的比例系数; Kpd为光电探测器的光电转换系数;K1为A/D转换器前端放大器的放大倍数;KAD为A/D转换器的模数转换系数;K2为过采样积分的累加倍数;Kr为电流闭环误差的解调系数,可以近似为1;而电流积分器和阶梯波积分器作为离散信号的累加器,可以等效为1/(1−z−1);KG1为位数变化引起的数字增益;KM为相位调制器的调制系数,图中通过第二闭环回路调节第一路D/A转换器的转换系数,其中KDA1为第一路D/A转换器的转换系数;Kε为相位调制误差的解调系数;而相位调制误差积分器是一个累加器,可以等效为1/(1−z−1);φ(z)为调制相位的z域表示[14]

      图  2  光纤电流传感器数据控制模型

      Figure 2.  Data control model of fiber optic current sensor

      图  3  光纤电流传感器的数学模型

      Figure 3.  Mathematical model of optical fiber current sensor

      图3可知:

      $$ {\varphi _f}\left( {\textit{z}} \right) = \left( {1 - {{\textit{z}}^{ - 1}}} \right) \cdot {K_M}{K_{{\rm{DA1}}}} \cdot \dfrac{1}{{1 - {{\textit{z}}^{ - 1}}}} \cdot {K_{{\rm{G1}}}} \cdot {\text{i}}\left( {\textit{z}} \right) $$ (2)

      因此,光纤电流传感器的传递函数为:

      $$ H\left( {\textit{z}} \right) = \frac{{{{i}}\left( {\textit{z}} \right)}}{{{{I}}\left( {\textit{z}} \right)}} = \frac{{{K_s} \cdot {K_A} \cdot \dfrac{1}{{1 - {{\textit{z}}^{ - 1}}}}}}{{1 + {K_A} \cdot {K_B} \cdot \dfrac{1}{{1 - {{\textit{z}}^{ - 1}}}}}} = \frac{{{K_s} \cdot {K_A} \cdot Z}}{{(1 + {K_A} \cdot {K_B})Z - 1}} $$ (3)

      式中:KA=KpdK1KADK2KB=KMKDA1KG1

    • 根据上述光纤电流传感器的工作原理可以看出,外界电流产生的磁场会引起光纤电流传感器的两束偏振光的相位差,而相位调制器也可以通过电场产生两束光的相位差,因此可以利用相位调制器产生相位调制激励,模拟外界电流产生的相位差,从而实现对光纤电流传感器的动态性能测试。

      利用相位调制激励的系统传递函数框图如图4所示。

      图  4  光纤电流传感器添加测试激励的数学模型

      Figure 4.  Mathematical model of optical fiber current sensor with test excitation

      图中,P(Z)为软件产生的相位调制激励。

      $$ {\varphi _f}\left( {\textit{z}} \right) = \left( {1 - {{\textit{z}}^{ - 1}}} \right) \cdot {K_M}{K_{{\rm{DA1}}}} \cdot \dfrac{1}{{1 - {{\textit{z}}^{ - 1}}}} \cdot {K_{{\rm{G1}}}} \cdot \left( {{{i}}(Z) + P(Z)} \right) $$ (4)
      $$ {H_p}\left( {\textit{z}} \right) = \frac{{i\left( {\textit{z}} \right)}}{{P\left( {\textit{z}} \right)}} = - \frac{{{K_B} \cdot {K_A} \cdot \dfrac{1}{{1 - {{\textit{z}}^{ - 1}}}}}}{{1 + {K_A} \cdot {K_B} \cdot \dfrac{1}{{1 - {{\textit{z}}^{ - 1}}}}}} = - \frac{{{K_A} \cdot {K_B} \cdot Z}}{{(1 + {K_A} \cdot {K_B})Z - 1}} $$ (5)

      由公式(3)与公式(5)可以得到:

      $$ \frac{{H\left( {\textit{z}} \right)}}{{{H_p}\left( {\textit{z}} \right)}} = {{\frac{{{K_s} \cdot {K_A} \cdot Z}}{{(1 + {K_A} \cdot {K_B})Z - 1}}} \mathord{\left/ {\vphantom {{\frac{{{K_s} \cdot {K_A} \cdot Z}}{{(1 + {K_A} \cdot {K_B})Z - 1}}} {\left( { - \frac{{{K_A} \cdot {K_B} \cdot Z}}{{(1 + {K_A} \cdot {K_B})Z - 1}}} \right)}}} \right. } {\left( { - \frac{{{K_A} \cdot {K_B} \cdot Z}}{{(1 + {K_A} \cdot {K_B})Z - 1}}} \right)}} = - {K_s} / {K_B} $$ (6)

      由公式(6)可以看出,电流产生的相位差与通过相位调制器产生的相位调制激励符号相反,数值存在比例关系$ {K_s}/{K_B} $。由于在确定系统中,KsKB为固定值,激励相位差与Faraday相位差为线性比例关系,因此可以通过对相位调制器添加相位调制激励的方法实现对光纤电流传感器的动态性能测试。

