留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温光学用杜瓦柔性外壳结构热力特性研究

陈俊林 王小坤 曾智江 朱海勇 季鹏 王翰哲 胡兴健

陈俊林, 王小坤, 曾智江, 朱海勇, 季鹏, 王翰哲, 胡兴健. 低温光学用杜瓦柔性外壳结构热力特性研究[J]. 红外与激光工程, 2022, 51(12): 20220180. doi: 10.3788/IRLA20220180
引用本文: 陈俊林, 王小坤, 曾智江, 朱海勇, 季鹏, 王翰哲, 胡兴健. 低温光学用杜瓦柔性外壳结构热力特性研究[J]. 红外与激光工程, 2022, 51(12): 20220180. doi: 10.3788/IRLA20220180
Chen Junlin, Wang Xiaokun, Zeng Zhijiang, Zhu Haiyong, Ji Peng, Wang Hanzhe, Hu Xingjian. Study on thermal characteristics of Dewar flexible shell structure for cryogenic optics[J]. Infrared and Laser Engineering, 2022, 51(12): 20220180. doi: 10.3788/IRLA20220180
Citation: Chen Junlin, Wang Xiaokun, Zeng Zhijiang, Zhu Haiyong, Ji Peng, Wang Hanzhe, Hu Xingjian. Study on thermal characteristics of Dewar flexible shell structure for cryogenic optics[J]. Infrared and Laser Engineering, 2022, 51(12): 20220180. doi: 10.3788/IRLA20220180

低温光学用杜瓦柔性外壳结构热力特性研究

doi: 10.3788/IRLA20220180
基金项目: 地球大数据科学工程 (XDA19010102); 国家重点研发计划(2016 YFB0500400)
详细信息
    作者简介:

    陈俊林,男,助理研究员,硕士,主要从事红外焦平面探测器低温封装集成技术方面的研究

    通讯作者: 王小坤,男,正高级工程师,硕士生导师,硕士,主要从事红外焦平面探测器低温封装集成技术方面的研究。; 曾智江,男,高级工程师,硕士生导师,硕士,主要从事红外焦平面探测器低温封装集成技术方面的研究。
  • 中图分类号: TK123

Study on thermal characteristics of Dewar flexible shell structure for cryogenic optics

  • 摘要: 为了满足低温光学系统低背景、低功耗和红外探测器制冷组件高环境适应性的要求,提出了探测器制冷组件杜瓦主体(窗口、窗口帽和引线盘) 200 K低温保持,与制冷机膨胀机或脉管散热面柔性绝热连接的设计思想。针对低温光学用杜瓦柔性外壳工程应用中的特点,文中以某低温光学用长波12.5 μm 2 000元红外探测器杜瓦组件以例,提出了波纹管作为绝热连接的柔性外壳,重点阐述杜瓦柔性波纹管隔热、力学和相关漏热的设计,并开展不同热负载条件下波纹管热特性验证,可实现最小温度梯度为37.22 K,绝热热阻为1142 K/W,误差在37%。为综合评价低温光学用柔性外壳结构杜瓦组件的性能,对某低温光学用长波12.5 μm 2 000元探测器柔性外壳杜瓦组件开展热真空和鉴定级的力学试验考核验证,试验结果表明实现了200 K低温窗口,探测器60 K工作,杜瓦漏热为544 mW,低温工况工作时相对于常温工况制冷机的功耗下降了53%,并通过了4 g的随机力学考核,验证了低温光学用杜瓦柔性波纹管外壳模型合理可行,对于后续低温光学用杜瓦柔性外壳结构工程应用提供了重要参考。
  • 图  1  杜瓦结构及辐照度示意图

    Figure  1.  Schematic diagram of Dewar structure and irradiance

    图  2  窗口帽300 K和200 K的对探测器的杂散光辐照度

    Figure  2.  Detector irradiance from stray light from the window cap at 300 K and 200 K

    图  3  波纹管尺寸示意图

    Figure  3.  Schematic diagram of bellows size

    图  4  试验杜瓦力学有限元模型

    Figure  4.  Mechanics FEM model of test Dewar

    图  5  热网络模型示意图

    Figure  5.  The figure of thermal network model

    图  6  波纹管漏热测定示意图

    Figure  6.  Schematic diagram of heat leakage measurement of bellows

    图  7  制冷探测器杜瓦组件低温试验示意图

    Figure  7.  Schematic diagram of low temperature test of integrated detector Dewar coller assembly

    图  8  制冷机在不同工况下的制冷能力

    Figure  8.  Refrigeration Capacity of Cryocooler under Different Operating Conditions

    图  9  大组件正弦、随机振动试验流程图

    Figure  9.  Flow chart of sinusoidal and random vibration test of integrated detector dewarcoller assembly

    表  1  设计指标

    Table  1.   Design requirements

    ItemsDesign requirements (Dewar heat
    load 1 W@55 K@195 K)
    Temperature difference between vessel and window cap≥18 K
    Thermal resistance of bellows (77 K)800 K/W

    Random vibration condition
    20-100 +3 dB/oct
    100-600 0.01946 g2/Hz
    600-2 000 -9 dB/oct
    下载: 导出CSV

    表  2  波纹管设计参数

    Table  2.   Design parameters of bellows

    ItemsDesign parametersItemsDesign parameters
    Wall thickness/mm0.1InsideVacuum
    Material/L316OutsideAtmosphere
    Wave pitch/mm0.85Stroke/mm4
    Wave number26ShaftØ30
    Leak rate (He)/Torr·s−1<1E-10Setting directionVertical
    Size0.D.46×I.D.33ShapeV
    下载: 导出CSV

    表  3  模型各部分材料及其特性

    Table  3.   Materials and properties of each part of the model

    NameMaterialDensity/kg·m−3Elastic modulus/GPaSpecific heat capacity/J·kg−1·K−1
    Cylindrical shell304 L8050200409
    Bellows316 L8050200409
    EnclosureKavar8360142352
    下载: 导出CSV

