留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光线追迹法的低温辐射计光吸收腔设计

俞兵 储隽伟 范纪红 腾国奇 王曼 杨传森 郭磊 袁林光 李燕 金伟其

俞兵, 储隽伟, 范纪红, 腾国奇, 王曼, 杨传森, 郭磊, 袁林光, 李燕, 金伟其. 基于光线追迹法的低温辐射计光吸收腔设计[J]. 红外与激光工程, 2022, 51(8): 20210918. doi: 10.3788/IRLA20210918
引用本文: 俞兵, 储隽伟, 范纪红, 腾国奇, 王曼, 杨传森, 郭磊, 袁林光, 李燕, 金伟其. 基于光线追迹法的低温辐射计光吸收腔设计[J]. 红外与激光工程, 2022, 51(8): 20210918. doi: 10.3788/IRLA20210918
Yu Bing, Chu Junwei, Fan Jihong, Teng Guoqi, Wang Man, Yang Chuansen, Guo Lei, Yuan Linguang, Li Yan, Jin Weiqi. Design of the absorption cavity in the cryogenic radiometer based on the ray-tracing method[J]. Infrared and Laser Engineering, 2022, 51(8): 20210918. doi: 10.3788/IRLA20210918
Citation: Yu Bing, Chu Junwei, Fan Jihong, Teng Guoqi, Wang Man, Yang Chuansen, Guo Lei, Yuan Linguang, Li Yan, Jin Weiqi. Design of the absorption cavity in the cryogenic radiometer based on the ray-tracing method[J]. Infrared and Laser Engineering, 2022, 51(8): 20210918. doi: 10.3788/IRLA20210918

基于光线追迹法的低温辐射计光吸收腔设计

doi: 10.3788/IRLA20210918
基金项目: 国防科工局技术基础项目(JSJL2018208A001)
详细信息
    作者简介:

    俞兵,男,研究员,博士生,主要从事光学计量技术方面的研究及光学标准的制定工作

  • 中图分类号: O514.2

Design of the absorption cavity in the cryogenic radiometer based on the ray-tracing method

Funds: Technology Foundation Project of State Administration of Science, Technology and Industry for National Defense(JSJL2018208A001)
  • 摘要: 当前,工作在液氦温度的低温辐射计可以有效规避电路系统中非自发加热带来的误差,是国际上精度最高的光功率计量设备。理想低温辐射计在工作过程中,其核心器件-吸收腔对相同的热功率与电功率应当表现出相同的温升。然而对于实际情况,由于吸收腔涂层中复杂的光-物质相互作用,系统的光-电加热路径难以重合,黑体腔热传导分布的梯度差异导致误差的产生。当前国际上对光电不等效性产生的影响仍缺乏直观清晰的认知。在此,利用蒙特卡洛光线追迹方法,文中对低温辐射计吸收腔辐照度的空间分布进行了仿真。计算表明:当吸收腔斜底角控制在60°,涂层吸收率达到0.95时,系统在激光进入的第一次与第二次反射中分别吸收了98%与1.9%的能量,比例约为51.2∶1。通过在吸收腔斜底板和下侧面同时布置加热器,可实现光加热、电加热路径的耦合。进一步地,通过分别计算单加热器与双加热器布置下系统温度随时间的变化,文中证明了加热路径的不同将引入约为0.005%的光电不等效性。
  • 图  1  不同入射角下碳纳米管吸收黑材料光谱镜面反射率测量曲线

    Figure  1.  Specular reflectance measurement curve of carbon nanotubes absorbing black materials at different incident angles

    图  2  吸收腔光线追迹示意图

    Figure  2.  Schematic diagram of ray tracing in absorption cavity

    图  3  吸收腔出口处辐照度分布仿真图

    Figure  3.  Simulation diagram of irradiance distribution at the outlet of absorption cavity

    图  4  吸收腔区域划分示意图

    Figure  4.  Schematic diagram of absorption cavity area division

    图  5  吸收腔体内侧面展开示意图

    Figure  5.  Schematic diagram of lateral expansion of absorption cavity

    图  6  吸收腔底面辐照度分布情况

    Figure  6.  Irradiance distribution of bottom surface of absorption cavity

    图  8  吸收腔上侧面(0°~180°)辐照度分布情况

    Figure  8.  Irradiance distribution of the upper side of the absorption cavity (0°-180°)

