留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气海动态跨介质海面蓝绿激光下行传输链路上的散射特性(特邀)

张佳琳 王明军 刘永志 王宇航 王主玉 成群

张佳琳, 王明军, 刘永志, 王宇航, 王主玉, 成群. 气海动态跨介质海面蓝绿激光下行传输链路上的散射特性(特邀)[J]. 红外与激光工程, 2022, 51(6): 20220274. doi: 10.3788/IRLA20220274
引用本文: 张佳琳, 王明军, 刘永志, 王宇航, 王主玉, 成群. 气海动态跨介质海面蓝绿激光下行传输链路上的散射特性(特邀)[J]. 红外与激光工程, 2022, 51(6): 20220274. doi: 10.3788/IRLA20220274
Zhang Jialin, Wang Mingjun, Liu Yongzhi, Wang Yuhang, Wang Zhuyu, Cheng Qun. Scattering characteristics over a dynamic trans-media sea surface blue-green laser downlink in the air-sea (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220274. doi: 10.3788/IRLA20220274
Citation: Zhang Jialin, Wang Mingjun, Liu Yongzhi, Wang Yuhang, Wang Zhuyu, Cheng Qun. Scattering characteristics over a dynamic trans-media sea surface blue-green laser downlink in the air-sea (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220274. doi: 10.3788/IRLA20220274

气海动态跨介质海面蓝绿激光下行传输链路上的散射特性(特邀)

doi: 10.3788/IRLA20220274
基金项目: 国家自然科学基金重大研究计划培育项目 (92052106);国家自然科学基金(61771385);陕西省杰出青年科学基金(2020 JC-42)
详细信息
    作者简介:

    张佳琳,男,博士生,主要从事激光在复杂介质中传输特性方面的研究

  • 中图分类号: O439

Scattering characteristics over a dynamic trans-media sea surface blue-green laser downlink in the air-sea (Invited)

Funds: Training Program of the Major Research Plan of the National Natural Science Foundation of China (92052106); National Natural Science Foundation of China (61771385); Science Foundation for Distinguished Young Scholars of Shaanxi Province (2020JC-42)
  • 摘要: 实现空天地海立体化光信息传输的技术瓶颈就是需要解决气海-海气跨介质动态海面条件下激光上下行传输问题。文中主要利用海水环境下蓝绿激光作为载波,提出了蓝绿激光通过气海动态跨介质海面的下行传输数值研究方法。详细讨论了近海面大气海雾、海面风速和海水中的粒子分布对蓝绿激光下行传输散射特性的影响。数值计算了不同风速下蓝绿激光透过率随透射角的变化以及不同近海面大气海雾能见度、不同叶绿素浓度、不同气泡浓度等条件下蓝绿激光下行传输的透过率。结果表明:蓝绿激光在海水中传输时,气泡对激光衰减的影响随着风速的增加而增加,随着传输深度的增加而减小;随着近海面大气中海雾能见度的增大,蓝绿激光通过大气海面和海水的透过率逐渐增大,随着传输距离的增加,叶绿素的影响逐渐增大,蓝绿激光的透过率减小。文中工作对气海-海气蓝绿激光跨介质上下行无线光传输和通信提供理论和技术支撑。
  • 图  1  激光通过海面-气泡层的传输示意图

    Figure  1.  Schematic diagram of laser transmission through the sea surface-bubble layer

    图  2  非均匀海水的消光系数随海水深度的变化

    Figure  2.  Variation of extinction coefficient of non-uniform seawater with depth of seawater

    图  3  不同风速下蓝绿激光跨介质传输透过率随透射角的变化

    Figure  3.  Variation of transmissivity of blue-green laser transmission across media with transmission angle at different wind speeds

    图  4  不同透射角下蓝绿激光透过率随海雾能见度的变化

    Figure  4.  Variation of blue-green laser transmittance with sea mist visibility at different transmittance angles

    图  5  不同风速下蓝绿激光透过率随海水中传输距离的变化

    Figure  5.  Variation of blue-green laser transmittance with transmission distance in seawater at different wind speeds

    图  6  跨介质链路中不同元素对蓝绿激光衰减的影响占比

    Figure  6.  Percentage of influence of different elements on blue-green laser attenuation in the cross-media link