      由光纤电流传感器的工作原理可以知道,待测电流产生的法拉第相位差为φ=4 VNI,相位调制器的相位为φm=Km×V,其中Km为相位调制系数,Km= 2π/ VV为相位调制器的半波电压。在LLG−1100光纤电流传感器中,使用了一路16位的DA输出调制信号,因此输出电压为V=D/65 536×Vref,其中,Vref为DA的基准电压,D为激励数字量。因此可以得到:

      $$ 4VNI = \frac{{2{\rm{\pi}} }}{{{V_{2{\rm{\pi}} }}}} \cdot {V_\varphi } = 2{\rm{\pi}} \cdot \frac{{\dfrac{D}{{65\;536}} \cdot {V_{ref}}}}{{\dfrac{{{D_\lambda }}}{{65\;536}} \cdot {V_{ref}}}} = 2{\rm{\pi}} \cdot \frac{D}{{{D_\lambda }}} $$ (7)

      因此,得到电流I与激励数字量之间的对应关系:

      $$ D = \frac{{4VN{D_\lambda }}}{{2{\rm{\pi}} }} \cdot I $$ (8)

      式中:Dλ为相位调制器的半波电压数字量。

    • 阶跃响应是指电流突然发生变化时,电流传感器的输出响应过程。在测试过程中,通常对电流传感器施加方波波形的电流信号,考察电流传感器在正向跳变与负向跳变的响应过程。由于光纤电流传感器的光路的渡越时间很短,通常为几个μs量级,因此可以使用相位调制器产生的相位调制激励准确体现电流传感器的响应曲线。

      根据闭环光纤电流传感器工作原理,相位调制产生的相位差为:

      $$ \Delta {\varphi _Y}{\text{ = }}{K_{{m}}} \cdot \left( {V\left( {t + T} \right) - V\left( t \right)} \right) $$ (9)

      式中:V(t)为施加在相位调制器上的电压信号;T为光纤电流传感器的渡越时间。

      待测电流产生的法拉第相位差为:

      $$ \Delta {\varphi _F}{\text{ = }}4VNI\left( t \right) $$ (10)

      因此,要实现相位调制激励,相位调制信号应满足:

      $$ V\left( t \right) = \frac{{4VN}}{{{K_{{m}}}}}\int_{{t_0}}^{{t_1}} {I\left( t \right){\rm{d}}\left( t \right)} $$ (11)

      当待测电流为阶跃信号时,则:

      $$\begin{split} &I\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {{I_0}}\\ { - {I_0}} \end{array}} \right.\\ &2n{T_m} < t < (2n + 1){T_m}\\ (&2n + 1){T_m} < t < (2n + 3){T_m}n = 0,1,2 {\cdots\cdots} \end{split}$$ (12)

      式中:Tm为阶跃信号的持续时间(假设阶跃信号为方波信号)。那么,实现阶跃信号的相位调制信号应满足:

      $$\begin{split} &V\left( t \right) = \left\{ \begin{array}{l} \dfrac{{4VN}}{{{K_{{m}}}T}}{I_0}\left( {t - 2n{T_m}} \right)\\ \dfrac{{4VN}}{{{K_{{m}}}T}}{I_0} \cdot 2n{T_m} - \dfrac{{4VN}}{{{K_{{m}}}T}}{I_0}\left( {t - \left( {2n + 1} \right){T_m}} \right) \end{array} \right.\\ &2n{T_m} < t < (2n + 1){T_m}\\ &(2n + 1){T_m} < t < (2n + 3){T_m}\;\;\;n = 0,1,2 {{\cdots\cdots}} \end{split}$$ (13)

      由上式可以看出,当进行阶跃响应测试时,相位调制激励为斜率反转的线性电压。考虑到相位调制器调制电压无法无限升高,根据光纤电流传感器2π复位原理,施加的电压信号进行2π复位可以保证调制相位的周期性。

      在光纤电流传感器中,为产生电流阶跃激励信号,相位调制器上添加的相位调制激励电压如图5所示。

      图  5  光纤电流传感器阶跃响应调制激励

      Figure 5.  Step response modulation excitation of FOCS

      由图可以看出,当电流为固定值时,需要在相位调制器上施加一个固定台阶高度的阶梯波相位调制激励,阶梯波复位方式与闭环复位方式一致。施加相位调制激励产生的两束光相位差与电流产生的相位差符号相反,与系统模型一致。

    • 正弦响应是指对电流传感器施加一定频率的正弦电流时,电流传感器的响应曲线。通过测试电流传感器在不同频率下的幅值衰减,可以测试电流传感器的带宽。

      当待测电流为正弦信号时,则:

      $$ I\left( t \right) = {I_0}\sin \left( {2{\rm{\pi}} {f_0}t} \right) $$ (14)