    图  7  吸收腔下侧面(180°~360°)辐照度分布情况

    Figure  7.  Irradiance distribution of the lower side of the absorption cavity (180°-360°)

    图  9  (a)低温辐射计热连结构;(b)低温辐射计高吸收率斜底腔;(c)不同加热方式下吸收腔温度随时间的变化

    Figure  9.  (a)Thermal link of cryogenic radiometer; (b) High absorption inclined bottom cavity of cryogenic radiometer; (c) Change of temperature of absorption cavity with time under different heating modes

    表  1  带斜底面圆柱腔平均垂直有效吸收率计算结果

    Table  1.   Calculation results of average vertical effective absorption rate of cylindrical cavity with inclined bottom

    ρ=0.85ρ=0.90ρ=0.95
    L=30 mm0.998260.999640.99994
    L=40 mm0.999770.999910.99999
    L=50 mm0.999980.999990.99999
    下载: 导出CSV
  • [1] Wu D, Wang K, Ye X, et al. Space cryogenic absolute radiometer [J]. Chinese Journal of Luminescence, 2019, 40(8): 1015-1021. (in Chinese) doi:  10.3788/fgxb20194008.1015
    [2] Celikel O, Bazkir O, Kucukoglu M, et al. Cryogenic radiometer based absolute spectral power responsivity calibration of integrating sphere radiometer to be used in power measurements at optical fiber communication wavelengths [J]. Optical and Quantum Electronics, 2005, 6: 529-543.
    [3] Li Z Q, Lv Zheng. The present state of cryogenic absolute radiometer [J]. Modern Measurement and Test, 1993(8): 13-17. (in Chinese)
    [4] Zhuang X G, Liu H B, Zhang P G, et al. Design and analysis of thermo-structure for cryogenic radiometer [J]. Acta Physica Sinica, 2019, 68(6): 060601. (in Chinese) doi:  10.7498/aps.68.20181880
    [5] T R Gentile, C L Cromer. Mode-locked lasers for high-accuracy radiometry [J]. Metrologi, 1995, 32(6): 585-587.
    [6] Fang Q Q. Research of the blackbody cavity and nonequivalence of spatial cryogenic radiometer[D]. Beijing: University of Chinese Academy of Sciences, 2014. (in Chinese)
    [7] Patrick Heather J, Germer Thomas A, Zarobila Clarence J, et al. Optical reflectance of pyrheliometer absorption cavities: progress toward SI-traceable measurements of solar irradiance [J]. Appl Opt, 2016, 55(23): 006346. doi:  10.1364/AO.55.006346
    [8] Fang W, Wang H R, Li H D, et al. Total solar irradiance monitor for Chinese FY-3 A and FY-3 B satellites - instrument design [J]. Solar Physics, 2014, 289(12): 4711-4726. (in Chinese) doi:  10.1007/s11207-014-0595-6
    [9] Tang X, Fang W, Wang Y P. Effect and experiment analysis of first spectral reflection error on absolute radiometers [J]. Chinese Journal of Lasers, 2016, 43(4): 0408003. (in Chinese) doi:  10.3788/CJL201643.0408003
    [10] Lv S S, Wang C, Shen H. Finite element analysis of acceleration sensitivity of optical cavities supported by soft materials [J]. Chinese Journal of Lasers, 2015, 42(1): 0102001. (in Chinese) doi:  10.3788/CJL201542.0102001
    [11] Chi S S, Wang X Y, Xu W J. Numerical simulation on stainless steel-carbon steel laminated sheet considering interface during pulsed laser bending [J]. Chinese Journal of Lasers, 2014, 41(11): 1103002. (in Chinese) doi:  10.3788/CJL201441.1103002