    表  4  模态分析结果

    Table  4.   Result of modal analysis

    ModeFrequency/Hz
    1450.5
    2469.13
    3562.14
    41381.4
    51398.8
    下载: 导出CSV

    表  5  杜瓦的寄生热负载

    Table  5.   Thermal loads of Dewar

    Cryocooler working conditionTemperature of detector/KSolid heat leakage/mWRadiant heat leakage/mWThermal loads of Dewar/mW
    Normal temperature condition
    (pulse tube @23 °C)
    6067310001673
    High temperature conditions
    (pulse 263 K, window cap 228 K)
    60456306762
    55471305776
    Low temperature conditions
    (pulse 228 K, window cap 193 K)
    60375169544
    55387170557
    50404171575
    下载: 导出CSV

    表  6  波纹管的热阻测定

    Table  6.   Determination of thermal resistance of bellows

    Q/WT1/KT2/KT/KThermal resistance/K·W−1Theoretical thermal resistance/K·W−1Deviation
    074.45153.579.05
    0.10177.6193115.41142.5741 83137%
    下载: 导出CSV

    表  7  制冷探测器杜瓦组件低温试验数据

    Table  7.   Low temperature test data of integrated detector dewarcoller assembly

    Cryocooler working
    condition
    Temperature of
    detector/K
    Dewar leakage heat/mWDetector power
    consumption
    /mW
    Total load/mWTemperature of
    window cap/K
    Temperature
    of Hot end
    bellows/K
    Temperature of Cold end
    bellows/K
    Cooler power
    consumption/Wac
    Insulation effect
    of bellows/K
    Normal temperature condition
    (Pulse tube @296 K)
    6016730167329629629699
    High temperature conditions
    (pulse 263 K,
    window cap 228 K)
    607620762229.84267.71230.4952.0837.22
    607626001362225.5265.81226.769.0639.11
    557766001376223.21263.94224.3589.139.59
    557760776221.88263.4222.4761.640.93
    Low temperature conditions
    (pulse 228 K,
    window cap 193 K)
    605440544214.56253.16215.5246.8437.64
    605446001144194.08241.87195.760.7746.17
    555576001157193.27243.52194.6172.7448.91
    555570557192.83242.31194.2556.5248.06
    505750575192.43241.04194.4165.7246.63
    505756001175192.1241.48193.294.9448.28
    下载: 导出CSV

