留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超大口径平面反射镜的光学检测(特邀)

王孝坤 戚二辉 胡海翔 苏航 李凌众 王晶 罗霄 张学军

王孝坤, 戚二辉, 胡海翔, 苏航, 李凌众, 王晶, 罗霄, 张学军. 超大口径平面反射镜的光学检测(特邀)[J]. 红外与激光工程, 2022, 51(1): 20210953. doi: 10.3788/IRLA20210953
引用本文: 王孝坤, 戚二辉, 胡海翔, 苏航, 李凌众, 王晶, 罗霄, 张学军. 超大口径平面反射镜的光学检测(特邀)[J]. 红外与激光工程, 2022, 51(1): 20210953. doi: 10.3788/IRLA20210953
Wang Xiaokun, Qi Erhui, Hu Haixiang, Su Hang, Li Lingzhong, Wang Jing, Luo Xiao, Zhang Xuejun. Optical testing of the super-large plane mirror (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210953. doi: 10.3788/IRLA20210953
Citation: Wang Xiaokun, Qi Erhui, Hu Haixiang, Su Hang, Li Lingzhong, Wang Jing, Luo Xiao, Zhang Xuejun. Optical testing of the super-large plane mirror (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210953. doi: 10.3788/IRLA20210953

超大口径平面反射镜的光学检测(特邀)

doi: 10.3788/IRLA20210953
基金项目: 国家自然科学基金(62127901,12003034,12003035);吉林省科技发展计划(20200401065 GX)
详细信息
    作者简介:

    王孝坤,男,研究员,博士生导师,博士,主要从事光学制造及测试技术方面的研究

    通讯作者: 戚二辉,男,副研究员,硕士生导师,博士,主要从事大口径光学元件先进制造技术方面的研究。
  • 中图分类号: TQ171.65;O436.1

Optical testing of the super-large plane mirror (Invited)

  • 摘要: 在简要总结了各种检测大口径反射镜难点的基础上,为了实现30 m望远镜(TMT)超大口径第三反射镜的高精度检测,提出了一种融合五棱镜扫描技术和子孔径拼接测试技术的新方法。大口径反射镜分阶段依次进行了五棱镜扫描测试和子孔径拼接检测,对该技术的基本原理和基础理论进行了分析和研究,制定了检测30 m望远镜第三反射镜(口径为3.5 m×2.5 m)的方案,对其测试流程、五棱镜设计、五棱镜扫描像差拟合、拼接最优化算法等进行了详细分析,并对30 m望远镜第三反射镜的原理镜进行了实验验证,其最终拼接检测面形的均方根值(RMS)和斜率均方根值(slopeRMS)分别为28.676 nm和0.97 μrad。
  • 图  1  五棱镜扫描测试大镜示意图

    Figure  1.  The sketch of testing large mirror by pentaprism scanning

    图  2  五棱镜扫描大镜检测流程图

    Figure  2.  Flow chart of testing large mirror by pentaprism scanning

    图  3  大口径反射镜子孔径拼接检测流程图

    Figure  3.  Flow chart of testing large mirror by SSI

    图  4  大口径反射镜子孔径拼接原理示意图

    Figure  4.  Sketch of testing large mirror by SSI

    图  5  重叠区域计算

    Figure  5.  Calculation in the overlapping areas

    图  6  TMT第三反射镜低阶误差检测流程图

    Figure  6.  Flow chart of testing low-order error of TMT-M3

    图  7  五棱镜扫描30 m望远镜第三反射镜的装置示意图

    Figure  7.  Sketch of setup of testing TMT-M3 by scanning pentaprism

    图  8  利用1.5 m参考镜进行拼接干涉检测30 m望远镜第三反射镜示意图

    Figure  8.  Sketch of testing TMT-M3 by Fizeau interferometry with 1.5 m reference mirror