    [12] Fang J X, Dong S Y, Xu B S, et al. Study of stresses of laser metal deposition using FEM considering phase transformation effects [J]. Chinese Journal of Lasers, 2015, 42(5): 0503009. (in Chinese) doi:  10.3788/CJL201542.0503009
    [13] Yang Z L, Fang W, Song B Q, et al. Variation of solar irradiance absolute radiometer cavity temperature response in vacuum and its effect [J]. Acta Optica Sinica, 2013, 33(9): 0912008. (in Chinese) doi:  10.3788/AOS201333.0912008
  • [1] 陈加伟, 李豫东, 玛丽娅, 李钰, 郭旗.  850 nm垂直腔面发射激光器的辐射效应 . 红外与激光工程, 2022, 51(5): 20210326-1-20210326-6. doi: 10.3788/IRLA20210326
    [2] 张允祥, 李新, 黄冬, 张艳娜, 韦玮, 潘琰.  红外通道式野外辐射计的光机设计及性能测试 . 红外与激光工程, 2022, 51(12): 20220246-1-20220246-11. doi: 10.3788/IRLA20220246
    [3] 俞兵, 范纪红, 袁林光, 李燕, 郭磊, 王啸, 储隽伟, 秦艳, 孙宇楠, 张灯, 尤越, 金伟其.  4 K低温辐射计的吸收腔吸收率测试技术研究 . 红外与激光工程, 2022, 51(9): 20210984-1-20210984-8. doi: 10.3788/IRLA20210984
    [4] 盛文阳, 夏茂鹏, 李健军, 翟文超, 郑小兵.  基于受激参量下转换的红外标准传递辐射计定标技术 . 红外与激光工程, 2019, 48(12): 1204001-1204001(7). doi: 10.3788/IRLA201948.1204001
    [5] 熊浩西, 易仕和, 丁浩林, 徐席旺, 欧阳天赐.  三维无规则不均匀折射率场光线追迹新方法 . 红外与激光工程, 2019, 48(5): 503005-0503005(9). doi: 10.3788/IRLA201948.0503005
    [6] 张发强, 张维光, 万文博.  基于光线追迹的红外探测光学系统杂散辐射研究 . 红外与激光工程, 2019, 48(9): 904006-0904006(6). doi: 10.3788/IRLA201948.0904006
    [7] 李冬冬, 张鹏博, 张稳稳, 佘江波.  非线性介质中的强激光系统自聚焦现象的仿真分析 . 红外与激光工程, 2019, 48(7): 706003-0706003(9). doi: 10.3788/IRLA201948.0706003
    [8] 佀同岭, 朴燕, 李敏.  基于光线追迹的LED裸眼三维显示技术准直性研究 . 红外与激光工程, 2018, 47(6): 603002-0603002(6). doi: 10.3788/IRLA201847.0603002
    [9] 李留成, 多丽萍, 王元虎, 唐书凯, 于海军, 马艳华, 张治国, 金玉奇, 宫德宇.  用于化学激光器的腔增强吸收光谱测量 . 红外与激光工程, 2017, 46(2): 239003-0239003(5). doi: 10.3788/IRLA201746.0239003
    [10] 陈海东, 赵坤, 史学舜, 刘长明, 刘玉龙, 刘红博.  基于长波红外探测器绝对光谱响应度测量的激光源 . 红外与激光工程, 2017, 46(12): 1205002-1205002(7). doi: 10.3788/IRLA201746.1205002
    [11] 王彦斌, 陈前荣, 朱荣臻, 任广森, 周旋风, 李华.  光电探测器上多组圆环条纹的现象与机理 . 红外与激光工程, 2017, 46(10): 1003004-1003004(6). doi: 10.3788/IRLA201749.1003004
    [12] 滕义超, 张宝富, 吴传信, 庞中晓.  基于电增益环腔选频特性的小型光电振荡器 . 红外与激光工程, 2016, 45(5): 520008-0520008(3). doi: 10.3788/IRLA201645.0520008
    [13] 王振宝, 冯国斌, 陈绍武, 杨鹏翎, 吴勇.  全吸收旋转式高能激光能量计吸收腔设计 . 红外与激光工程, 2016, 45(12): 1217010-1217010(6). doi: 10.3788/IRLA201645.1217010
    [14] 衣小龙, 方伟, 李叶飞, 叶新, 王玉鹏.  太阳辐照度绝对辐射计的定标新方法 . 红外与激光工程, 2016, 45(9): 917001-0917001(7). doi: 10.3788/IRLA201645.0917001
    [15] 李树旺, 邵士勇, 梅海平, 饶瑞中.  大气吸收性成分的光热干涉法测量 . 红外与激光工程, 2016, 45(S1): 163-168. doi: 10.3788/IRLA201645.S111002
    [16] 庞伟伟, 郑小兵, 李健军, 史学舜, 吴浩宇, 刘昌明, 刘玉龙, 夏茂鹏, 高东阳, 史剑民, 康晴, 戚涛.  低温绝对辐射计不同定标光路的比对实验 . 红外与激光工程, 2016, 45(3): 317004-0317004(6). doi: 10.3788/IRLA201645.0317004
    [17] 庞伟伟, 郑小兵, 李健军, 史学舜, 吴浩宇, 夏茂鹏, 高东阳, 史剑民, 戚涛, 康晴.  溯源于低温辐射计的1064nm波段探测器绝对光谱响应度定标 . 红外与激光工程, 2015, 44(12): 3812-3818.
    [18] 邵士勇, 梅海平, 黄印博, 饶瑞中.  大气气溶胶等效吸收的研究 . 红外与激光工程, 2014, 43(4): 1057-1061.
    [19] 易波, 张建, 屈恩世, 谢庆胜, 冷寒冰, 刘伟, 武登山, 雷杨杰, 王泽峰.  红外四谱段测温辐射计的电子学设计与实现 . 红外与激光工程, 2013, 42(10): 2630-2635.
    [20] 戴聪明, 魏合理, 陈秀红.  通用大气辐射传输软件(CART)分子吸收和热辐射计算精度验证 . 红外与激光工程, 2013, 42(1): 174-180.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  6
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 录用日期:  2021-12-28
  • 修回日期:  2021-12-14
  • 刊出日期:  2022-08-31