    表  8  力学前后数据对比

    Table  8.   Comparison of data before and after mechanical test

    Refrigerator working conditionTemperature of detector/KBefore mechanical testAfter mechanical test
    Cooler power consumption/WacInsulation effect of bellows/KCooler power consumption/WacInsulation effect of bellows/K
    High temperature conditions (pulse 263 K, window cap 228 K)6052.0837.2252.1137.33
    6069.0639.1169.6139.42
    5589.139.5988.9239.83
    5561.640.9361.4841.09
    Low temperature conditions (pulse 228 K, window cap 193 K)6046.8437.6447.0737.87
    6060.7746.1760.5946.49
    5572.7448.9172.6649.15
    5556.5248.0656.8048.01
    5065.7246.6365.5947.10
    5094.9448.2894.6648.57
    下载: 导出CSV
  • [1] Liu Enguang. Research on key technologies of cryogenic integration of cold optical system [D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2018. (in Chinese)
    [2] Wang Wei . The Research of staring wide field of view optic system based on geostationary orbit [D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2015. (in Chinese)
    [3] Chen Fansheng, Hu Zhuoyue, Li Xiaoyan, et al. Research on wide-range and high-resolution thermal infrared remote sensing imaging technology [J]. Chinese Jouranl of Lasers, 2021, 48(12): 1210002. (in Chinese) doi:  10.3788/CJL202148.1210002
    [4] Wang Yang, Meng Qingliang, Zhao Zhenming, et al. Thermal design of all-optical path cold chain based on transmission-type cryogenic optical infrared camera [J]. Infrared and Laser Engineering, 2021, 50(5): 20200345. (in Chinese) doi:  10.3788/IRLA20200345
    [5] Hu Zhuoyue. Research on key technologies of quantitative measurement of wide-range and high-resolution thermal infrared imager [D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2021. (in Chinese)
    [6] Li Jun. Key technologies of Dewar packaging for ultra-large scale linear infrared focal plane array [D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2021. (in Chinese)
    [7] Li Chunlai, LV Gang, Yuan Liyin, et al. Laboratory calibration and application of the airborne thermal infrared hyperspectral imager (ATHIS) [J]. Infrared and Laser Engineering, 2020, 49(5): 20190117. (in Chinese) doi:  10.3788/IRLA20190117
    [8] Li Jun, Wang Xiaokun, Sun Wen, et al. The study of thermal characteristics of the multi-substrate precision butting of the space long cold platform at low temperature [J]. Journal of Engineering Thermophysics, 2021, 42(5): 1268-1274. (in Chinese)
    [9] Huang Naining. Research on metal bellows of special purpose[D]. Shenyang: Shenyang University of Techology, 2003. (in Chinese)
    [10] Chen Fang, Gao Chao, Luo Shikui. Cold head supporting structure of Dewar used in large infrared focal plane [J]. Infrared and Laser Engineering, 2020, 49(8): 20200060. (in Chinese) doi:  10.3788/IRLA20200060
    [11] Mou Jian, Hong Guotong. The thermal contact resistance of two interfaces at low temperature in vacuum [J]. Vacuum & Cryogenics, 2018, 24(1): 19-25. (in Chinese)
    [12] Zhang W Y. Heat Transmission of Welding[M]. Beijing: China Machine Press, 1989. (in Chinese)
    [13] Wang Zhen. Research on interface thermal resistance of cryogenic packaging for infrared focal plane assembly[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2020. (in Chinese)
    [14] Chen Boliang, Li Xiangyang. Infrared Imaging Detectors for Space Applications[M]. Beijing: Science Press, 2016: 74-75. (in Chinese)
    [15] Li Jun, Wang Xiaokun, Sun Wen, et al. Study on Dewar package for dual-band long linear IRFPA detectors [J]. Infrared and Laser Engineering, 2018, 47(11): 1104003. (in Chinese) doi:  10.3788/IRLA201847.1104003
    [16] Fan Guangyu, Fan Cui, Li Jun, et al. Cold strap design of long linear IRFPA dewar [J]. Infrared and Laser Engineering, 2015, 44(7): 2021-2026. (in Chinese)
  • [1] 李建林, 刘卓林, 陈晓燕, 雷永畅, 董伟, 钱昆伦.  红外焦平面探测器杜瓦组件的热致破坏及其环境试验 . 红外与激光工程, 2022, 51(4): 20210337-1-20210337-10. doi: 10.3788/IRLA20210337
    [2] 黄一彬, 王英, 朱颖峰, 魏超群, 孙鸿生, 董黎.  红外探测器杜瓦封装多余物的衍射分析及控制 . 红外与激光工程, 2021, 50(3): 20200177-1-20200177-6. doi: 10.3788/IRLA20200177
    [3] 张亚平, 张绍裕, 刘炼, 舒恂, 孔金丞, 徐世春, 徐冬梅, 龚晓丹, 邱杰.  零件表面钝化处理对杜瓦放气率的影响 . 红外与激光工程, 2021, 50(5): 20200321-1-20200321-6. doi: 10.3788/IRLA20200321
    [4] 王阳, 孟庆亮, 赵振明, 于峰, 赵宇.  透射式低温光学红外相机全光路冷链热设计 . 红外与激光工程, 2021, 50(5): 20200345-1-20200345-8. doi: 10.3788/IRLA20200345
    [5] 张璐, 张磊, 林国画.  光学元件表面疵病影响杜瓦光学特性的仿真分析 . 红外与激光工程, 2020, 49(S1): 20200113-20200113. doi: 10.3788/IRLA20200113
    [6] 李春来, 吕刚, 袁立银, 王跃明, 金健, 徐艳, 刘成玉, 何志平, 王建宇.  机载热红外高光谱成像仪的光谱性能测试与初步应用 . 红外与激光工程, 2020, 49(5): 20190117-20190117-7. doi: 10.3788/IRLA20190117
    [7] 陈芳, 高超, 罗世魁.  大面阵红外焦平面杜瓦冷指支撑结构设计 . 红外与激光工程, 2020, 49(8): 20200060-1-20200060-7. doi: 10.3788/IRLA20200060
    [8] 行麦玲, 刘义良, 裴景洋, 胡斌, 杨天远.  空间红外大口径折射式低温镜头设计与验证 . 红外与激光工程, 2020, 49(4): 0414002-0414002-6. doi: 10.3788/IRLA202049.0414002
    [9] 王兆利, 梁惊涛, 赵密广, 陈厚磊, 王娟, 卫铃佼.  机械制冷机冷却的透射式光学系统支撑结构 . 红外与激光工程, 2019, 48(2): 218006-0218006(11). doi: 10.3788/IRLA201948.0218006
    [10] 阴刚华, 栗孟娟, 李凌, 金忠瑞, 王兆明, 王向东.  低温真空环境光学系统波像差测试方法 . 红外与激光工程, 2018, 47(7): 717004-0717004(6). doi: 10.3788/IRLA201847.0717004
    [11] 李志永, 谭荣清, 黄伟, 叶庆, 韩高策, 柯常军, 李辉.  光热敏折变玻璃的体布拉格光栅热特性理论研究 . 红外与激光工程, 2017, 46(8): 821001-0821001(5). doi: 10.3788/IRLA201746.0821001
    [12] 朱其文, 张普, 吴的海, 聂志强, 熊玲玲, 刘兴胜.  千瓦级传导冷却半导体激光器阵列热特性 . 红外与激光工程, 2017, 46(10): 1005003-1005003(7). doi: 10.3788/IRLA201754.1005003
    [13] 张海燕, 管建安, 庄馥隆, 汪洋, 陈安森, 龚海梅.  红外焦平面低温形变测试方法及其误差分析 . 红外与激光工程, 2016, 45(5): 504001-0504001(3). doi: 10.3788/IRLA201645.0504001
    [14] 吴晓迪.  多层隔热材料对卫星红外特性的影响 . 红外与激光工程, 2015, 44(6): 1721-1725.
    [15] 王超, 胡忠辉.  低温红外目标源控温技术 . 红外与激光工程, 2015, 44(3): 827-831.
    [16] 马秀荣, 王夏洋.  低温条件下光学厚度对Tm3+:YAG 材料光谱烧孔孔深的影响 . 红外与激光工程, 2015, 44(3): 964-968.
    [17] 王洋, 鲁星, 孟超, 刘俊明, 邝永变, 孟庆端, 朱旭波, 司俊杰.  InSb焦平面探测器高低温循环特性研究 . 红外与激光工程, 2015, 44(12): 3701-3706.
    [18] 范广宇, 范崔, 李俊, 龚海梅.  超长线列红外焦平面杜瓦冷链设计 . 红外与激光工程, 2015, 44(7): 2021-2026.
    [19] 李磊, 王建磊, 程小劲, 刘晶, 施翔春, 陈卫标.  低温重复率Yb:YAG 固体激光放大器 . 红外与激光工程, 2013, 42(5): 1170-1173.
    [20] 周超.  低温红外系统光机结构设计 . 红外与激光工程, 2013, 42(8): 2092-2096.
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  30
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-05-20
  • 刊出日期:  2022-12-22