    图  9  子孔径拼接检测30 m望远镜第三反射镜子孔径分布

    Figure  9.  Distribution of subaperture of testing TMT-M3 by SSI

    图  10  原理镜五棱镜扫描检测设备图

    Figure  10.  Setup of testing the prototype by scanning pentaprism

    图  11  原理镜五棱镜扫描检测结果

    Figure  11.  Testing results of the prototype by scanning pentaprism

    图  12  原理镜子孔径拼接检测装置及规划图

    Figure  12.  Setup and subaperture distrbution of testing the prototype by SSI

    图  13  原理镜拼接检测结果

    Figure  13.  Testing results of the prototype by SSI

  • [1] TMT International Observatory. Thirty Meter Telescope Astronomy's Next-Generation Observatory [EB/OL]. [2022-01-12]. https://www.tmt.org/.
    [2] Pan Junhua. Design, Fabrication and Testing of Optical Aspheres [M]. Beijing: Science Press, 1994. (in Chinese)
    [3] Wang Quandou. Novel profilometer with dual digital length gauge for large aspherics measurement [C]//SPIE, 2000, 4231: 39-46.
    [4] Su P, Oh C J, Parks R E. et al. Swing arm optical CMM for aspherics [C]//SPIE, 2009, 7426: 74260J.
    [5] Han S, Novak E, Schuring M. Application of Ritchey-Common test in large flat measurements [C]//SPIE, 2001, 4399: 131-136.
    [6] Han S, Novak E, Schurig M. Ritchey-common test used for measurement of astronomical optical [C]//SPIE, 2003, 4842: 270-273.
    [7] Shu K L. Ray-trace analysis and data reduction methods for the Ritchey-Common test [J]. Applied Optics, 1983, 22(12): 1879-1886. doi:  10.1364/AO.22.001879
    [8] Mallik P, Zhao C, Burge J H. Measurement of a 2-m flat using a pentaprism scanning system [J]. Optical Engineering, 2007, 46(2): 023602. doi:  10.1117/1.2700386
    [9] Murphy P, Fleig J, Forbes G. Subaperture stitching interferometry for testing mild aspheres [C]//SPIE, 2006, 6293: 62930J.
    [10] Yan Lisong, Zhang Binzhi, Wang Xiaokun, et al. Subaperture stitching testing to flat mirror based on weighting algorithm [J]. Infrared and Laser Engineering, 2021, 50(11): 20210520. (in Chinese)
    [11] Cai Zhihua, Wang Xiaokun, Hu Haixiang, et al. Non-null stitching test convex aspheric metal mirror [J]. Infrared and Laser Engineering, 2021, 50(11): 20210061. (in Chinese)
    [12] Kulawiec A, Murphy P, Marco M. Measurement of high-departure aspheres using subaperture stitching with the variable optical null (VON) [C]//SPIE, 2010, 7655: 765512.
    [13] Zhao C Y, Burge J H. Stitching of off-axis sub-aperture null measurements of an aspheric surface [C]//SPIE, 2008, 7063: 706316.
    [14] Yan Lisong, Wang Xiaokun, Zheng Ligong, et al. Experimental study on subaperture testing with iterative triangulation algorithm [J]. Opt Express, 2013, 21(19): 22628-22644. doi:  10.1364/OE.21.022628
    [15] Qi Erhui, Luo Xiao, Li Ming, et al. Error analysis of scanning pentaprism system in optical testing on large aperture flat mirror [J]. Infrared and Laser Engineering, 2015, 44(2): 639-646. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.02.044