基于光线追迹法的低温辐射计光吸收腔设计

doi: 10.3788/IRLA20210918
    作者简介:

    俞兵,男,研究员,博士生,主要从事光学计量技术方面的研究及光学标准的制定工作

基金项目:  国防科工局技术基础项目(JSJL2018208A001)
  • 中图分类号: O514.2

摘要: 当前,工作在液氦温度的低温辐射计可以有效规避电路系统中非自发加热带来的误差,是国际上精度最高的光功率计量设备。理想低温辐射计在工作过程中,其核心器件-吸收腔对相同的热功率与电功率应当表现出相同的温升。然而对于实际情况,由于吸收腔涂层中复杂的光-物质相互作用,系统的光-电加热路径难以重合,黑体腔热传导分布的梯度差异导致误差的产生。当前国际上对光电不等效性产生的影响仍缺乏直观清晰的认知。在此,利用蒙特卡洛光线追迹方法,文中对低温辐射计吸收腔辐照度的空间分布进行了仿真。计算表明:当吸收腔斜底角控制在60°,涂层吸收率达到0.95时,系统在激光进入的第一次与第二次反射中分别吸收了98%与1.9%的能量,比例约为51.2∶1。通过在吸收腔斜底板和下侧面同时布置加热器,可实现光加热、电加热路径的耦合。进一步地,通过分别计算单加热器与双加热器布置下系统温度随时间的变化,文中证明了加热路径的不同将引入约为0.005%的光电不等效性。

English Abstract

    • 低温辐射计在对光谱辐射的计量过程中提供了最低的不确定度,因此被用作最高计量基准,并被广泛应用于辐射测量学、光辐射计量学、光谱学和天体物理学等领域。低温辐射计采用电替代原理,其核心部件-黑体吸收腔对相同的电功率或光功率输入表现出相同的温升。由于工作在液氦温度下,低温辐射计突破了环境和材料的限制,不确定度比常温电替代辐射计降低约一个量级,达到10−4[1-4]。目前在光辐射计量领域,低温辐射计已经成为国际标准化研究机构公认的探测器一级基准,也是光辐射绝对功率测量的一级基准。