低温光学用杜瓦柔性外壳结构热力特性研究

doi: 10.3788/IRLA20220180
    作者简介:

    陈俊林,男,助理研究员,硕士,主要从事红外焦平面探测器低温封装集成技术方面的研究

    通讯作者: 王小坤,男,正高级工程师,硕士生导师,硕士,主要从事红外焦平面探测器低温封装集成技术方面的研究。; 曾智江,男,高级工程师,硕士生导师,硕士,主要从事红外焦平面探测器低温封装集成技术方面的研究。
基金项目:  地球大数据科学工程 (XDA19010102); 国家重点研发计划(2016 YFB0500400)
  • 中图分类号: TK123

摘要: 为了满足低温光学系统低背景、低功耗和红外探测器制冷组件高环境适应性的要求,提出了探测器制冷组件杜瓦主体(窗口、窗口帽和引线盘) 200 K低温保持,与制冷机膨胀机或脉管散热面柔性绝热连接的设计思想。针对低温光学用杜瓦柔性外壳工程应用中的特点,文中以某低温光学用长波12.5 μm 2 000元红外探测器杜瓦组件以例,提出了波纹管作为绝热连接的柔性外壳,重点阐述杜瓦柔性波纹管隔热、力学和相关漏热的设计,并开展不同热负载条件下波纹管热特性验证,可实现最小温度梯度为37.22 K,绝热热阻为1142 K/W,误差在37%。为综合评价低温光学用柔性外壳结构杜瓦组件的性能,对某低温光学用长波12.5 μm 2 000元探测器柔性外壳杜瓦组件开展热真空和鉴定级的力学试验考核验证,试验结果表明实现了200 K低温窗口,探测器60 K工作,杜瓦漏热为544 mW,低温工况工作时相对于常温工况制冷机的功耗下降了53%,并通过了4 g的随机力学考核,验证了低温光学用杜瓦柔性波纹管外壳模型合理可行,对于后续低温光学用杜瓦柔性外壳结构工程应用提供了重要参考。

English Abstract

    • 为了更好地满足空间弱目标的红外探测需求,高灵敏度、低噪声是必然的发展趋势,而冷光学技术是实现这一目标的有效手段之一。光学系统工作在低温后,也会带来一系列的问题,主要包括:光机结构的低温形变,光学元件特性的变化,低温光校、测试难度增大,低温污染的控制,制冷机功耗散热等。其中,高热阻隔热技术、冷量传输技术、光机低温集成等技术是低温光学系统的关键技术。

      低温光学对于抑制红外背景噪声有着显著的作用。国内外报道集中于低温冷箱与杜瓦耦合中波纹管作为光学校正手段,钛合金和聚酰亚胺作为杜瓦与制冷机隔热手段[1],集成于窗口帽和柱壳之间的柔性波纹管用作低温光学用杜瓦外壳结构未见文献报道。常见的低温光学系统一般采用无杜瓦窗口设计与低温光学耦合安装,这样可以减少杜瓦窗口对于红外探测器的背景噪声,但是在整机安装时,无杜瓦窗口设计通常会引入杜瓦与低温光学安装时的污染、系统联试对探测器组件的分级评价、系统安全性和可维修性问题,因此杜瓦窗口、窗口帽作为冷光学系统仪器背景的一部分,随着工作温度的降低,仪器背景辐射在像面上的照度不断降低,当工作温度小于 220 K 时,温度变化对仪器背景辐射变化影响微弱[2]。鉴于防污染、低仪器背景的需求,杜瓦窗口帽温度控制在200 K是一个好的选择[3]。杜瓦主体(窗口、窗口帽和引 线盘)制冷是低温光学用探测器制冷组件与低温光学系统采用不共用真空腔设计,为降低窗口的背景辐射和窗口结构支撑窗口帽对探测器冷平台的辐射热,从而对杜瓦主体制冷。杜瓦主体制冷冷量来自低温光学的冷量,此类探测器 组件内在冷平台上仍安装了低温滤光片。低温滤光片的目的是对探测器响应的光谱范围进行限制,滤光片制冷的冷量是由制冷机的冷量通过杜瓦冷平台传输给滤光片。

      当探测器制冷杜瓦组件处于200 K左右时,带来如下问题:(1)传统的杜瓦与制冷机采用刚性连接,窗口帽的冷量传递到制冷机的脉管散热面或膨胀机散热面(如图1所示),在增加制冷机热负载的同时,制冷机的材料、设计和工艺面临严峻的技术挑战;(2)制冷机的脉管或膨胀机为发热源,制冷机工作时所产生的热量会传递给杜瓦窗口帽和窗口,从而增加仪器背景和辐射;(3)传统的杜瓦与制冷机采用刚性连接,制冷机和杜瓦都需要固定支撑,会带来过定位的问题。综上所述,杜瓦窗口帽与制冷机的柔性隔热尤其重要。文中提出了制冷组件杜瓦主体保持低温,与制冷机膨胀机或脉管散热面柔性绝热连接的设计思想。针对低温光学用杜瓦柔性外壳的特点,提出了波纹管作为绝热连接的柔性外壳,并对波纹管的设计思路、设计方法进行了研究,通过试验对设计方法的有效性进行了验证。