    [16] Geckeler R D. Optimal use of pentaprisms in highly accurate deflectometric scanning [J]. Measurement Science and Technology, 2007, 18(1): 115-125. doi:  10.1088/0957-0233/18/1/014
    [17] Su Peng. Absolute measurements of large mirrors [D]. Tucson: The University of Arizona, 2008.
    [18] Wang X K, Wang L H. Measurement of large aspheric surfaces by annular subaperture stitching interferometry [J]. Chinese Optics Letters, 2007, 11(5): 645-647.
    [19] Zhang P, Zhao H, Zhou X, et al. Subaperture stitching interferometry using stereovision positioning technique [J]. Opt Express, 2010, 18(14): 15216-15222. doi:  10.1364/OE.18.015216
  • [1] 相超, 王道档, 窦进超, 孔明, 刘璐, 许新科.  光学偏折子孔径拼接面形检测技术 . 红外与激光工程, 2021, 50(11): 20210105-1-20210105-7. doi: 10.3788/IRLA20210105
    [2] 闫力松, 张斌智, 王孝坤, 黎发志.  平面镜子孔径加权拼接检测算法(特邀) . 红外与激光工程, 2021, 50(10): 20210520-1-20210520-6. doi: 10.3788/IRLA20210520
    [3] 王晶, 王孝坤, 胡海翔, 李凌众, 苏航.  夏克哈特曼扫描拼接检测平面镜(特邀) . 红外与激光工程, 2021, 50(10): 20210527-1-20210527-7. doi: 10.3788/IRLA20210527
    [4] 王聪, 陈佳夷, 栗孟娟, 王海超, 李斌.  基于干涉测量的Ф1.3 m非球面反射镜定心 . 红外与激光工程, 2020, 49(1): 0113001-0113001(6). doi: 10.3788/IRLA202049.0113001
    [5] 闫公敬, 张宪忠.  子孔径拼接检测凸球面技术研究 . 红外与激光工程, 2016, 45(5): 517002-0517002(4). doi: 10.3788/IRLA201645.0517002
    [6] 安其昌, 张景旭, 杨飞, 赵宏超.  PSSn在大口径望远镜误差评估中的应用 . 红外与激光工程, 2016, 45(12): 1218001-1218001(7). doi: 10.3788/IRLA201645.1218001
    [7] 安其昌, 张景旭, 杨飞, 张科欣.  基于结构函数的子孔径拼接算法研究 . 红外与激光工程, 2015, 44(3): 929-933.
    [8] 安其昌, 张景旭, 杨飞, 乔兵.  基于斜率的TMT 三镜面形检测方法 . 红外与激光工程, 2015, 44(6): 1884-1889.
    [9] 戚二辉, 罗霄, 李明, 郑立功, 张学军.  五棱镜扫描技术检测大口径平面镜的误差分析 . 红外与激光工程, 2015, 44(2): 639-646.
    [10] 闫力松, 王孝坤, 罗霄, 曾雪锋, 郑立功, 张学军.  基于非理想标准镜的子孔径拼接干涉检测技术研究 . 红外与激光工程, 2014, 43(1): 178-183.
    [11] 张宇, 金春水, 马冬梅, 王丽萍.  双光纤相移点衍射干涉仪装调技术 . 红外与激光工程, 2014, 43(1): 145-150.
    [12] 邓万涛, 汪凯巍, 白剑, 张金春.  高精度子孔径拼接中参考面误差的去除方法 . 红外与激光工程, 2014, 43(4): 1194-1199.
    [13] 郭玲玲, 任建岳, 张星祥, 张立国, 赵其昌, 吴泽鹏.  基于曲面拟合的离轴非球面镜顶点半径计算方法 . 红外与激光工程, 2014, 43(8): 2694-2698.
    [14] 王孝坤.  异形口径离轴非球面光学加工与测试技术 . 红外与激光工程, 2014, 43(9): 2959-2963.
    [15] 闫力松, 王孝坤, 郑立功, 王润强, 张学军.  大口径反射镜子孔径拼接自检验精度分析 . 红外与激光工程, 2014, 43(6): 1920-1924.
    [16] 闫公敬, 张宪忠, 李柱.  子孔径拼接检测光学平面反射镜技术 . 红外与激光工程, 2014, 43(7): 2180-2184.
    [17] 闫力松, 王孝坤, 罗霄, 郑立功, 张学军.  采用三角剖分算法的子孔径拼接检测技术 . 红外与激光工程, 2013, 42(7): 1793-1797.
    [18] 王宁, 贾辛, 邢廷文.  子孔径拼接检测浅度非球面 . 红外与激光工程, 2013, 42(9): 2525-2530.
    [19] 王孝坤.  大口径凸非球面反射镜子孔径拼接检测 . 红外与激光工程, 2013, 42(3): 716-722.
    [20] 郭玲玲, 张星祥, 张立国, 任建岳.  离轴非球面镜检测中坐标系偏差对参数拟合的影响 . 红外与激光工程, 2013, 42(10): 2800-2804.
  • 加载中
图(13)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  8
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-10
  • 修回日期:  2022-01-12
  • 网络出版日期:  2022-02-10
  • 刊出日期:  2022-01-25