      低温辐射计的电替代原理需要光功率和电功率相等时吸收腔产生相同的温升,但由于吸收腔结构参数、涂层吸收率等因素的影响,黑体吸收腔出口的逸出辐射导致光电不等效性。因此,需要对低温辐射计吸收腔进行光电不等效性分析。美国NIST T. R. Gentile等人进行了不同激光功率Pm照射条件光电不等效系数ηm研究,吸收腔的光电不等效性在不同入射功率下引入的测量不确定度约为0.002%[5]。此外,在光电加热过程中,吸收腔存在温度梯度,光加热位置和电加热丝布置位置的不同,导致光电不等效性的产生。为减小光电不等效性对辐射测量结果的影响,国内外技术人员开展大量的相关研究,方伟等采用将加热丝埋在锥腔内的方法[6-7],唐潇等运用有限元单元法对绝对辐射计的光电不等效性进行修正[8-11],成功将绝对辐射计的测量不确定度降低至5×10−6以下。杨振岭等对星载太阳辐照度绝对辐射计测量结果的真空-空气腔温响应变化进行了对比[12-13],得到空气中的相对修正系数。上述研究讨论了低温辐射计系统的不确定性来源,并将其归类分为光功率照射条件的差异和光电加热区域的差异导致的两类不等效性。但是,当前对这两类不等效性的来源仍缺少清晰的认知,其主要原因可归结于黑体腔对光照射的非平坦吸收特性及光-电加热路径的不重合特性。为解决上述两点关键问题,需要结合黑体涂层的变波长吸收特性,对吸收腔光加热路径进行分析:激光入射到腔体后,大部分光子经涂层的吸收,能量经声子弛豫过程转换为热能。因此,腔体对激光能量的吸收及热转换可以通过辐照度来体现。基于蒙特卡洛光线追迹法,文中对内壁涂敷碳纳米管的吸收腔中光功率的空间分布进行了仿真,并分析了吸收腔斜底板和下侧面对入射光功率的吸收比,以及光斑的形状、尺寸、位置。根据仿真结果,为使光加热路径和电加热路径尽可能完全相同,需在吸收腔斜底板和下侧面同时布置加热器,两个加热器的加热功率比例为51.2∶1,以改善低温辐射计光电不等效性,为低温辐射计的研制提供设计依据。

    • 低温辐射计的吸收腔在测试过程中作为光陷阱,入射到腔中的辐射经过多次反射后被近似完全吸收,并经光热转换导致腔体温度的变化。通常吸收腔内壁涂黑材料吸收率越高、吸收腔内表面积与开口面积的比值越大,越有利于获得高吸收率。目前,国内外的低温辐射计多采用带斜底的圆柱腔,斜底角多为30°和60°。在吸收腔内壁涂黑材料性质相同的情况下,斜底角为30°相对于60°时具有略高的吸收率[5]。文中采用垂直排列碳纳米管作为发黑涂层,由于垂直排列阵列中的碳纳米管包含多种手性、多种壁厚,因此带隙分布展宽极大(0.1~4.0 eV),对全波段均能表现出吸收特性。此外,该类碳纳米管具有森林结构,引入了多重反射-吸收模式,极大提升了其光子束缚能力。其变波长镜面反射率如图1所示,当入射辐射波长延伸到6 μm以上,材料吸收率随入射角增大而急剧降低,当波长延伸至16 μm,纳米涂层的反射率可高达1.25%。该现象主要归因于长波光子较低的能量及较长的波长,难以通过激发吸收涂层本征电子禁带跃迁的方式实现光-电弛豫,只能在纳米森林结构中通过多次反射、缺陷激发等方式逐步降低能量。而随入射角的降低,纳米管阵列对光子的束缚能力大为提升,当入射角降低至30°,全波段反射率低至0.25%以下,满足低温辐射计设计需求,因此文中所讨论的低温黑体腔斜底角设计为60°。

      图  1  不同入射角下碳纳米管吸收黑材料光谱镜面反射率测量曲线

      Figure 1.  Specular reflectance measurement curve of carbon nanotubes absorbing black materials at different incident angles