    图  7  大风速时气泡与海水水体的影响占比

    Figure  7.  Percentage effect of bubbles and marine water at high wind speed

  • [1] Zhao X W, Zhang Y, Qin P, et al. Key technologies and development trends for a space-air-ground integrated wireless optical communication network [J]. Acta Electronica Sinica, 2022, 50(1): 1-17. (in Chinese)
    [2] Karp S. Optical communications between underwater and above surface (satellite) terminals [J]. IEEE Transactions on Communications, 1976, 24(1): 66-81. doi:  10.1109/TCOM.1976.1093200
    [3] Guan B, Yu H Y, Song W, et al. Wave structure function and long-exposure MTF for Gaussian-beam waves propagating in anisotropic maritime atmospheric turbulence [J]. Applied Sciences, 2020, 10(16): 5484. doi:  10.3390/app10165484
    [4] Zhao L, Xu Y G, Yang S K. Statistical properties of partially coherent vector beams propagating through anisotropic atmospheric turbulence [J]. Optik, 2021, 227: 166115. doi:  10.1016/j.ijleo.2020.166115
    [5] Baykal Y, Luo Y J, Ji X L. Scintillations of higher order laser beams in anisotropic atmospheric turbulence [J]. Applied Optics, 2016, 55(33): 9422. doi:  10.1364/AO.55.009422
    [6] Chen Y L, Hu X Y, Wang D Q, et al. Researches on underwater transmission characteristics of blue-green laser[C]//Oceans 2014 - Taipei, 2014: 1–5.
    [7] Li X Z, Miao X C, Qi X, et al. Research on the propagation characteristics of blue-green laser through sea surface with foams [J]. Optik, 2018, 170: 265-271. doi:  10.1016/j.ijleo.2018.03.060
    [8] Zhan E Q, Wang H Y. Research on spatial spreading effect of blue-green laser propagation through seawater and atmosphere[C]//2009 International Conference on E-Business and Information System Security, 2009: 1–4.
    [9] Wang M J, Zhang J L, Wang J. Propagation characteristics of non-uniformly sinc-correlated blue-green laser beam through oceanic turbulence [J]. Infrared and Laser Engineering, 2020, 49(6): 20190370. (in Chinese) doi:  10.3788/irla.23_2019-0370
    [10] Dong L W, Li N, Xie X H, et al. A fast analysis method for blue-green laser transmission through the sea surface [J]. Sensors, 2020, 20(6): 1758. doi:  10.3390/s20061758
    [11] Wang M J, Wang Y H, Chen D, et al. Transmission characteristics of blue-green laser through two-dimensional dynamic sea surface-bubble layer [J]. Acta Optica Sinica, 2022, 42(2): 0214001. (in Chinese)
    [12] Duntley S Q. Light in the sea [J]. Journal of Optical Society of America, 1963, 53(2): 214-233. doi:  10.1364/JOSA.53.000214
    [13] Chen M F, Fung A K. A numerical study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering models [J]. Radio Science, 1988, 23(2): 163-170. doi:  10.1029/RS023i002p00163
    [14] Wang M, Liu W T, Wang J H. Signal energy transfer analysis of blue-green laser upstream transmission channel [J]. Journal of East China Institute of Shipbuilding Industry (Natural Science Edition), 2003(4): 38-41. (in Chinese)
    [15] Li Y L, Mao Z Y, Liu X G. Characteristic analysis of air-underwater blue-green laser communication channel [J]. Ship Electronic Engineering, 2021, 41(9): 69-73. (in Chinese)
    [16] Li S L, Mao Z Y, Liu C H, et al. Air-ground downlink performance analysis of blue-green laser communication [J]. Optical Communication Technology, 2019, 43(11): 33-36. (in Chinese)
    [17] Qi X, Han X E. Study of laser scattering characteristics of rough sea surface with foams [J]. Acta Optica Sinica, 2015, 35(8): 0829003. (in Chinese) doi:  10.3788/AOS201535.0829003
    [18] Li C, Yuan R M, GAO H, et al. Characteristics of blue-green laser downlink cross-media transmission under different weather conditions [J]. Acta Photonica Sinica, 2021, 50(12): 1201003. (in Chinese)
    [19] Zhao Z W. Radio wave propagation characteristics and remote sensing research of hydrometeors[D]. Xi'an: Xidian University, 2001. (in Chinese)
    [20] Ulaby F T, Moore R K. Microwave Remote Sensing Volume II Radar Remote Sensing and Surface Scattering and Emission Theory[M]. Norwood Massachusetts: Artech House, 1987.
