留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高转换效率单谐振连续波近红外光学参量振荡器

姚文明 邓力华 田玉冰 常奥磊 王鹏 陈建生 檀慧明 高静

姚文明, 邓力华, 田玉冰, 常奥磊, 王鹏, 陈建生, 檀慧明, 高静. 高转换效率单谐振连续波近红外光学参量振荡器[J]. 红外与激光工程, 2022, 51(7): 20210654. doi: 10.3788/IRLA20210654
引用本文: 姚文明, 邓力华, 田玉冰, 常奥磊, 王鹏, 陈建生, 檀慧明, 高静. 高转换效率单谐振连续波近红外光学参量振荡器[J]. 红外与激光工程, 2022, 51(7): 20210654. doi: 10.3788/IRLA20210654
Yao Wenming, Deng Lihua, Tian Yubing, Chang Aolei, Wang Peng, Chen Jiansheng, Tan Huiming, Gao Jing. High-conversion-efficiency continuous-wave near-infrared singly resonant optical parametric oscillator[J]. Infrared and Laser Engineering, 2022, 51(7): 20210654. doi: 10.3788/IRLA20210654
Citation: Yao Wenming, Deng Lihua, Tian Yubing, Chang Aolei, Wang Peng, Chen Jiansheng, Tan Huiming, Gao Jing. High-conversion-efficiency continuous-wave near-infrared singly resonant optical parametric oscillator[J]. Infrared and Laser Engineering, 2022, 51(7): 20210654. doi: 10.3788/IRLA20210654

高转换效率单谐振连续波近红外光学参量振荡器

doi: 10.3788/IRLA20210654
基金项目: 国家自然科学基金(62075234);江苏省自然科学青年基金(BK20180220);江苏省六大人才高峰(SWYY-285)
详细信息
    作者简介:

    姚文明,男,副研究员,博士,主要从事激光及其非线性频率变换技术方面的研究

  • 中图分类号: TN248.1

High-conversion-efficiency continuous-wave near-infrared singly resonant optical parametric oscillator

Funds: National Natural Science Foundation of China (62075234);Natural Science Foundation of Jiangsu Province (BK20180220);Six Talent Climax Foundation of Jiangsu (SWYY-285)
  • 摘要: 提出了一种高功率及高转换效率的可调谐连续波近红外外腔单谐振光学参量振荡器。为了获得短波段近红外可调谐激光光源,基于准相位匹配晶体的光学参量振荡技术是其中一项有效的技术手段。光学参量振荡器采用连续波532 nm激光器作为泵浦源,掺杂氧化镁的周期性极化化学计量比钽酸锂(MgO:sPPLT)晶体作为准相位匹配晶体,通过在周期调谐的基础上再结合温度调谐的组合调谐方式,在8.3~8.6 μm的4个极化周期内实现了信号光807~879 nm和闲频光1352~1567 nm近红外宽波段的无跳模可调谐激光输出。通过闲频光单谐振设计,当泵浦功率5.4 W时,在8.6 μm周期处,获得了3.1 W的821 nm的近红外信号光输出,实现了57.4%的信号光光-光转换效率。当泵浦功率达到13.6 W时,在8.6 μm周期处,获得了6.8 W的高功率输出。
  • 图  1  CW MgO:sPPLT-OPO实验装置图

    Figure  1.  Experimental setup of the CW MgO:sPPLT-OPO

    图  2  谐振腔内泵浦光经透镜聚焦后的光斑轮廓

    Figure  2.  Spatial beam profile of the pump light in the cavity after focusing by the lens

    图  3  27 ℃时,不同谐振腔腔长下的信号光输出功率与泵浦功率的变化关系

    Figure  3.  Signal output power as function of the pump power with different kinds of laser cavity lengths at 27 ℃

    图  4  在泵浦功率为13.6 W,温度为27 ℃时,不同信号光的输出功率

    Figure  4.  Output power of the different signal light at pump power 13.6 W and temperature 27 ℃