      在斜底面倾角以及内壁涂黑材料确定时,增加腔长能有效地将光线限制在腔内,增加腔内反射次数,随着黑体腔长的增加,平均垂直有效吸收率单调上升。取腔体平均直径$ \phi $=10 mm、$ \theta $=60°,在LightTools软件中,结合蒙特卡洛逆向光线追迹算法对不同腔长,不同内壁涂黑的黑体腔平均垂直有效吸收率进行计算,所得腔体有效吸收率如表1所示,ρ为内壁涂黑层的吸收率,L为腔体长度。对相同的内壁涂层吸收率,增加黑体腔内表面积与开口面积的比值,有利于获得高吸收率。但随腔长的延伸,腔体热容增加,将导致吸收腔响应时间的增加。基于积分球法测得碳纳米管吸收黑材料的光谱吸收率达到0.98,黑体腔腔长L选取为40 mm即可获得低于0.001%的吸收腔反射率。

      表 1  带斜底面圆柱腔平均垂直有效吸收率计算结果

      Table 1.  Calculation results of average vertical effective absorption rate of cylindrical cavity with inclined bottom

      ρ=0.85ρ=0.90ρ=0.95
      L=30 mm0.998260.999640.99994
      L=40 mm0.999770.999910.99999
      L=50 mm0.999980.999990.99999

      为了仿真低温辐射计吸收腔内的功率分布,最终确定吸收腔模型结构参数为:长度40 mm、内径10 mm、壁厚0.1 mm、斜底角60°。

    • 为精确反映激光在吸收腔内部的反射/吸收过程,在确定吸收腔结构参数的基础上,采用蒙特卡洛逆向光线追迹算法对吸收腔内辐照度分布情况进行仿真。光源设置为Φ4 mm的准直光束,波长为632.8 nm,功率为1 mW。为提高光线追迹的准确性,设置光线功率阈值为10−8,追迹光线数为2000000根,经积分球法测得吸收腔内壁涂层总吸收率为98%,减去镜面反射率(典型值为0.4%)得到漫反射率(1.6%),最终比值约为1∶4,考虑到激光的高斯分布属性,将镜面反射设置为高斯型反射。同时,设置光线路径追迹,以准确判断光线传播路径,吸收腔光线追迹的剖面示意图如图2所示。

      图  2  吸收腔光线追迹示意图

      Figure 2.  Schematic diagram of ray tracing in absorption cavity

      吸收腔出口处辐照度分布仿真结果如图3所示。图3(a)为出口截面的空间光场分布,出口辐照主要集中在腔体的下侧出口面。图3(b)进一步给出了溢出辐射的比例分布,80%以上比例的溢出能量低于2.5×10−6 W/mm2,总截面积分辐照度低于1×10−4 W,最终实现优于0.9999的腔体吸收率。

      图  3  吸收腔出口处辐照度分布仿真图

      Figure 3.  Simulation diagram of irradiance distribution at the outlet of absorption cavity

    • 通过上述光线追迹仿真,得出吸收腔底面、上侧面(0°~180°)以及下侧面(180°~360°)的内表面辐照度分布情况和吸收能量大小,进一步为低温辐射计光电加热不等效的修正提供了参数支持,吸收腔区域划分如图4所示,腔体内侧面展开如图5所示。

      图  4  吸收腔区域划分示意图

      Figure 4.  Schematic diagram of absorption cavity area division

      图  5  吸收腔体内侧面展开示意图

      Figure 5.  Schematic diagram of lateral expansion of absorption cavity

      图6~图8分别为吸收腔底面、上侧面、下侧面的辐照度分布仿真结果。如图6所示,斜底面吸收功率的位置集中在底面中心处,吸收光功率值为0.9800335587 mW,反射辐照度低于5×10−6 W/mm2。如图7图8所示,整个腔体侧面吸收光功率的位置集中在腔体前端(靠近斜角),辐照度分布不均匀,上侧面和下侧面存在较大差异。下侧面吸收光功率为0.01915025923 mW,辐照度分布集中在腔体轴向0-20 mm位置处,主要集中在靠近倾斜角约4 mm处(图7(a)白色区域)。上侧面吸收光功率为0.000 729 7450 839 mW,辐照度分布集中在腔体轴向5~15 mm位置处。斜底面吸收功率是下侧面吸收功率的51.2倍,是上侧面吸收功率的1343倍。这种巨大的吸收功率差异源于腔体内壁吸收涂层的超高吸收率,光子在第一次与第二次反射中被集中捕获,而入射到上侧面的光子多来自于第三次甚至更高次反射的光子,因此吸收功率可以忽略不计。此外,如图7(b)、8(b)所示,实际在吸收腔上侧面、下侧面分别观察到0.8~3 μW/mm2及1.9~3 μW/mm2辐照度的区间缺失,该现象主要由系统中光子多次反射能量的阶跃衰减引起:辐照度定义为光照体在单位时间内,单位面积接受所有方向入射的光子数NP的取值,由于光子数量在每次反射过程中都会被涂层俘获一部分,导致光子数NP的不连续,进而出现断层特性。