    [21] Monahan E C, Lu M. Acoustically relevant bubble assemblages and their dependence on meteorological parameters [J]. IEEE Journal of Oceanic Engineering, 1990, 15(4): 340-349. doi:  10.1109/48.103530
    [22] Czerski H, Twardowski M, Zhang X, et al. Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods [J]. Journal of Geophysical Research: Oceans, 2011, 116(C7): C00H11.
    [23] Johnson B D, Cooke R C. Bubble populations and spectra in coastal waters: A photographic approach [J]. Journal of Geophysical Research, 1979, 84(C7): 3761-3766. doi:  10.1029/JC084iC07p03761
    [24] Thorpe S A. On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air-sea gas transfer [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1982, 304(1483): 155-210.
    [25] Bricaud A, Morel A, Babin M, et al. Variations of light absorption by suspended particles with chlorophyllaconcentration in oceanic (case 1) waters: Analysis and implications for bio-optical models [J]. Journal of Geophysical Research: Oceans, 1998, 103(C13): 31033-31044. doi:  10.1029/98JC02712
    [26] Gordon H R, Morel A Y. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imaginary: A Review[M]. New York: Springer, 1983.
    [27] Lewis M R, Cullen J J, Platt T. Phytoplankton and thermal structure in the upper ocean: Consequences of nonuniformity in chlorophyll profile [J]. Journal of Geophysical Research, 1983, 88(C4): 2565. doi:  10.1029/JC088iC04p02565
  • [1] 田文涛, 刘炜程, 孙旭辉, 郑宏宇, 王志文.  乙醇辅助激光烧蚀切割硅晶圆工艺 . 红外与激光工程, 2022, 51(4): 20210333-1-20210333-8. doi: 10.3788/IRLA20210333
    [2] 唐勐, 张宇.  激光探测尾流微气泡的偏振特性研究 . 红外与激光工程, 2020, 49(1): 0105006-0105006(6). doi: 10.3788/IRLA202049.0105006
    [3] 郭忠义, 汪信洋, 李德奎, 王鹏飞, 张宁, 胡天伟, 张曼, 高隽.  偏振信息传输理论及应用进展(特约) . 红外与激光工程, 2020, 49(6): 20201013-1-20201013-19. doi: 10.3788/IRLA20201013
    [4] 解格飒, 王红军, 王大森, 田爱玲, 刘丙才, 朱学亮, 刘卫国.  超光滑表面缺陷的分类检测研究 . 红外与激光工程, 2019, 48(11): 1113003-1113003(7). doi: 10.3788/IRLA201948.1113003
    [5] 张学海, 戴聪明, 张鑫, 魏合理, 朱希娟, 马静.  相对湿度和粒子形态对海盐气溶胶粒子散射特性的影响 . 红外与激光工程, 2019, 48(8): 809002-0809002(8). doi: 10.3788/IRLA201948.0809002
    [6] 黄聪, 游兴海, 张彬.  光学元件表面洁净度对其表面散射特性的影响 . 红外与激光工程, 2019, 48(1): 120002-0120002(7). doi: 10.3788/IRLA201948.0120002
    [7] 张天一, 侯永辉, 徐腾, 姜海娇, 新其其格, 朱永田.  LAMOST高分辨率光谱仪杂散光分析 . 红外与激光工程, 2019, 48(1): 117003-0117003(8). doi: 10.3788/IRLA201948.0117003
    [8] 田晶, 白光富, 江阳.  舰船气泡尾流散射光斯托克斯特征研究 . 红外与激光工程, 2018, 47(2): 206003-0206003(5). doi: 10.3788/IRLA201847.0206003
    [9] 王雪敏, 申晋, 徐敏, 黄钰, 高明亮, 刘伟, 王雅静.  多角度动态光散射角度误差对权重估计的影响 . 红外与激光工程, 2018, 47(10): 1017004-1017004(7). doi: 10.3788/IRLA201847.1017004
    [10] 樊长坤, 李琦, 赵永蓬, 陈德应.  不同粗糙度抛物面的2.52 THz后向散射测量 . 红外与激光工程, 2017, 46(11): 1125005-1125005(6). doi: 10.3788/IRLA201746.1125005
    [11] 张学海, 戴聪明, 武鹏飞, 崔生成, 黄宏华, 刘铮, 毛宏霞, 苗锡奎, 魏合理.  折射率和粒子尺度对大气气溶胶光散射特性的影响 . 红外与激光工程, 2017, 46(12): 1211001-1211001(7). doi: 10.3788/IRLA201746.1211001
    [12] 赵新亮, 王海霞, 李同海, 崔莉.  部分空间相干光经准均匀介质的散射 . 红外与激光工程, 2017, 46(8): 818003-0818003(6). doi: 10.3788/IRLA201746.0818003
    [13] 许雄, 陶强强, 沈飞, 郭忠义.  基于偏振信息恢复的光通信 . 红外与激光工程, 2016, 45(9): 922002-0922002(8). doi: 10.3788/IRLA201645.0922002
    [14] 石振华, 林冠宇, 王淑荣, 于磊, 曹佃生.  基于激光散射理论的微小颗粒测量的数值分析 . 红外与激光工程, 2015, 44(7): 2189-2194.
    [15] 孟祥翔, 刘伟奇, 魏忠伦, 康玉思, 张大亮.  激光投影显示中新型散射体的散斑抑制 . 红外与激光工程, 2015, 44(2): 503-507.
    [16] 孙腾飞, 张骏, 吕海兵, 袁晓东, 曹增辉, 郑田甜.  光学镜面污染对激光传输特性的影响 . 红外与激光工程, 2014, 43(5): 1444-1448.
    [17] 王新涛, 屈惠明, 曲红星, 龚靖棠, 王琳.  各向异性粗糙海面对掠入射激光的散射特性研究 . 红外与激光工程, 2013, 42(11): 2935-2939.
    [18] 秦刚, 杨郁, 张建生.  船舰远程尾流散射光偏振特性的蒙特卡洛模拟 . 红外与激光工程, 2013, 42(7): 1730-1736.
    [19] 李浩, 陈晓颖, 单陈华, 唐丽萍.  雾和气溶胶的光学特性对前向散射和总散射能见度仪性能的影响 . 红外与激光工程, 2013, 42(6): 1568-1574.
    [20] 梁善勇, 张伟, 王江安, 吴荣华, 马治国.  舰船尾流共轴激光雷达近场抑制比的计算方法 . 红外与激光工程, 2012, 41(8): 2063-2067.
  • 加载中
图(7)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  25
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 录用日期:  2022-06-06
  • 修回日期:  2022-05-10
  • 刊出日期:  2022-07-05