    图  5  27 ℃时,极化周期为8.3、8.4、8.5、8.6 μm时,信号光输出功率及其转换效率随泵浦功率的变化关系。(a)信号光功率;(b)转换效率

    Figure  5.  Signal output power and conversion efficiency as functions with pump power when the poling periods are 8.3, 8.4, 8.5 and 8.6 μm at 27 ℃. (a) Signal output power; (b) Conversion efficiency

    图  6  27 ℃时,MgO:sPPLT-OPO输出光谱曲线

    Figure  6.  Output spectrum curve of the MgO:sPPLT-OPO at 27 ℃

    图  7  27 ℃时,CW MgO:sPPLT-OPO调谐曲线随周期的变化

    Figure  7.  Polarization periodic tuning curve of the CW MgO:sPPLT-OPO at 27 ℃

    图  8  极化周期为8.3、8.4、8.5、8.6 μm时,信号光和闲频光光谱随温度的变化关系

    Figure  8.  Signal and idler wavelength tuning varies with temperature when the grating periods are 8.3, 8.4, 8.5 and 8.6 μm

    图  9  极化周期为8.3、8.4、8.5 、 8.6 μm时,信号光和闲频光光谱的温度调谐速度

    Figure  9.  Temperature tuning rates of signal and idler spectra at poling periods of 8.3, 8.4, 8.5 and 8.6 μm