超大口径平面反射镜的光学检测(特邀)

doi: 10.3788/IRLA20210953
    作者简介:

    王孝坤,男,研究员,博士生导师,博士,主要从事光学制造及测试技术方面的研究

    通讯作者: 戚二辉,男,副研究员,硕士生导师,博士,主要从事大口径光学元件先进制造技术方面的研究。
基金项目:  国家自然科学基金(62127901,12003034,12003035);吉林省科技发展计划(20200401065 GX)
  • 中图分类号: TQ171.65;O436.1

摘要: 在简要总结了各种检测大口径反射镜难点的基础上,为了实现30 m望远镜(TMT)超大口径第三反射镜的高精度检测,提出了一种融合五棱镜扫描技术和子孔径拼接测试技术的新方法。大口径反射镜分阶段依次进行了五棱镜扫描测试和子孔径拼接检测,对该技术的基本原理和基础理论进行了分析和研究,制定了检测30 m望远镜第三反射镜(口径为3.5 m×2.5 m)的方案,对其测试流程、五棱镜设计、五棱镜扫描像差拟合、拼接最优化算法等进行了详细分析,并对30 m望远镜第三反射镜的原理镜进行了实验验证,其最终拼接检测面形的均方根值(RMS)和斜率均方根值(slopeRMS)分别为28.676 nm和0.97 μrad。

English Abstract

    • 目前,美国联合世界多国计划建造30 m望远镜(TMT),它最终将成为地球上最先进和最强大的光学望远镜之一[1]。当TMT完成后,天文学家将能够研究太阳系和整个银河系及其邻近星系的恒星,并可观测宇宙的边缘,即时间开始的地方形成的星系。

      TMT的光学系统由30 m口径的主镜(由492块口径为1.44 m,厚度为45 mm的六边形镜面拼接组成)、一个完全主动的副镜和一个铰接的第三镜组成。第三镜是一个口径为3.5 m×2.5 m的椭圆外形平面反射镜,其为目前世界上最大口径的平面反射镜。大口径反射镜的检测十分困难,而且它的外轮廓是非圆形的,更增加了其制造和测试的难度。

      检测大口径平面镜的传统方法是利用三坐标测量仪(CMM)和瑞奇康芒法(Ritchey-Common)。在铣磨和研磨阶段,可以通过三坐标检测获得被测反射镜镜面上离散点的数据点值,通过面形重构获得反射镜的面形误差,但超大口径三坐标测量仪价格非常昂贵,且大型三坐标测量仪精度难以保证,其检测精度仅能达到微米量级[2-3]。为此,可以使用另一种常见的坐标测量机器——摆动臂轮廓仪来进行面形的检测,与传统三坐标相比,其可以将轮廓测量的精度提高一个数量级以上,同时采用连续测量,测量点的密度及测量速度有大幅度的提高,可以很好地满足大口径轮廓测量的需要[4],但是其精度约为0.1 μm RMS。大口径反射镜在抛光过程时,其表面面形可以利用瑞奇康芒法进行测试[5-7],但该方法的瑞奇角产生检测图像压缩,使得被测平面的面形误差与球面本身的像散混合在一起,影响检测结果的准确性;同时大口径反射镜在检测系统的光瞳面上发生变形,使镜面面形误差与系统出瞳光程差之间的对应关系变得复杂,随着瑞奇角的不同而不同,导致检测结果的数据处理变得十分复杂。此外,瑞奇康芒法需要大口径的辅助球面镜,辅助球面镜的口径一般为待测大口径反射镜镜面尺寸的1.2~1.3倍,大口径、高精度球面反射镜的制造相当困难,因此,大口径平面反射镜的瑞奇康芒法检测很难实现。