      图  6  吸收腔底面辐照度分布情况

      Figure 6.  Irradiance distribution of bottom surface of absorption cavity

      图  8  吸收腔上侧面(0°~180°)辐照度分布情况

      Figure 8.  Irradiance distribution of the upper side of the absorption cavity (0°-180°)

      图  7  吸收腔下侧面(180°~360°)辐照度分布情况

      Figure 7.  Irradiance distribution of the lower side of the absorption cavity (180°-360°)

    • 上述精确的定位分析表明,斜底板吸收入射光功率集中均匀分布在斜底面中心长轴为4.62 mm、短轴为4 mm的椭圆形区域内,整个腔体侧面吸收入射光功率主要集中在腔体轴向0~20 mm位置处,主要集中在靠近倾斜角约4 mm处。据此,在上述两个椭圆区域内均匀缠绕加热丝并用低温胶固定。根据计算得到腔体底面与下侧面吸收光功率的比值,两段加热丝的加热功率比为51.2∶1,从而确保光加热路径和电加热路径尽可能完全相同,并且光加热和电加热的加热面积几乎一致,以有效改善低温辐射计光电不等效性。加热丝的外接引线为铌铋超导线,靠近加热丝的引线涂敷IMI-7031清漆并用低温胶固定在吸收腔斜底面和下侧面上,以确保电加热功率全部耗散在吸收腔内。最终吸收腔底座结构如图9(a)所示,吸收腔体如图9(b)所示。

      图  9  (a)低温辐射计热连结构;(b)低温辐射计高吸收率斜底腔;(c)不同加热方式下吸收腔温度随时间的变化

      Figure 9.  (a)Thermal link of cryogenic radiometer; (b) High absorption inclined bottom cavity of cryogenic radiometer; (c) Change of temperature of absorption cavity with time under different heating modes

      为进一步研究腔体中的电-光不等效性,文中基于计算结果对腔体温度进行了仿真实验。对照组采用1 mW的电功率对腔体底面进行直接加热,实验组采用计算得到的光等效电功率对腔体进行加热,折合底面与吸收腔侧壁的功率分别约为0.98 mW与0.019 15 mW。在此基础上加热10 min,腔体温度随时间的演进如图9(c)所示:随着加热时间达到150 s以上,光加热与电加热产生的温升出现较大偏差(图9(c)插图),在温度的饱和区,两种加热方式的温度稳定的维持约为0.0007 K的温差(0.7 mK),这类温差主要由系统的热传导过程决定:吸收腔为达到热稳定,需经过热连接与热沉进行热交换,但是加热效率的差异将在系统中引入热交换效率的不等效性,并最终决定系统稳定温度。温差折合不等效性约为0.005%,与吸收腔温度梯度引起的不等效性相当,因此在实际设计过程中,需要采用多加热器的策略,尽量减小光电不等效性。

    • 通过蒙特卡洛光线追迹方法,文中实现了对低温辐射计黑体腔的光场分布可视化处理。计算结果表明,黑体腔光电不等效性主要源于其出口溢出辐射,通过引入全波段吸收率高达95%的垂直排列碳纳米管,并进一步通过构建斜底角,将其反射率降低至0.25%以下,可有效提升黑体腔的吸收系数,并缩减黑体腔长度,降低系统热容,进而提升响应速度。文中指出,应当在黑体腔斜底面与下侧面布置加热丝,功率比设置为51.2∶1,以避免黑体腔温度梯度导致的光热不等效性,以提升测量准确度。

参考文献 (13)

目录

    /

    返回文章
    返回