    表  1  不同周期输出的信号光光斑

    Table  1.   Signal beam profile of different periods

    Grating period8.3 μm
    X:2.3 mm
    Y:2.4 mm
    8.4 μm
    X:2.3 mm
    Y:2.6 mm
    8.5 μm
    X:2.4 mm
    Y:2.6 mm
    8.6 μm
    X:2.4 mm
    Y:2.5 mm
    下载: 导出CSV
  • [1] Gibson G M, Dunn M H, Padgett M J. Application of a continuously tunable, cw optical parametric oscillator for high-resolution spectroscopy [J]. Optics Letters, 1998, 23(1): 40-42. doi:  10.1364/OL.23.000040
    [2] Romanovskii O A, Sadovnikov S A, Kharchenko O V, et al. Development of near/mid IR differential absorption OPO lidar system for sensing of atmospheric gases [J]. Optics & Laser Technology, 2019, 116: 43-47.
    [3] Bai X, He Y, Yu D, et al. Miniaturized mid-infrared MgO: PPLN optical parametric oscillator with high beam quality [J]. Infrared and Laser Engineering, 2020, 49(7): 20190512. (in Chinese)
    [4] Lombardini A, Berto P, Duboisset J, et al. Background-suppressed SRS fingerprint imaging with a fully integrated system using a single optical parametric oscillator [J]. Optics Express, 2020, 28(10): 14490-14502. doi:  10.1364/OE.390381
    [5] Won M, Li M, Kim H S, et al. Visible to mid IR: A library of multispectral diagnostic imaging [J]. Coordination Chemistry Reviews, 2021, 426: 213608. doi:  10.1016/j.ccr.2020.213608
    [6] Zhang J, Ma J, Lu T, et al. Compact wavelength tunable output around 440 nm pulsed laser for oceanic lidar application [J]. Optics Communications, 2021, 485: 126706. doi:  10.1016/j.optcom.2020.126706
    [7] Ding X, Zhang S M, Ma H M, et al. Continuous-wave mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate [J]. Chinese Physics B, 2008, 17(1): 0211. doi:  10.1088/1674-1056/17/1/037
    [8] Ding X, Sheng Q, Chen N, et al. High efficiency continuous-wave tunable signal output of an intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate [J]. Chinese Physics B, 2009, 18(10): 4314-4318. doi:  10.1088/1674-1056/18/10/037
    [9] Ding X, Shang C, Sheng Q, et al. Continuous-wave tunable intra-cavity single resonance optical parametric oscillator under 880 nm in-band pumping and the inverse conversion [J]. Chinese Journal of Lasers, 2013, 40(6): 0602008. (in Chinese) doi:  10.3788/CJL201340.0602008
    [10] Yu J, Zhang J X, Sheng Q, et al. All-fiber CW optical parametric oscillator tuned from 1642.5 to 1655.4 nm by a low-loss SMS filter [J]. Results in Physics, 2020, 17: 103136. doi:  10.1016/j.rinp.2020.103136
    [11] Wang K, Gao M Y, Yu S H, et al. A compact and high efficiency intracavity OPO based on periodically poled lithium niobate [J]. Scientific Reports, 2021, 11(1): 5079. doi:  10.1038/s41598-021-84721-9
    [12] Samanta G K, Fayaz G R, Sun Z, et al. High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO: sPPLT [J]. Optics Letters, 2007, 32(4): 400-402. doi:  10.1364/OL.32.000400
    [13] Samanta G K, Fayaz G R, Ebrahim-Zadeh M. 1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO: sPPLT [J]. Optics Letters, 2007, 32(17): 2623-2625. doi:  10.1364/OL.32.002623
    [14] Kumar S C, Ebrahim-Zadeh M. High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO: sPPLT [J]. Optics Letters, 2011, 36(13): 2578-2580. doi:  10.1364/OL.36.002578