      为了解决大口径反射镜面形检测的困难,尤其是针对30 m望远镜第三反射镜高精度测量的瓶颈,提出了五棱镜扫描和子孔径拼接相结合的方法。五棱镜扫描检测获取低阶面形精度,配合子孔径进行全口径测试,获得全频段面形信息。

    • 当大口径反射镜经过研磨和抛光后,可以用五棱镜扫描对其进行测试[8],该方法的原理示意图如图1所示,不管入射光束的角度如何,五棱镜都能使光线偏转90°。入射光束与出射光束之间的夹角仅取决于测试表面的倾斜程度,因此可以通过五棱镜扫描测量光学表面的斜率。

      图  1  五棱镜扫描测试大镜示意图

      Figure 1.  The sketch of testing large mirror by pentaprism scanning

      五棱镜扫描测试流程图如图2所示。经五棱镜扫描后可以获得反射镜表面的斜率信息,对斜率数据进行积分能够得到其面形误差,经过像差拟合后,如果低阶像差不明显,反射镜将进行精抛光并结合子孔径拼接测试技术开展后续加工;如果低阶像差明显,该反射镜将重新进行研磨和粗抛光加工,并通过五棱镜扫描再次测量。

      图  2  五棱镜扫描大镜检测流程图

      Figure 2.  Flow chart of testing large mirror by pentaprism scanning

      大口径反射镜子孔径拼接检测流程如图3所示,其方法原理如图4所示。首先进行子孔径规划,大口径反射镜将被划分成几个小的区域(子孔径),利用小口径干涉仪逐次对大口径反射镜的各区域进行相位测量,利用三角剖分算法和综合优化子孔径拼接算法可以完成对大口径反射镜全口径的面形检测 [9-13]

      图  3  大口径反射镜子孔径拼接检测流程图

      Figure 3.  Flow chart of testing large mirror by SSI

      图  4  大口径反射镜子孔径拼接原理示意图

      Figure 4.  Sketch of testing large mirror by SSI

      首先,根据被测镜和干涉仪的孔径确定子孔径的大小和个数。通过拼接系数可以拼接整个面形,为了正确计算拼接系数,相邻子孔径会有重叠区域,且重叠区域大于子孔径的1/4。其次,通过调整干涉仪与大口径反射镜,使干涉仪对准和遍历各子孔径,利用干涉测量法可以检测各子孔径的相位分布,通过拼接获得全口径面形。在测量每个子孔径面形相位的过程中,由于受测试环境的影响、镜面粗糙度不均匀、测试仪器精度等因素的影响,使得子孔径数据必然存在缺失,将采用三角剖分算法求解和填补子孔径相位数据[14]

      假设将每个子孔径的相位数据转换为对应的全局三维坐标,如图5 (a)所示,首先在X-Y平面上定义均匀网格,将第i和第j个子孔径的相位数据投影到X-Y平面上,三角剖分示意图如图5 (b)所示。对子孔径i的测量数据进行三角剖分,从而得到预先定义的数据点(x, y)的面形值,即利用三点定义一个平面,平面方程为ax+by+z+c=0 (z的系数一定不为0),利用公式(1)求解出系数abc

      图  5  重叠区域计算

      Figure 5.  Calculation in the overlapping areas

      $$ \left( {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1 \\ {{x_2}}&{{y_2}}&1 \\ {{x_3}}&{{y_3}}&1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} a \\ b \\ c \end{array}} \right) = \left( {\begin{array}{*{20}{c}} { - {\textit{z}_1}} \\ { - {\textit{z}_2}} \\ { - {\textit{z}_3}} \end{array}} \right) $$ (1)

      式中:(xi, yi, zi)( i=1~3)为构成基三角形的三个点的坐标。得到这三个点所确定的平面方程为公式(2):

      $$ \textit{z} = - ax - by - c $$ (2)