气海动态跨介质海面蓝绿激光下行传输链路上的散射特性(特邀)

doi: 10.3788/IRLA20220274
    作者简介:

    张佳琳,男,博士生,主要从事激光在复杂介质中传输特性方面的研究

基金项目:  国家自然科学基金重大研究计划培育项目 (92052106);国家自然科学基金(61771385);陕西省杰出青年科学基金(2020 JC-42)
  • 中图分类号: O439

摘要: 实现空天地海立体化光信息传输的技术瓶颈就是需要解决气海-海气跨介质动态海面条件下激光上下行传输问题。文中主要利用海水环境下蓝绿激光作为载波,提出了蓝绿激光通过气海动态跨介质海面的下行传输数值研究方法。详细讨论了近海面大气海雾、海面风速和海水中的粒子分布对蓝绿激光下行传输散射特性的影响。数值计算了不同风速下蓝绿激光透过率随透射角的变化以及不同近海面大气海雾能见度、不同叶绿素浓度、不同气泡浓度等条件下蓝绿激光下行传输的透过率。结果表明:蓝绿激光在海水中传输时,气泡对激光衰减的影响随着风速的增加而增加,随着传输深度的增加而减小;随着近海面大气中海雾能见度的增大,蓝绿激光通过大气海面和海水的透过率逐渐增大,随着传输距离的增加,叶绿素的影响逐渐增大,蓝绿激光的透过率减小。文中工作对气海-海气蓝绿激光跨介质上下行无线光传输和通信提供理论和技术支撑。