    [15] Devi K, Ebrahim-Zadeh M. Room-temperature, rapidly tunable, green-pumped continuous-wave optical parametric oscillator [J]. Optics Letters, 2017, 42(13): 2635-2638. doi:  10.1364/OL.42.002635
    [16] Lim H H, Kurimura S, Katagai T, et al. Temperature-dependent sellmeier equation for refractive index of 1.0 mol % Mg-doped stoichiometric lithium tantalate [J]. Japanese Journal of Applied Physics, 2013, 52(3R): 032601. doi:  10.7567/JJAP.52.032601
  • [1] 周子涵, 王志敏, 薄勇, 张丰丰, 赵文成, 付莉, 何汉星, 崔大复, 彭钦军.  基于注入锁定技术的单频连续高功率 1 342 nm Nd:YVO4 激光器 . 红外与激光工程, 2024, 53(1): 20230366-1-20230366-7. doi: 10.3788/IRLA20230366
    [2] 郑浩, 赵臣, 张飞, 李鹏飞, 颜秉政, 王雨雷, 白振旭, 吕志伟.  MgO:PPLN中红外光参量振荡器的闲频光纵模特性研究 . 红外与激光工程, 2023, 52(12): 20230378-1-20230378-6. doi: 10.3788/IRLA20230378
    [3] 艾孜合尔江·阿布力克木, 达娜·加山尔, 周玉霞, 塔西买提·玉苏甫.  高光束质量闲频光谐振中红外MgO:PPLN光参量振荡器 . 红外与激光工程, 2023, 52(4): 20220595-1-20220595-6. doi: 10.3788/IRLA20220595
    [4] 黄佳裕, 林海枫, 闫培光.  高效率宽调谐扇形MgO: PPLN中红外光参量振荡器 . 红外与激光工程, 2023, 52(5): 20220605-1-20220605-6. doi: 10.3788/IRLA20220605
    [5] 高宝光, 孟冬冬, 乔占朵, 邱基斯.  基于MgO: PPLN的高重频、高峰值功率中红外光参量振荡器 . 红外与激光工程, 2022, 51(10): 20220069-1-20220069-6. doi: 10.3788/IRLA20220069
    [6] 李炳阳, 于永吉, 王子健, 王宇恒, 姚晓岱, 赵锐, 金光勇.  窄线宽1064 nm掺镱光纤激光器泵浦MgO:PPLN中红外光学参量振荡器研究 . 红外与激光工程, 2022, 51(9): 20210898-1-20210898-6. doi: 10.3788/IRLA20210898
    [7] 宁城枭, 张兆伟.  中红外飞秒双谐振光参量振荡器的腔长调谐(特邀) . 红外与激光工程, 2021, 50(8): 20210341-1-20210341-7. doi: 10.3788/IRLA20210341
    [8] 张嵩, 姜曼, 李灿, 粟荣涛, 周朴, 姜宗福.  窄线宽光纤振荡器输出近红外宽带超连续谱激光 . 红外与激光工程, 2021, 50(11): 20210668-1-20210668-2. doi: 10.3788/IRLA20210668
    [9] 田文龙, 韩康, 朱江峰, 魏志义.  2~5 µm中红外飞秒光学参量振荡器研究进展(特邀) . 红外与激光工程, 2021, 50(8): 20210350-1-20210350-12. doi: 10.3788/IRLA20210350
    [10] 刘沛, 衡家兴, 张兆伟.  啁啾脉冲光学参量振荡器及宽谱中红外激光的产生(特邀) . 红外与激光工程, 2020, 49(12): 20201051-1-20201051-12. doi: 10.3788/IRLA20201051
    [11] 白翔, 何洋, 于德洋, 张阔, 陈飞.  小型化高光束质量MgO: PPLN中红外光参量振荡器 . 红外与激光工程, 2020, 49(7): 20190512-1-20190512-6. doi: 10.3788/IRLA20190512
    [12] 张鹏泉, 项铁铭, 史屹君.  绿光泵浦的黄光波段可调谐窄线宽光学参量振荡器 . 红外与激光工程, 2020, 49(11): 20200275-1-20200275-5. doi: 10.3788/IRLA20200275
    [13] 余光其, 王鹏, 宋伟, 刘奎永.  光纤激光泵浦的多波长中红外光参量振荡器 . 红外与激光工程, 2018, 47(4): 404003-0404003(7). doi: 10.3788/IRLA201847.0404003
    [14] 张海鹍, 黄继阳, 周城, 夏伟, 何京良.  2 μm波段Tm:YAP晶体半导体可饱和吸收镜连续波锁模激光器 . 红外与激光工程, 2018, 47(5): 505003-0505003(4). doi: 10.3788/IRLA201847.0505003
    [15] 张永昶, 朱海永, 张静, 郭俊宏, 张栋, 段延敏.  紧凑型MgO:PPLN宽波段可调谐连续光参量振荡器 . 红外与激光工程, 2018, 47(11): 1105008-1105008(5). doi: 10.3788/IRLA201847.1105008
    [16] 李宇昕, 李世凤, 居盼盼, 赵刚, 吕新杰, 秦亦强.  高稳定紧凑型内腔连续光参量振荡器 . 红外与激光工程, 2017, 46(4): 406004-0406004(6). doi: 10.3788/IRLA201746.0406004
    [17] 李忠洋, 张云鹏, 邴丕彬, 袁胜, 徐德刚, 姚建铨.  非共线相位匹配太赫兹波参量振荡器级联参量过程的研究 . 红外与激光工程, 2015, 44(3): 990-995.
    [18] 郭风雷, 张明月, 肖征, 李向军, 刘建军.  连续波THz-CT 的折射问题研究 . 红外与激光工程, 2015, 44(3): 969-973.
    [19] 李忠洋, 李继武, 邴丕彬, 徐德刚, 姚建铨.  表面出射太赫兹波参量振荡器的设计与增强输出 . 红外与激光工程, 2013, 42(4): 935-939.
    [20] 马依拉木·木斯得克, 姚建铨, 王鹏.  LD端面泵浦946 nm/473 nm连续Nd:YAG/LBO激光器 . 红外与激光工程, 2013, 42(11): 2931-2934.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  55
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-02-25
  • 刊出日期:  2022-08-05