      将点(x, y)的坐标代入到该平面方程中,即可得到对于第i个孔径,该插值点的面形值z

      通过逐次拼接相邻子孔径可以得到整个反射镜的面形误差,但往往会引起拼接误差的累积。文中提出了一种综合优化拼接方法,可以同时计算所有拼接系数。由于拼接平面,各子孔径的未对准误差仅有相对平移量和倾斜量的组合,可以描述为:

      $$ w_i^{'} = {w_i} + {p_i} + {a_i}{x_i} + {b_i}{y_i} $$ (3)

      式中:wi为干涉仪测量的第i个子孔径的相位数据;wi'为第i个子孔径的实际相位数据;pi为相对的平移系数;aibi分别为相对X方向倾斜和Y方向倾斜的系数。

      假设重叠区域数为N,使得所有重叠区域相位差的平方和值为最小,用最小二乘法计算最佳拼接系数:

      $$ \begin{split} \mathrm{min}={\displaystyle \sum _{i=1}^{N}{\displaystyle \sum _{\begin{array}{l}_{i=1}\\ _{j\ne i}\end{array}}^{N}{\left[\left({w}_{i}+{p}_{i}+{a}_{i}{x}_{i}+{b}_{i}{y}_{i}\right)-\left({w}_{j}+{p}_{j}+{a}_{j}{x}_{j}+{b}_{j}{y}_{j}\right)\right]}^{2}}} \\[-10pt] \end{split}$$ (4)

      wiwj为随机相邻子孔径的相位数据,通过三角剖分插值,(xiyi)和(xjyj)的坐标相同。因此,公式(4)可以简化为:

      $$ \min = \displaystyle\sum\limits_{i = 1}^N {\displaystyle\sum\limits_{\scriptstyle j = 1\atop \scriptstyle j \ne i} ^N {{{\left[\Delta w + \Delta p + \Delta ax + \Delta by\right]}^2}} } $$ (5)

      通过最小二乘拟合可以计算出所有的拼接系数,从而精确地拼接出完整的面形信息。

    • 当30 m望远镜第三反射镜经过研磨和粗抛光后,镜面的面形误差较小,需要对其面形进行光学检测,为此制定了专门的检测方案规划。

    • TMT项目要求的低阶面形误差检测流程如图6所示。首先扫描出被检面域的低阶信息,然后进行坐标变化处理,将待检面域处理为圆形,拟合圆形面域下的离焦和像散,代入计算公式计算P值,低阶评价指标要求PPA=18.8 mas,需要注意的是:mas为TMT项目组自定义的量纲,代表镜面的平滑程度,P值的大小与离焦和像散的RMS值有关,具体计算为:

      图  6  TMT第三反射镜低阶误差检测流程图

      Figure 6.  Flow chart of testing low-order error of TMT-M3

      $$ \begin{split} &\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;P = {C_f}\left| {{Z_4}} \right| + {C_a}\sqrt {{Z_5}^2 + {Z_6}^2} \\ &{C_f} = 1.97\;{\rm{mas}}/(RMS@{\text{μm})},{C_a} = 63.7\;{\rm{mas}}/{(RMS@\text{μm})} \end{split} $$ (6)

      式中:${Z_4}$为低阶离焦项;${Z_5}$${Z_6}$分别表示0°像散和45°像散。

      首先,通过五棱镜扫描进行面形测试,如图7所示,其有两个五棱镜,一个棱镜在被测镜上扫描提供测量A,另一个保持固定提供参考测量B,因此大口径反射镜表面的斜率信息可通过(AB)/2获得[15-16],通过扫描多条母线,可以计算出大反射镜的斜率误差,并通过积分计算出表面的相位分布WX, Y)。因为面形误差的主要分布是低阶像差,W可以描述为:

      图  7  五棱镜扫描30 m望远镜第三反射镜的装置示意图

      Figure 7.  Sketch of setup of testing TMT-M3 by scanning pentaprism

      $$ \begin{split} {W} = &{A_1} + {A_2}X + {A_3}Y + {A_4}({X^2} + {Y^2}) + {A_5}XY + {A_6}({X^2} - {Y^2}) + \\ &{A_7}X({X^2} + {Y^2}) + {A_8}Y({X^2} + {Y^2}) + {A_9}{({X^2} + {Y^2})^2} + \delta \\[-10pt] \end{split}$$ (7)