English Abstract

    • 构建空天地海立体化光信息传输网络是第六代通信系统(the Sixth Generation, 6 G)的重要目标[1]。而实现空天地海立体化光信息传输首先需要解决的难题就是气海-海气跨介质动态海面条件下激光上下行传输问题。气海-海气之间的跨介质激光传输路径复杂,主要由近海面大气、动态海面和海水组成[2]。目前,国内外已有大量关于蓝绿激光在不同信道中传输特性研究的相关参考文献[311],但这些研究大部分都仅仅考虑蓝绿激光在单一信道下或单一参数影响下的传输,而关于蓝绿激光通过气海动态海面和海水信道的跨介质散射特性研究尚未见报道。因此,研究气海跨介质动态海面条件下激光散射问题对构建空天地海立体化全光信息网具有重要意义。

      1963年,Duntley等人[12]通过研究表明470~540 nm波段之间的蓝绿激光在海水信道中传输时衰减系数较小,与大气湍流类似,蓝绿激光波段为激光在海水信道中传输的“透光窗口”。自此人们在进行水下激光传输理论与实验研究时,主要以蓝绿激光作为载波。早在1979年,国外学者Fung等人[13]在构建地海成像模型时就应用粗糙面散射理论对气海跨介质的海面光散射进行了探讨。王敏等人[14]讨论了大气、海水和海气界面中蓝绿激光上行传输的信号能量传递。李祥震等人[15]对复杂海况下激光通过气-海信道的传输信道进行了研究。李松朗等人[16]对蓝绿激光空地下行链路通信性能进行分析。李寅龙等人[15]对蓝绿激光通过空中-水下信道的光斑变化进行了研究。元晓等人[17]利用矢量辐射传输理论、Mie理论以及粗糙面散射理论建立了泡沫-海面模型,并对蓝绿激光通过泡沫海面的散射特性进行了分析讨论。李聪等人[18]采用Monte Carlo方法主要对不同天气条件(晴天、层云和卷云)下蓝绿激光跨介质下行传输特性进行了研究。王明军等人[11]对蓝绿激光通过海面-气泡层的透过特性进行了研究,但未考虑近海面海雾和海水中叶绿素的影响。

      文中在考虑不同近海面大气海雾能见度、不同叶绿素浓度、不同气泡浓度等真实海水条件情况下建立了蓝绿激光通过气海动态跨介质海面下行传输模型。以波长为532 nm的蓝绿激光为入射波,数值计算了蓝绿激光通过气海动态跨介质海面下行传输激光透过率。讨论了近海面海雾能见度、气泡和叶绿素浓度对蓝绿激光散射特性的影响。

    • 蓝绿激光进行气海跨介质传输时,均涉及到了近海面大气环境特性的研究。由于海水和近海面大气之间的能量交换,海面上方常常存在一层海雾。海雾中的粒子对蓝绿激光具有吸收和散射作用,进而影响蓝绿激光的传输和探测能力。因此,探讨海雾对蓝绿激光的影响对建立蓝绿激光跨介质传输模型具有重要的意义。

      文中采用Gamma分布模型[19]

      $$ {n_{air}}\left( r \right) = a{r^2}\exp \left( { - br} \right) $$ (1)
      $$ a = \frac{{9.781}}{{{V^6}{W^5}}}{10^{15}},b = \frac{{1.304}}{{VW}}{10^4} $$ (2)

      式中:${n_{air}}\left( r \right)$表示单位体积粒子数;$r$表示雾滴半径;$W$为空气中含水量;$V$为能见度。

      $$ W = {\left( {18.35V} \right)^{ - 1.43}} = 0.015\;6{V^{ - 1.43}} $$ (3)

      此时海雾的消光系数为:

      $$ {j_{air}} = \int_{{r_{\min }}}^{{r_{\max }}} {{Q_{j,air}}\pi {r^2}{n_{air}}\left( r \right){\rm{d}}r} $$ (4)