高转换效率单谐振连续波近红外光学参量振荡器

doi: 10.3788/IRLA20210654
    作者简介:

    姚文明,男,副研究员,博士,主要从事激光及其非线性频率变换技术方面的研究

基金项目:  国家自然科学基金(62075234);江苏省自然科学青年基金(BK20180220);江苏省六大人才高峰(SWYY-285)
  • 中图分类号: TN248.1

摘要: 提出了一种高功率及高转换效率的可调谐连续波近红外外腔单谐振光学参量振荡器。为了获得短波段近红外可调谐激光光源,基于准相位匹配晶体的光学参量振荡技术是其中一项有效的技术手段。光学参量振荡器采用连续波532 nm激光器作为泵浦源,掺杂氧化镁的周期性极化化学计量比钽酸锂(MgO:sPPLT)晶体作为准相位匹配晶体,通过在周期调谐的基础上再结合温度调谐的组合调谐方式,在8.3~8.6 μm的4个极化周期内实现了信号光807~879 nm和闲频光1352~1567 nm近红外宽波段的无跳模可调谐激光输出。通过闲频光单谐振设计,当泵浦功率5.4 W时,在8.6 μm周期处,获得了3.1 W的821 nm的近红外信号光输出,实现了57.4%的信号光光-光转换效率。当泵浦功率达到13.6 W时,在8.6 μm周期处,获得了6.8 W的高功率输出。

English Abstract

    • 基于准相位匹配技术的光学参量振荡器(OPO)是实现激光波长的调谐与拓展的有效途径之一。通过改变周期极化晶体的极化周期与温度等参数,可以得到覆盖可见光到中红外波段的可调谐激光输出,满足人们不同的使用需求[1-6]。与脉冲泵浦OPO相比,连续波(CW)OPO的增益低、阈值高,对非线性晶体的要求更高,实现起来更加困难。2008年,姚建铨院士课题组实现了由二极管端面抽运的Nd:YVO4激光器泵浦周期极化铌酸锂(PPLN)的连续波中红外腔内单谐振光参量振荡器(ICSRO),温度为140 ℃时,在3.86 μm处获得了155 mW的闲频光输出功率,光-光转换效率为1.82 %[7]。2009年,他们在1500 nm处获得820 mW的信号光输出功率,光-光转换效率为7.51 %[8]。2013年,他们采用880 nm激光二极管共振泵浦连续波ICSRO,在21.9 W泵浦功率下,获得了1.54 W的3.66 μm中红外闲频光输出,光-光转换效率为7.0%。通过升高输出镜对振荡光的透射率优化SRO阈值,在21.4 W泵浦功率下同时获得1.54 W的闲频光和5.03 W的信号光输出,总提取效率达到30.2%[9]。2020年,他们报道了一种全光纤结构的CW OPO,当泵浦功率为2 W时获得了0.5 W的1642.5 nm激光输出,实现了1642.5~1655.4 nm范围内的可调谐输出[10]。2021年,祝世宁院士团队采用ICSRO结构,808 nm半导体激光器泵浦Nd:YVO4晶体,PPLN晶体作为准相位匹配晶体,实现了2.25~4.79 μm中红外波段的可调谐输出,泵浦功率为9.1 W时,在3.189 μm处获得最大1.08 W的激光输出,转换效率为11.88%[11]

      周期极化钽酸锂(PPLT)晶体比PPLN晶体有更高的抗光损伤阈值,在短波近红外激光领域有强大的发展潜力。通过在PPSLT中掺杂MgO(MgO:sPPLT),可以有效降低晶体因可见光辐射导致的光折变损伤[12]。2007年,Samanta等人[13]采用环形腔的设计,利用532 nm的激光泵浦MgO:sPPLT,获得了1.59 W的单频、连续波近红外闲频光输出。2011年,Kumar等人[14]利用1064 nm的光纤激光器泵浦CW MgO:sPPLT-OPO,获得了高达5.5 W的中红外激光输出。2017年,Devi等人[15]利用532 nm连续波单频激光器泵浦扇形MgO:sPPLT晶体,在室温下获得了百毫瓦级的闲频光输出。国内对连续波OPO的研究相对较少,对短波近红外波段连续波MgO:sPPLT-OPO的报道较为少见。