      式中:Aii=1~9)为每种初级像差的系数,它分别表示平移、X倾斜、Y倾斜、离焦、像散(A5A6)、彗差(A7A8)和球差系数,δ为面形误差的残余像差,通过最小二乘法,可利用公式(8)拟合最佳系数,因此,可以获得面形误差的低阶像差并循环加工,直到低阶像差的分布满足TMT项目需求。

      $$ \begin{split} &\sum {{{\left\{ {W - \left[{A_1} + {A_2}X + {A_3}Y + {A_4}({X^2} + {Y^2}) + {A_5}XY + {A_6}({X^2} - {Y^2}) +\right.}\right.}}} \\ &{{{\left.{\left.{A_7}X({X^2} + {Y^2}) + {A_8}Y({X^2} + {Y^2}) + {A_9}{{({X^2} + {Y^2})}^2}\right]} \right\}}^2} = } {\text{min}}\\[-13pt] \end{split} $$ (8)
    • 当面形误差的分布主要包含中、高频误差时将通过子孔径拼接进行面形检测。因为30 m望远镜第三反射镜是一个3.5 m×2.5 m的大口径反射镜,如果用小口径干涉仪进行拼接,子孔径数达到上万个,测试和计算时间很长,拼接精度很难保证[17-19]

      为了解决这些问题,30 m望远镜第三反射镜将采用Fizeau干涉仪进行拼接,设备示意图如图8所示,它包含一个小口径干涉仪、一个离轴抛物镜(Off Axis Paraboloid, OAP)和一个口径为1.5 m的参考镜,参考波面和经反射镜返回的测试波面将发生干涉,子孔径的数量大大减少,仅需九个子孔径即可覆盖整个反射镜,子孔径的分布如图9所示。通过开发的拼接算法可以精确地得到全口径的面形误差。

      图  8  利用1.5 m参考镜进行拼接干涉检测30 m望远镜第三反射镜示意图

      Figure 8.  Sketch of testing TMT-M3 by Fizeau interferometry with 1.5 m reference mirror

      图  9  子孔径拼接检测30 m望远镜第三反射镜子孔径分布

      Figure 9.  Distribution of subaperture of testing TMT-M3 by SSI

    • 为了验证五棱镜扫描及子孔径拼接技术的可行性,设计并研制了30 m望远镜第三反射镜的原理镜,其为900 mm×600 mm椭圆外形、厚度仅为12.5 mm的微晶玻璃超薄反射镜。在抛光阶段利用五棱镜扫描检测,如图10所示,其检测结果如图11所示,低阶面形表现形式为离焦及像散,P值最终为6.61 mas,小于TMT项目组要求的18.8 mas。利用小口径4D干涉仪经300 mm口径扩束系统后对其进行子孔径拼接检测,设备如图12所示,其检测结果如图13所示,面形RMS值为28.676 nm,slopeRMS 为0.97 μrad,满足设计要求。

      图  10  原理镜五棱镜扫描检测设备图

      Figure 10.  Setup of testing the prototype by scanning pentaprism

      图  11  原理镜五棱镜扫描检测结果

      Figure 11.  Testing results of the prototype by scanning pentaprism

      图  12  原理镜子孔径拼接检测装置及规划图

      Figure 12.  Setup and subaperture distrbution of testing the prototype by SSI

      图  13  原理镜拼接检测结果

      Figure 13.  Testing results of the prototype by SSI

    • 为了解决大口径反射镜,特别是30 m望远镜第三反射镜测试的困难,提出了一种五棱镜扫描与子孔径拼接相结合的新方法。介绍和研究了五棱镜扫描和子孔径拼接计测的基本理论和原理,制定了30 m望远镜第三反射镜的光学测试方案,并研制了30 m望远镜第三反射镜的原理镜进行实验验证,其最终面形误差低阶值为6.61 mas,slopeRMS为0.97 μrad,满足设计指标要求,从而提供了一种高精度光学检测大口径反射镜面形的方法。

参考文献 (19)

目录

    /

    返回文章
    返回