      图  1  杜瓦结构及辐照度示意图

      Figure 1.  Schematic diagram of Dewar structure and irradiance

    • 针对低温光学用杜瓦组件的应用场合,分析制冷机的脉管或膨胀机与低温光学用杜瓦组件的热链路,脉管或膨胀机与杜瓦窗口帽和窗口之间的热量交换仅为固体传导。需要热路径上增加热阻,以便让热流尽可能的减小或者限定在规定范围内,从而实现制冷机脉管或膨胀机与杜瓦窗口帽和窗口之间的热隔离要求,常用的低温绝热一般采用低热导率的绝热材料或特殊设计的低温绝热结构来实现[4]。在低温光学系统应用中,光机结构由于低温下材料膨胀系数差异导致结构发生变形,从而影响光校、光路对准、低温定标等。红外探测器制冷组件通常将主支撑面设置在脉管或膨胀机散热面上,杜瓦窗口帽接近窗口处多设置为辅助支撑面,其同时为探测器制冷组件的光校基准。由于低温下膨胀系数差异,常温光学基准会偏离原有的基准,卫星光机结构与杜瓦、制冷机的连接在低温下也会发生偏离;另一方面,卫星光机结构在进行相关的力学环境试验(尤其是随机振动)考核中,受输入量级激励后杜瓦窗口帽处输出量级会有所放大,火箭发射过程中也会遇到类似的情况,其低温光机结构会受到安装应力、低温应力的影响。

      柔性隔热外壳研究是解决上述问题的很好途径。文中以低温光学用长波12.5 μm 2 000 元红外探测器杜瓦组件以例,从杜瓦的模型看(图1所示),柔性外壳可安装在柱壳和杜瓦窗口帽之间(近柱壳端),也可以安装在窗口和引线盘之间(近窗口端),在杜瓦封装结构中,窗口帽相对于冷端探测器是一个杂散辐射源。如图2所示,对红外焦平面探测器在窗口帽300~200 K的不同波段下杂散光辐照度进行分析,以11.5~12.5 μm通道为例, 200 K下窗口帽的对探测器的杂散辐射照度为0.00066 W/m2,相较于300 K的0.00698 W/m2,其对探测器的杂散光强度下降了一个数量级[5]。基于降低杂散辐射照度的考虑,需要将窗口和窗口帽同时降温到200 K左右,因此将柔性外壳结构安装到杜瓦窗口帽和柱壳之间。

      图  2  窗口帽300 K和200 K的对探测器的杂散光辐照度

      Figure 2.  Detector irradiance from stray light from the window cap at 300 K and 200 K

      基于隔热、低温应力、防过定位以及冷光学的考虑,文中提出了安装在杜瓦窗口帽和柱壳之间柔性外壳结构。考虑到波纹管具备良好的柔韧性以及长传热路径的优点,同时兼容封装工艺可行性,选用不锈钢波纹管作为柔性外壳结构。波纹管为V型结构,其单层结构为薄壁零件以减少传递链路截面积,并增加传递链路,降低漏热,增加隔热效果。将柔性波纹管结构安装在低温窗口帽和柱壳之间,以减少低温应力和过定位安装带来的光学失准的影响。

    • 为实现相机红外载荷低温光学系统在轨低温工作温度,如图1所示,在杜瓦窗口帽上安装冷链并与热管连接,热管与辐冷板连接,以实现杜瓦主体200 K低温工作,分置式制冷机与杜瓦耦合,制冷机膨胀机或脉管与杜瓦柱壳法兰面螺栓安装固定,而根据国军标的要求,制冷机脉管散热面或膨胀机散热面的温度要求不低于218 K,同时考虑低温光学杜瓦力学可靠性等方面的要求[6],波纹管的设计指标如表1所示。

      表 1  设计指标

      Table 1.  Design requirements

      ItemsDesign requirements (Dewar heat
      load 1 W@55 K@195 K)
      Temperature difference between vessel and window cap≥18 K
      Thermal resistance of bellows (77 K)800 K/W

      Random vibration condition
      20-100 +3 dB/oct
      100-600 0.01946 g2/Hz
      600-2 000 -9 dB/oct

      隔热材料的导热系数不大于0.14 W/(m·K),能够阻止热流传递。但此类材料的气密焊接工艺可行性不高[7]。文中的杜瓦窗口帽、引线盘材料选用可伐合金,考虑工艺可焊性,选择不锈钢316L作为波纹管外壳的材料,波纹管采用焊接成型技术,V型波纹管每层壁厚0.1 mm,具体参数如表2所示,不锈钢波纹管和引线盘、柱壳之间通过圆周激光焊成型,波纹管模型如图3所示。

      表 2  波纹管设计参数

      Table 2.  Design parameters of bellows

      ItemsDesign parametersItemsDesign parameters
      Wall thickness/mm0.1InsideVacuum
      Material/L316OutsideAtmosphere
      Wave pitch/mm0.85Stroke/mm4
      Wave number26ShaftØ30
      Leak rate (He)/Torr·s−1<1E-10Setting directionVertical
      Size0.D.46×I.D.33ShapeV

      图  3  波纹管尺寸示意图

      Figure 3.  Schematic diagram of bellows size

      文中采用导热热阻来表征波纹管的隔热效果,由于波纹管为轴对称结构,通过波数、波距等参数获得热传输链路上有效距离增加,来实现隔离原理。可将波纹管执传导模型简化为轴对称的圆筒薄壁零件热传导,L为热传输的有效长度,其根据波数、波距等参数确定, Ac为等效截面积,可根据壁厚和直径确定,λ为材料的热导率,取其平均值。波纹管的导热热阻Rc可以通过公式(1)计算[8],通过对某长波2 000×12元杜瓦柔性波纹管的热阻计算,其热阻为1831 K/W(77 K)。

      $$ {R_c} = \frac{L}{{{A_c} \times \lambda \times \delta }} $$ (1)