      文中采用连续波532 nm绿光激光器泵浦多周期MgO:sPPLT晶体,实现了连续波运转的高效率MgO:sPPLT-OPO。通过周期调谐和温度调谐相结合,获得了信号光807~879 nm和闲频光1352~1567 nm波段范围内无跳模的连续可调谐输出。在信号光821 nm处,最高输出功率达到6.8 W;当泵浦功率为5.4 W时,获得3.1 W输出,光-光转换效率达到57.4%。

    • 实验装置如图1所示。实验采用的泵浦源为IPG Photonics 公司生产的GLR-20型连续波激光器,其中心波长为532 nm,最高输出功率达到20 W。OPO结构采用外腔式设计,532 nm泵浦光通过光隔离器后,经过焦距为100 mm的聚焦透镜将光斑压缩后耦合进入OPO系统。准相位匹配晶体是由日本OXIDE公司提供的MgO:sPPLT晶体,晶体尺寸为30 mm×15 mm×0.5 mm,掺杂了1%原子分数的MgO。晶体表面镀有532 nm的增透膜,极化周期为7.9~8.8 μm,共有10个极化周期。谐振腔采用闲频光单谐振(SRO)的双凹腔线性结构。谐振腔由两个平凹镜M1和M2组成,其曲率半径均为50 mm。输入镜M1的平面镀有对0.5~0.9 μm波段增透膜(R<0.6%),凹面则镀有对闲频光1.3~1.5 μm波段的高反(R>99.7%),532 nm高透(T>99.9%),和对0.5~0.9 μm波段高透(T>95%)的多层介质膜。输出镜M2的镀膜参数与输入镜M1相同。

      图  1  CW MgO:sPPLT-OPO实验装置图

      Figure 1.  Experimental setup of the CW MgO:sPPLT-OPO

      基于对称双凹腔设计,在实验过程中MgO:sPPLT晶体被放置于谐振腔内的中心位置。将MgO:sPPLT晶体用铟箔包裹后放置于温控炉中,然后将温控炉固定在位移平台上,通过移动晶体的位置实现周期调谐,通过改变晶体的温度实现温度调谐,进而实现光学参量振荡器的连续可调谐无跳模输出。实验中,通过M3镜滤除多余的泵浦光,通过M4镜对闲频光进行过滤,得到信号光的输出特性。M3镜对0.8~1.6 μm波段的透过率>80%,M4镜对闲频光波段的反射率>99%。利用Ocean Optics公司生产的NIRQUEST512型近红外光谱仪及HR4000型光纤光谱仪同时检测输出的信号光及闲频光光谱。利用OPHIR公司生产的10A-PPS型功率计测量信号光输出功率。

    • 在谐振腔中心位置处,通过激光光束轮廓仪(NanoScan V2,Ophir Photonics)测得经透镜聚焦后的泵浦光束腰直径约为100 μm,如图2所示。为满足模式匹配要求,结合对称双凹腔的特性和谐振腔稳态条件,设计谐振腔长为97 mm,此时谐振腔振荡光在谐振腔中的束腰直径约为96 μm,谐振腔内泵浦光与振荡光束腰比值接近1∶1。实验同时另外设计了腔长约为60 mm和80 mm的两种谐振腔,谐振腔内泵浦光束腰与振荡光束腰比值分别为1∶2.3和1∶1.8。在8.6 μm极化周期和晶体温度为27 ℃条件下,得到了这三种谐振腔的信号光功率随泵浦光功率的变化关系,如图3所示。60 mm腔长的谐振腔振荡阈值最低约为1.45 W,这是因为更小的泵浦光斑提供了更高的功率密度。97 mm腔长的谐振腔振荡阈值最高约为3.0 W,但在9 W泵浦功率下其信号光输出功率却为最高约4.8 W,相对更大的振荡光模式体积对这一现象的产生有直接影响。这些结果表明模式匹配对高功率输出有较大影响,以下工作均围绕97 mm谐振腔进行研究分析。