      式中:f0为待测电流的频率。根据公式(13),施加在相位调制器上的激励信号为:

      $$ V\left( t \right) = \frac{{4VN}}{{{K_{{m}}}}}\int {{I_0}\sin \left( {2{\rm{\pi}} {f_0}t} \right){\rm{d}}t} = - \frac{{4VN}}{{{K_{{m}}} \cdot 2{\rm{\pi}} {f_0}}} \cdot \cos \left( {2\pi {f_0}t} \right) $$ (15)

      由公式(15)可以看出,当待测电流为正弦信号时,相位调制器上的调制激励信号为相应频率的余弦信号。同样的,对激励信号进行2π复位可以保证调制相位的周期性,相位调制器上添加的相位调制激励电压如图6所示。

      图  6  光纤电流传感器正弦调制激励

      Figure 6.  Sinusoidal modulation excitation of FOCS

      由图可以看出,施加相位调制激励产生的相位差与电流产生的相位差符号相反,与系统模型一致。

    • 为验证相位调制激励与实际试验结果的一致性,使用西安中科智晶电力科技有限公司的LLG−1100光纤电流传感器按上述两种测试方法进行对比试验。LLG−1100光纤电流传感器的光纤匝数N=10,半波电压Dλ=32768,维尔德常量V=0.768×10−6 rad/A,解调周期为1.51 μs,输出频率为10 kHz,每个采样点的间隔为100 μs。高功率信号发生器可以产生10 A电流,在试验室中采用等安匝原理,将母线围绕光纤电流传感器传感头缠绕10圈,等效产生100 A的测试电流,线性度可以达到1 ppm (1ppm=10−6)[15]。通过设置信号发生器输出阶跃响应波形及不同频率的正弦波形,对比LLG−1100光纤电流传感器的试验结果与仿真结果。

    • 阶跃响应模拟±100 A电流下光纤电流传感器的输出响应,通过公式(8)计算得到阶梯波相位调制激励的固定台阶高度为16,在光纤电流传感器闭环控制算法中添加阶梯波相位调制激励,得到阶跃响应的输出如图7所示。

      图  7  光纤电流传感器阶跃响应仿真与试验曲线

      Figure 7.  Step response simulation and test curve of fiber optic current sensor

      LLG−1100光纤电流传感器的阶跃响应试验数据与仿真数据如表1所示。

      表 1  阶跃响应仿真数据对比

      Table 1.  Comparison of step response simulation data

      DataOvershoot percent Rise time/μs
      Experimental data0%100-200
      Simulation data0%100-200

      由于采样周期限制,每个采样点的间隔为100 μs,由表1可以看出,采用激励的方式得到的仿真数据与试验数据一致。可以反映光纤电流传感器的阶跃响应特性。

    • 频率响应模拟频率范围50 Hz~2 kHz,额定电流100 A光纤电流传感器的输出响应,通过公式(8)计算得到阶梯波相位调制激励的幅值为16,在光纤电流传感器闭环控制算法中添加阶梯波相位调制激励,通过改变激励频率来得到不同频率下的输出响应。利用公式(16)~(17)分别计算添加激励仿真及等安匝测试的幅值误差:

      $$ {\Delta _1} = \frac{{{I_1} - {I_0}}}{{{I_0}}} \times 100{\text{%}} $$ (16)
      $$ {\Delta _2} = \frac{{{I_2} - {I_0}}}{{{I_0}}} \times 100{\text{%}} $$ (17)

      式中: I0为设置电流值;I1为添加激励仿真的电流输出值;I2为等安匝测试电流输出值。

      频率响应曲线如图8所示。由表2可以看出,采用相位调制激励的仿真数据与试验数据最大偏差为0.12%,满足0.5级光纤电流传感器的频率响应要求,可以反映光纤电流传感器的频率响应特性。

      表 2  频率响应试验与仿真数据

      Table 2.  Experimental and simulation data of frequency response

      Frequency/HzExperimental data errorSimulation data error
      50 −0.03% 0.01%
      150 0.06% −0.05%
      600 −0.06% −0.06%
      800 −0.13% −0.11%
      1200 −0.39% −0.27%
      1600 −0.76% −0.73%
      1800 −1.05% −1.08%
      2000 −1.55% −1.52%

      图  8  LLG−1100光纤电流传感器幅值误差-频率特性仿真与试验曲线

      Figure 8.  Simulation and testing curves of amplitude error-frequency characteristic for LLG−1100

    • 数字闭环光纤电流传感器具有测量范围大、动态特性好的特点,非常适合大容量电力系统中使用。阶跃响应与频率响应是评判光纤电流传感器暂态性能的关键指标,但传统测试方法具有一定的局限性。文中提供了一种通过利用相位调制器在光路上添加相位调制激励的方法,实现了对电流的阶跃响应与频率响应测试。并对激励原理进行了数学建模与计算,计算结果表明该测试激励与实际测试结果一致,具备等效性。测试结果表明通过添加相位调制激励的方法可以实现对光纤电流传感器的阶跃响应与频率响应的测量,对光纤电流传感器的暂态响应测试具有指导意义。

参考文献 (15)

目录

    /

    返回文章
    返回