      式中:L为波纹管两端冷量传递方向的长度;Ac为波纹管等效截面积;λ为材料的热导率;δ为波纹管接触面积修正系数,取值0.95。

    • 波纹管在压力、轴向力、横向力或弯矩作用下产生位移,其作用力及位移的比值为刚度KK值越大,柔性越差,波纹管安装过程中可能会产生失稳,而K值越小,柔性越好,其产生的位移补偿越好。波纹管的刚度一般有轴向刚度、旋转刚度和弯曲刚度,其计算的方法有能量法,EJMA标准计算法,经验公式法等[9]。波纹管在不同过程的刚度类型受工装影响较大,但其自身刚度特性主要取决于其几何尺寸,尤其是壁厚,对于内径Φ10~Φ100 mm的波纹管,壁厚与内径的比值一般控制在0.0006~0.05之间,对于文中的波纹管,壁厚与内径比值为0.003,轴向最大位移量为±2 mm,相对于整机要求,已有足够的柔性。杜瓦封装过程中,用专用工装控制波纹管将杜瓦引线盘与柱壳之间实现刚性互联,并将探测器中心引入到窗口帽上,杜瓦封装全过程中工装不拆除,与制冷机、底板安装时,将其基准引入到光机工装上,然后拆除封装用专用工装,以此实现探测器基准的传递。

      建立柔性外壳的杜瓦模型及尺寸如图4 所示,将波纹管及其它杜瓦零部件建模简化后导入有限元分析软件,模型中各部件的材料参数如表3所示[6]

      图  4  试验杜瓦力学有限元模型

      Figure 4.  Mechanics FEM model of test Dewar

      表 3  模型各部分材料及其特性

      Table 3.  Materials and properties of each part of the model

      NameMaterialDensity/kg·m−3Elastic modulus/GPaSpecific heat capacity/J·kg−1·K−1
      Cylindrical shell304 L8050200409
      Bellows316 L8050200409
      EnclosureKavar8360142352

      与波纹管相比,杜瓦引线盘及柱壳具有足够的刚度,在相机力学支撑中,杜瓦引线盘及柱壳作为主支撑面,因此在建立力学有限元分析模型中,将引线盘和柱壳作为固定边界,力学分析结果如表4所示,由于波纹管为薄壁零件,波纹管最先起振,根据仿真结果各阶次所对应振型可以看出 1~3阶振动为波纹管本身的振动,振动频率为450.5 Hz,至 4阶振动才是引线盘本身的振动,且频率较高,整机及相机整星力学试验的基频基本小于100 Hz,波纹管不会受到额外的影响[10]

      表 4  模态分析结果

      Table 4.  Result of modal analysis

      ModeFrequency/Hz
      1450.5
      2469.13
      3562.14
      41381.4
      51398.8
    • 制冷机的脉管或膨胀机为发热源,制冷机工作时,脉管或膨胀机的热量会传递到低温光学杜瓦组件的窗口帽和窗口,这样会引起窗口帽和窗口对冷屏、滤光片支架的辐射热增加,从而导致杜瓦漏热的增加。而杜瓦漏热的增加,制冷机需要进一步增大功耗以提高降温效果,保持探测器工作所需的温度,制冷机功耗增加又会引起脉管或膨胀机的热量增加,从而陷入功耗增加到漏热增加的死循环。故需要对柔性外壳结构的低温光学用杜瓦的漏热进行进一步的分析和设计。

      漏热由四部分组成:热传导漏热、辐射漏热、探测器焦耳漏热和对流漏热。将各部份等效为包含自身热参数温度和热容的单个节点。对流漏热由杜瓦的真空度决定的,杜瓦工作时其内部真空度一般也小于1×10−4 Pa,对流漏热非常小,可以忽略不计。根据实际传热路径,采用等效热网络法建立其热分析模型[11]。基于柔性波纹管的低温光学用杜瓦组件的热网络分析模型如图5 所示,仅讨论热传导漏热和辐射漏热两部分内容。

      图  5  热网络模型示意图

      Figure 5.  The figure of thermal network model

      (1)热传导漏热[12]

      热传导漏热包括杜瓦芯柱热传导漏热、引线热传导漏热。由于杜瓦芯柱和引线的截面都非常小,而且同为轴对称结构,可将其导热简化为一维稳态热传导模型,一维稳态热传导公式为:

      $$ {{Q} _c} = \kappa \frac{A}{\sigma }\Delta {T} $$ (2)

      式中:$ \kappa $为材料在$ \Delta {T} $温度范围内的平均热导率;A为热传导面积;$ \sigma $为热传导的长度;$ \Delta {T} $为材料两端的温度差。

      (2) 辐射漏热[12]

      辐射漏热是杜瓦寄生热负载的重要组成部分之一,由于该杜瓦结构比较特殊,芯柱为杜瓦冷头的主支撑体,和制冷机冷指间隙配合,柱壳与制冷机脉管法兰盘通过螺栓刚性连接,柱壳上端为波纹管,波纹管的另外一端为与杜瓦主体连接。芯柱、柱壳、冷头、冷屏、滤光片支架和窗口帽等可以简单地看成同轴的结构,且冷屏已经将冷平台的大部分遮住,为阻止视场外的红外杂散光而在光路中设置的低温冷阑,同时冷屏外表面镜面抛光并镀金,以降低表面发射率,因此辐射漏热主要包括:柱壳内壁对芯柱的辐射、窗口帽内壁对冷屏侧面的辐射、窗口和窗口帽内壁冷屏和滤光片支架上表面的辐射三部分。

      任意两个表面之间的辐射热流可以表示为:

      $$ {Q_{{\text{{\rm{ij}}}}}} = \dfrac{{{E_{b1}} - {E_{b2}}}}{{\dfrac{{1 - {\varepsilon _1}}}{{{\varepsilon _1}{A_1}}} + \dfrac{1}{{{A_1}{F_{12}}}} + \dfrac{{1 - {\varepsilon _2}}}{{{\varepsilon _2}{A_2}}}}} $$ (3)

      式中:Eb为与表面同温度的黑体的发射功率,而且满足Eb=χT4,其中χ为波耳兹曼常数5.67×10−8 W/(m2·K4);T为绝对温度;ε为发射系数;A为表面的面积;F12为表面A1~A2的视觉系数。