      图  2  谐振腔内泵浦光经透镜聚焦后的光斑轮廓

      Figure 2.  Spatial beam profile of the pump light in the cavity after focusing by the lens

      图  3  27 ℃时,不同谐振腔腔长下的信号光输出功率与泵浦功率的变化关系

      Figure 3.  Signal output power as function of the pump power with different kinds of laser cavity lengths at 27 ℃

      由于谐振腔镜对闲频光1.3~1.5 μm波段的反射率>99.7%,实验中只检测到微弱的闲频光信号,因此文中只对信号光特性进行重点分析。图4所示为晶体温度为27 ℃,泵浦功率为13.6W时,821、837、856、879 nm的信号光分别对应的最大输出功率。同时对这4个波长的输出功率随泵浦功率变化的特性分别进行了研究,实验结果如图5所示。随着泵浦功率的增加,信号光的输出功率也在逐渐增加。当输入泵浦功率达到13.6 W时,在821 nm处,获得了6.8 W的输出,光-光转换效率达到50.0%。而当泵浦功率为5.4 W时,获得了3.1 W的821 nm激光输出,光-光转换效率达到了57.4%。极化周期为8.3、8.4、8.5 μm时,在同样泵浦功率下,分别得到了48.2%、51.7%及55.2%的高转换效率。在泵浦功率13.6 W时,在879、856、837 nm波段处获得的输出功率分别达到5.9、6.2、6.4 W,对应的光-光转换效率分别达到43.4%、45.6%和47.1%。图5(b)所示为为在0~13.6 W的泵浦功率范围内,821、837、856、879 nm波长对应的最高光-光转换效率分别为57.4%、55.2%、51.7%和48.2%。从图中可以看出,在4个波长均在泵浦功率在6 W附近时,光-光转换效率达到峰值,随着泵浦功率的进一步增加,转换效率逐渐下降,但是,OPO系统的输出仍保持着43%以上的高转换效率。随着泵浦功率的逐渐增加,输出功率也保持上升趋势,而且没有出现饱和的迹象。分析认为高转换效率的实现与单谐振结构和闲频光的高反射率有一定的关系,不过出于预防晶体损伤等原因的考虑,实验没有进一步增加泵浦功率。

      图  4  在泵浦功率为13.6 W,温度为27 ℃时,不同信号光的输出功率

      Figure 4.  Output power of the different signal light at pump power 13.6 W and temperature 27 ℃

      图  5  27 ℃时,极化周期为8.3、8.4、8.5、8.6 μm时,信号光输出功率及其转换效率随泵浦功率的变化关系。(a)信号光功率;(b)转换效率

      Figure 5.  Signal output power and conversion efficiency as functions with pump power when the poling periods are 8.3, 8.4, 8.5 and 8.6 μm at 27 ℃. (a) Signal output power; (b) Conversion efficiency

      通过温控炉将晶体温度控制在27 ℃,移动位移平台,得到了8.3、8.4、8.5、8.6 μm 4个极化周期的周期调谐光谱曲线,分别是879、856、837、821 nm信号光及其相对应的1 352、1 411、1 464、1 515 nm闲频光,如图6所示。

      图  6  27 ℃时,MgO:sPPLT-OPO输出光谱曲线

      Figure 6.  Output spectrum curve of the MgO:sPPLT-OPO at 27 ℃

      图7所示,将实验结果与根据Sellmeier色散方程[16]计算得到的理论值进行对比,图中的实线为理论计算值曲线,离散点为实验测量值。从图7中可以看出,在信号光波段,实验值与理论值高度符合,在闲频光波段,实验结果与理论值也保持较高的重合性,因此Sellmeier色散方程对工作温度为27 ℃的周期调谐具有较高的参考价值。