      式中:${Q_{j,air}}$位海雾的衰减效率因子。

    • 图1为激光通过海面-气泡层的传输示意图。其中,xyz平面为气海界面,O点为入射点,${k_i}$${k_t}$为入射和透射波矢,${\theta _i}$${\theta _s}$${\theta _t}$为入射角、散射角和透射角,${\varphi _i}$${\varphi _s}$${\varphi _t}$为入射、散射和透射方位角,$h$为距海面距离。

      图  1  激光通过海面-气泡层的传输示意图

      Figure 1.  Schematic diagram of laser transmission through the sea surface-bubble layer

      在蓝绿激光进行跨介质传输,当入射波长远小于海面的平均曲率半径时,海面对于蓝绿激光来说可认为是非常粗糙的。此时可利用Kirchhoff近似理论求解粗糙海面的透射系数为[20]

      $$ \begin{gathered} \sigma _{pq}^t = \frac{{\left( {{\eta _1}/{\eta _2}} \right){{\left( {{k_2}\bar q\left| {{D_{pq}}} \right|} \right)}^2}}}{{2\bar q_z^4{\delta ^2}\left| {\rho ''\left( 0 \right)} \right|}} \exp \left[ { - \frac{{\bar q_x^2 + \bar q_y^2}}{{2\bar q_z^2{\delta ^2}\left| {\rho ''\left( 0 \right)} \right|}}} \right] \\ \end{gathered} $$ (5)

      式中:${\eta _1}$${\eta _2}$为介质1和介质2中的本征阻抗;${k_2}$为介质2中的波数;$\delta $为粗糙海面的高度起伏均方根;$\rho \left( \cdot \right)$为归一化相关函数;$\rho ''\left( \cdot \right)$$\rho \left( \cdot \right)$的二阶导数;${D_{pq}}$为系数与极化有关;$\bar q$${\bar q_x}$${\bar q_y}$${\bar q_z}$分别为相位因子及其在$x$方向、$y$方向和$z$方向上的分量。

    • 上层海洋中往往存在着大量的海洋气泡。当风速超过7 m/s时,大气泡会上升至海面而后破碎,小气泡则会在上层海洋继续存在,形成水平的垂直分布的均匀气泡层[21]

      文中采用Hall-Nobarini气泡粒径分布模型[22],假设气泡层深度为$z$,气泡浓度与深度的关系为:

      $$ N\left( z \right) = {N_0}\exp \left( { - z/{z_0}} \right) $$ (6)

      式中:${N_0}$${z_0}$分别为深度为0 m时的气泡浓度和衰减深度,均可用海面上10 m处风速的函数表示[23-24]。此时,气泡层的消光系数为:

      $$ {j_{bub}} = \int_{{r_{\min }}}^{{r_{\max }}} {{Q_{j,bub}}\pi {r^2}{n_{bub}}\left( {r,z} \right){\rm{d}}r} $$ (7)

      式中:${Q_{j,bub}}$为气泡的衰减效率因子。

      考虑到气泡层中由洁净气泡和有薄膜覆盖气泡混合而成,假设洁净气泡在气泡群的占比为$f$,则洁净气泡与有薄膜覆盖气泡的浓度分别为$f \cdot {n_{bub}}\left( {r,z} \right)$$\left( {1 - f} \right) \cdot {n_{bub}}\left( {r,z} \right)$,则公式(7)可以修正为:

      $$ \begin{split} {j_{bub}} =& \int_{{r_{\min }}}^{{r_{\max }}} {[ {f \cdot } {Q_{{{clean\_bub}}}}\left( r \right)} + {(1 - f) \cdot {Q_{{{dirty\_bub}}}}\left( r \right)} ]\cdot \\ & \pi {r^2}{n_{bub}}\left( {r,z} \right){\rm{d}}r \end{split} $$ (8)

      式中:${Q_{{{clean\_bub}}}}$${Q_{{{dirty\_bub}}}}$为无量纲的单个洁净气泡和有薄膜覆盖气泡的衰减效率因子;$ {n_{bub}}\left( {r,z} \right) = {\rho _{bub}}\left( {r,z} \right) \cdot N\left( z \right) $$ {\rho _{bub}}\left( {r,z} \right) $为气泡粒子粒径分布;$N\left( z \right)$为气泡浓度。