      综上所述,下面对杜瓦制冷机组件在不同工况下的杜瓦寄生热负载进行归纳如表5所示。

      表 5  杜瓦的寄生热负载

      Table 5.  Thermal loads of Dewar

      Cryocooler working conditionTemperature of detector/KSolid heat leakage/mWRadiant heat leakage/mWThermal loads of Dewar/mW
      Normal temperature condition
      (pulse tube @23 °C)
      6067310001673
      High temperature conditions
      (pulse 263 K, window cap 228 K)
      60456306762
      55471305776
      Low temperature conditions
      (pulse 228 K, window cap 193 K)
      60375169544
      55387170557
      50404171575
    • 图6所示,将波纹管胶接在测试杜瓦内的冷平台上,在波纹管的上下两端贴装二极管以测定温度梯度,并在波纹管的上端面贴装加热电阻,并通过合适的低漏热引线引出到测试杜瓦外端,在波纹管的外表面贴装高反射率的多层镀铝聚酯薄膜以降低测试杜瓦窗口帽对波纹管的辐射漏热。整个测试杜瓦内部维持一定的高真空,通过在波纹管上端面的加热电阻施加不同电流以模拟不同负载条件下的温度梯度,进而估算出波纹管的热阻,通过控制冷平台温度为(77±3) K 温度重复三次试验对比,并对热阻结果取平均值后统计如表6所示,结果表明,波纹管顶端加热功率在101 mW时,计算得到的热阻与实测热阻最大误差为37%,引起误差的最主要原因是波纹管内传输一定热流,在波纹管两端产生一定的温度梯度。其体热阻是通过热阻随温度变化的函数,在起始温度和终止温度范围积分后获得,而计算时采用恒定热阻,根据公式(1)可知,在波纹管参数一定的前提下,热阻与材料的热导率λ倒数相关,理论计算时根据 300 K温度范围内的平均热导率,结合温度范围简单差分获得,从而导致理论计算数值差别较大。测试装置本身的热阻主要来自多次装配的接触热阻和辐射热带来的热阻[13],由于试验时控制界面状态和多层包扎的质量,测试装置本身有热阻,但不是主因。

      图  6  波纹管漏热测定示意图

      Figure 6.  Schematic diagram of heat leakage measurement of bellows

      表 6  波纹管的热阻测定

      Table 6.  Determination of thermal resistance of bellows

      Q/WT1/KT2/KT/KThermal resistance/K·W−1Theoretical thermal resistance/K·W−1Deviation
      074.45153.579.05
      0.10177.6193115.41142.5741 83137%
    • 采用柔性波纹管外壳结构的杜瓦与制冷机耦合之后形成制冷探测器杜瓦组件,制冷探测器杜瓦组件在低温条件下,柔性波纹管的实际使用需要进一步验证。探测器组件热真空试验如图7所示。组件热量通过冷板、热管将热量带走。制冷机冷指热量通过热管散至组件旁辐射冷板上。在辐射冷板以及制冷机支架上布置补偿加热回路以及测温点,用于组件的控温[14]。另外真空罐内有加热笼,可调节外热流,用于组件温度的调节。

      图  7  制冷探测器杜瓦组件低温试验示意图

      Figure 7.  Schematic diagram of low temperature test of integrated detector Dewar coller assembly

      试验结果表明:制冷探测器杜瓦组件低温试验过程中,在高温工况(脉管263 K,窗口帽228 K)工作时,探测器控温为60 K,此时制冷机功耗初期为52.08 Wac,探测器上电后,后期稳定约为69.06 Wac,冷头的热负载施加了600 mW左右的焦耳热,制冷机相同工况下增加了16.98 Wac功耗,其波纹管冷端和热端的温度梯度范围为37.22~39.11 K。后续探测器控温在55 K时,此时制冷机功耗初期为61.6 Wac,探测器上电后,后期稳定约为89.1 Wac,冷头的热负载施加了600 mW左右的焦耳热,制冷机相同工况下增加了27.5 Wac功耗,其波纹管冷端和热端的温度梯度范围为39.59~40.93 K。

      在低温工况(脉管228 K,窗口帽193 K)工作时,探测器控温60 K时,此时制冷机功耗初期为46.84 Wac,探测器上电后,后期稳定约为60.77 Wac,冷头的热负载施加了600 mW左右的焦耳热,制冷机相同工况下增加了13.93 Wac功耗,其波纹管冷端和热端的温度梯度范围为37.64~46.17 K。对比常温工况时,杜瓦漏热估算1673 mW,在低温工况工作时,杜瓦漏热仅为544 mW,仅为常温工况杜瓦漏热的32%。低温工况下探测器上电的功耗为60.77 Wac,相对于高温工况下69.06 Wac@60 K有所减小,但减小量不大。同样,低温工况下探测器不上电的制冷机功耗46.84 Wac相对于高温工况下52.08 Wac@60 K均有所减小,但减小量不大,由此可判断制冷机不同工况(263 K和228 K)、窗口帽不同温度(228 K和193 K)下制冷机热负载变化不大;探测器控温在55 K时,此时制冷机功耗初期56.52 Wac,探测器上电后,后期稳定约为72.74 Wac,冷头的热负载施加了600 mW左右的焦耳热,制冷机相同工况下增加了16.22 Wac功耗,其波纹管冷端和热端的温度梯度范围为48.06~48.91 K,基本变化不大;后续探测器控温在50 K时,此时制冷机功耗初期65.72 Wac,探测器上电后,后期稳定约为94.94 Wac,冷头的热负载施加了600 mW左右的焦耳热,制冷机相同工况下增加了29.22 Wac功耗,其波纹管冷端和热端的温度梯度范围为46.63~48.28 K,基本变化不大。