      图  7  27 ℃时,CW MgO:sPPLT-OPO调谐曲线随周期的变化

      Figure 7.  Polarization periodic tuning curve of the CW MgO:sPPLT-OPO at 27 ℃

      在周期调谐的基础上,通过改变MgO:sPPLT晶体的温度获得了8.3、8.4、8.5、8.6 μm 4个周期的温度调谐曲线,如图8所示。图中离散点为实验测量得到的输出光谱数据,实线为根据Sellmeier色散方程得到的理论值。通过对比发现,在27~83 ℃范围内改变这4个极化周期的温度就可以实现807~879 nm信号光和1352~1567 nm闲频光波段范围内不间断地连续可调谐输出,实验结果与理论值在低温条件下(27~50 ℃)比较吻合,而在高温条件下(55~90 ℃)实验结果与理论值有一定偏差,分析认为这是由于所采用的Sellmeier色散方程在高温条件下的精度有限所导致。根据温度调谐的结果发现周期不同,温度调谐速度也略有不同,随着极化周期的增加调谐速度逐渐降低,信号光和闲频光的变化趋势相同,如图9所示。8.3 μm周期的信号光调谐速度约为−0.4 nm/℃,闲频光调谐速度约为1.0 nm/℃,而8.6 μm周期的信号光调谐速度则降至−0.25 nm/℃,闲频光调谐速度则降至0.9 nm/℃。

      图  8  极化周期为8.3、8.4、8.5、8.6 μm时,信号光和闲频光光谱随温度的变化关系

      Figure 8.  Signal and idler wavelength tuning varies with temperature when the grating periods are 8.3, 8.4, 8.5 and 8.6 μm

      图  9  极化周期为8.3、8.4、8.5 、 8.6 μm时,信号光和闲频光光谱的温度调谐速度

      Figure 9.  Temperature tuning rates of signal and idler spectra at poling periods of 8.3, 8.4, 8.5 and 8.6 μm

      当泵浦功率为5.4 W时,在距离OPO输出腔镜M2约150 mm处,利用光束轮廓仪测试了信号光光斑的轮廓,获得的光斑强度分布图像如表1所示。从测试结果可以看出,不同信号光在XY方向的光斑大小均接近1∶1,且都表现为近高斯分布。

      表 1  不同周期输出的信号光光斑

      Table 1.  Signal beam profile of different periods

      Grating period8.3 μm
      X:2.3 mm
      Y:2.4 mm
      8.4 μm
      X:2.3 mm
      Y:2.6 mm
      8.5 μm
      X:2.4 mm
      Y:2.6 mm
      8.6 μm
      X:2.4 mm
      Y:2.5 mm
    • 实验采用准相位匹配MgO:sPPLT晶体,用532 nm连续波激光器作为泵浦源,通过外腔、单谐振的结构设计,实现了连续波高转换效率的宽波段可调谐光学参量振荡。实验研究了MgO:sPPLT-OPO的周期调谐和温度调谐特性,对比了信号光输出功率随泵浦功率的变化。实验通过对8.3、8.4、8.5、8.6 μm4个周期进行周期调谐获得了信号光821~879 nm和闲频光1352~1515 nm波段的可调谐激光输出。在周期调谐的基础上,结合温度调谐,实现了807~879 nm信号光和1352~1567 nm闲频光波段范围内不间断地连续可调谐输出,调谐速度随着周期的增加而逐渐降低。在信号光中心波长为821 nm处,当泵浦功率为5.4 W时,最高转换效率达到了57.4%;当泵浦功率为13.6 W时,在821 nm处的最大输出功率达到6.8 W。821、837、856、879 nm波长对应的最高光-光转换效率分别为57.4%、55.2%、51.7%和48.2%,且输出光光斑均呈近高斯分布。

参考文献 (16)

目录

    /

    返回文章
    返回