    • 蓝绿激光在海水中传输时,海水中的叶绿素对蓝绿激光的吸收和散射作用不可忽视,其吸收和散射系数为[25-26]

      $$ {a_{chl}}\left( {\lambda ,z} \right) = 0.06a\left( \lambda \right)C{\left( z \right)^{0.65}} $$ (9)
      $$ {b_{sp}}\left( {\lambda ,z} \right) = \frac{{550}}{\lambda } \times 0.3C{\left( z \right)^{0.62}} $$ (10)

      式中:$ a\left( \lambda \right) = {A_{chl}}\left( \lambda \right)/{A_{chl}}\left( {440} \right) $为吸收率;$ {A_{chl}}\left( {440} \right) $为440 nm时单位浓度下叶绿素的吸收系数;$ C\left( z \right) $为叶绿素浓度,单位为${\text{mg}} \cdot {{\text{m}}^{{{ - }}3}}$。海水中的叶绿素浓度满足垂直分布,Lewis给出了海水中叶绿素浓度随深度变化的模型为[27]

      $$ \begin{gathered} C\left( z \right) = {c_0} + \frac{{{c_{\max }}}}{{\sigma \sqrt {2\pi } }} \exp \left[ { - \frac{1}{2}\left( {\frac{{z - {z_{\max }}}}{\sigma }} \right)} \right] \end{gathered} $$ (11)

      式中:${c_0}$为叶绿素背景浓度;${c_{\max }}$为最大浓度,$\sigma $为浓度变化方差;$z$为深度;${z_{\max }}$对应的是叶绿素浓度取最大值时的深度。

      图2为非均匀海水的消光系数随海水深度的变化,考虑了叶绿素的影响,假定风速为20 m/s,叶绿素浓度为0.05 mg/m3,气泡层深度为8 m。由图2可知,当风速足够大时,上层海洋中气泡层的影响不容忽略。

      图  2  非均匀海水的消光系数随海水深度的变化

      Figure 2.  Variation of extinction coefficient of non-uniform seawater with depth of seawater

      综上,蓝绿激光由近海面大气到海洋的整体透射功率为:

      $$ {P_r} = {P_t}\sigma _{pq}^tT $$ (12)

      其中,

      $$ \begin{split} T = \frac{I}{{{I_0}}} = \exp \left[ { - \left( {\frac{{\displaystyle\int_0^z {{j_{bub}}{\rm{d}}z} + {\tau _{water}} \cdot {z_{water}}}}{{\cos {\theta _t}}} + {\tau _{air}} \cdot {z_{air}}} \right)} \right] \end{split} $$ (13)

      此时蓝绿激光总的下行透过率为:

      $$ \begin{gathered} \sigma _t^{total} = 10\lg \left( {\frac{{{p_r}}}{{{p_t}}}} \right) = 10\lg \left( {\sigma _{pq}^t} \right) + 10\lg \cdot \hfill \\ \exp \left[ { - \left( {\frac{{\displaystyle\int_0^z {{j_{bub}}{\rm{d}}z} + {\tau _{water}} \cdot {z_{water}}}}{{\cos {\theta _t}}} + {\tau _{air}} \cdot {z_{air}}} \right)} \right] \hfill \\ \end{gathered} $$ (14)

      式中:${P_t}$为发射功率;${P_r}$为接收功率;$I$为入射光强;${I_0}$为出射光强;${j_{bub}}$为气泡层的消光系数;${\tau _{water}}$${\tau _{air}}$分别为海水水体(这里主要考虑叶绿素的影响)、大气中海雾分子的消光系数;${z_{water}}$${z_{air}}$分别为蓝绿激光在海水、大气中的传输距离。

    • 图3为不同风速条件下蓝绿激光跨介质传输透过率随透射角的变化。参数选取为:蓝绿激光波长$\lambda {\text{ = }}532\; {\rm{nm}}$,海水折射率$n = 1.3$,蓝绿激光入射角${\theta _i} = {30^ \circ }$,洁净气泡与覆盖薄膜气泡浓度之比为1∶1,入射方位角${\varphi _i} = {0^ \circ }$,透射方位角${\varphi _t} = {0^ \circ }$,蓝绿激光入射方向和接收方向处于同一平面,即风向$\varphi = {0^ \circ }$。如图3所示,当近海面风速增大时,气泡层对蓝绿激光的散射作用也会增大。蓝绿激光在海水中传输时,气泡对蓝绿激光散射的影响随着风速的增加而增加,随着传输深度的增加而减小。