      综上,通过对波纹管热端和冷端温度的监测,波纹管在制冷机不同工况下的温度梯度最小为37.22 K,随着窗口帽温度的降低,当达到热平衡状态时,波纹管的温度梯度逐渐增大,最大可为48.96 K。另外,根据表7热真空试验中实测的各温度点可以表征出杜瓦的温度场,以此作为输入条件代入低温光学用杜瓦组件的漏热的设计模型(图5),可以计算出不同工况下杜瓦的热负载。制冷机提供的冷量(即杜瓦冷端的总负载)用于抵消探测器焦耳热和杜瓦的热负载。对表7中所列探测器温度、杜瓦冷端的总负载和制冷机输入功耗等图形化汇总后形成如图8所示,当窗口帽为200 K和探测器工作为50 K时,探测器未上电时,制冷机的制冷能力为65.72 Wac@575 mW,当探测器上电后,探测器的焦耳热施加到杜瓦冷头上,并反馈到制冷机上,制冷机需要进一步增大功耗以提高降温效果,保持探测器工作所需的温度,制冷机功耗增加又会引起脉管或膨胀机的热量增加,与探测器未上电时比较,窗口帽、波纹管冷端、波纹管热端的温度基本无变化,可以认为制冷机的功耗的增加基本为探测器功耗增加引起的,低温光学用杜瓦组件的柔性波纹管的隔热性在工程中得到进一步验证。

      表 7  制冷探测器杜瓦组件低温试验数据

      Table 7.  Low temperature test data of integrated detector dewarcoller assembly

      Cryocooler working
      condition
      Temperature of
      detector/K
      Dewar leakage heat/mWDetector power
      consumption
      /mW
      Total load/mWTemperature of
      window cap/K
      Temperature
      of Hot end
      bellows/K
      Temperature of Cold end
      bellows/K
      Cooler power
      consumption/Wac
      Insulation effect
      of bellows/K
      Normal temperature condition
      (Pulse tube @296 K)
      6016730167329629629699
      High temperature conditions
      (pulse 263 K,
      window cap 228 K)
      607620762229.84267.71230.4952.0837.22
      607626001362225.5265.81226.769.0639.11
      557766001376223.21263.94224.3589.139.59
      557760776221.88263.4222.4761.640.93
      Low temperature conditions
      (pulse 228 K,
      window cap 193 K)
      605440544214.56253.16215.5246.8437.64
      605446001144194.08241.87195.760.7746.17
      555576001157193.27243.52194.6172.7448.91
      555570557192.83242.31194.2556.5248.06
      505750575192.43241.04194.4165.7246.63
      505756001175192.1241.48193.294.9448.28

      图  8  制冷机在不同工况下的制冷能力

      Figure 8.  Refrigeration Capacity of Cryocooler under Different Operating Conditions

    • 为了验证柔性波纹管外壳结构的可靠性,需要对低温光学用制冷探测器杜瓦组件进行相应量级的力学考核,力学量级为20~100 Hz (+3 dB/oct),100~600 Hz(0.01946 g2/Hz),600~2 000 Hz (−9 dB/oct)。并对力学前后的制冷探测器杜瓦组件的热力特性进行验证[15],试验流程如图9所示。试验前后制冷机功耗、波纹管两端温度梯度等数据如表8所示,试验发现制冷机功耗、波纹管两端温度梯度等测试结果均变化不大,且符合设计指标要求和项目要求, 因而可以判定所设计的波纹管及低温光学用柔性外壳杜瓦通过力学振动试验[16]

      图  9  大组件正弦、随机振动试验流程图

      Figure 9.  Flow chart of sinusoidal and random vibration test of integrated detector dewarcoller assembly

      表 8  力学前后数据对比

      Table 8.  Comparison of data before and after mechanical test

      Refrigerator working conditionTemperature of detector/KBefore mechanical testAfter mechanical test
      Cooler power consumption/WacInsulation effect of bellows/KCooler power consumption/WacInsulation effect of bellows/K
      High temperature conditions (pulse 263 K, window cap 228 K)6052.0837.2252.1137.33
      6069.0639.1169.6139.42
      5589.139.5988.9239.83
      5561.640.9361.4841.09
      Low temperature conditions (pulse 228 K, window cap 193 K)6046.8437.6447.0737.87
      6060.7746.1760.5946.49
      5572.7448.9172.6649.15
      5556.5248.0656.8048.01
      5065.7246.6365.5947.10
      5094.9448.2894.6648.57
    • 文中结合低温光学用杜瓦隔热、低温应力和防过定位以及降低杂散辐射照度的要求,提出了制冷组件杜瓦主体(窗口、窗口帽和引线盘) 200 K低温保持,与制冷机膨胀机散热面柔性波纹管绝热连接的设计思想。对某长波2 000×12元低温光学用杜瓦的波纹管结构进行了设计和软件仿真,对波纹管柔性外壳结构的设计原理、设计方法进行了研究,通过对波纹管实际漏热测定以及低温光学杜瓦的低温试验、力学振动试验 ,实现了200 K低温窗口,探测器60 K工作,杜瓦漏热为544 mW,波纹管冷端和热端温度梯度为37 K,热阻为1142 K/W。验证了柔性波纹管杜瓦外壳结构设计结果的正确性,为后续柔性波纹管外壳在低温光学用杜瓦组件的工程化应用提供了重要参考。

      致谢:感谢徐琳、蒋梦蝶、孙闻、张磊、张晶琳、赵振力、周祝梅、王煜宇等在波纹管热阻测定中的工作,感谢左志强、姜佳维、张勇、唐玉俊、张渊哲等在探测器制冷组件热真空试验中的工作,感谢林春研究员、陈凡胜研究员对于探测器制冷组件相关工作的指导,感谢李雪研究员对文中提出的宝贵意见。

参考文献 (16)

目录

    /

    返回文章
    返回