      图  3  不同风速下蓝绿激光跨介质传输透过率随透射角的变化

      Figure 3.  Variation of transmissivity of blue-green laser transmission across media with transmission angle at different wind speeds

      假设动态海面之上存在海雾,且海水为纯海水,入射角${\theta _i} = {30^ \circ }$,蓝绿激光由海面上方10 m处发射,接收端位于海面下方10 m处。图4为当透射角不同时,蓝绿激光透过率随海雾能见度的变化。由图4可知,随着大气中海雾能见度的增大,海雾粒子对蓝绿激光的散射减小,蓝绿激光通过大气海面和海水的透过率逐渐增大。由公式(1)~(3)可知,随着海面海雾能见度的增大,单位体积内海雾粒子减少,即海雾粒子浓度逐渐减小,海雾粒子对蓝绿激光的衰减逐渐减小。

      图  4  不同透射角下蓝绿激光透过率随海雾能见度的变化

      Figure 4.  Variation of blue-green laser transmittance with sea mist visibility at different transmittance angles

      图5所示为不同风速情况下,蓝绿激光透过率随海水中传输距离的变化。由图5可知,随着传输距离的增加,蓝绿激光的透过率减小;随着风速的增加,海面上方海雾的能见度增加,以至于在稍大风速下,蓝绿激光的透过率要大于稍小风速,这是因为海雾粒子浓度减小。

      图  5  不同风速下蓝绿激光透过率随海水中传输距离的变化

      Figure 5.  Variation of blue-green laser transmittance with transmission distance in seawater at different wind speeds

      图6所示为在综合考虑海水中叶绿素影响、海面风速影响的上层海洋气泡、风速与海雾之间的相互作用,计算了在不同传输距离下各个影响因素对蓝绿激光透过率的影响程度。纵坐标表示蓝绿激光在海水中传输时,不同传输距离下不同元素对蓝绿激光衰减的影响比例,单个元素对蓝绿激光的影响可由公式(14)定义为:

      图  6  跨介质链路中不同元素对蓝绿激光衰减的影响占比

      Figure 6.  Percentage of influence of different elements on blue-green laser attenuation in the cross-media link

      $$ Atte{n_{ele}} = \frac{{{I_{ele}} - {I_{atten}}}}{{{I_{ori}} - {I_{atten}}}} $$ (15)

      式中:${I_{ori}}$为原始光强;${I_{atten}}$为衰减后光强;${I_{ele}}$为去除某元素影响后的衰减光强;$ele$可以为气泡、海水水体及海雾。

      假定叶绿素背景浓度为0.05 mg/m3,风速为10 m/s,海雾能见度为0.5 km。由图6可知,叶绿素和海雾的影响占到跨介质链路中的绝大部分,而由于海面风速不足以在上层海洋中产生大浓度的气泡层,因此,气泡所占的比例很小。随着传输距离的增加,叶绿素的影响逐渐增大,这是因为水体的原因,而气泡的影响随着激光在海水中的传输距离先增大再减小,符合海水在上层海洋中分布的特性;海雾的影响一直减小,这是因为在海水中传输时,其他因素的影响逐渐增大。

      图7为海水中各个影响因素对蓝绿激光传输的影响。假定近海面海雾的能见度在3 km以上,水体为大洋纯净水体,叶绿素浓度足够低,取值约为0.01 mg/m3,海面风速为20 m/s。由图7可知,当天气晴朗,水体环境足够好,大气与叶绿素对蓝绿激光跨介质散射作用变小,此时水体与气泡的衰减也变得不容忽略。但是,随着天气环境变差与大洋水体环境的变化,蓝绿激光的跨介质传输总的透过率会随之降低。因此应尽量选择在天气晴朗与干净大洋水体条件下进行蓝绿激光跨介质通信、探测,以充分发挥激光的优势。

      图  7  大风速时气泡与海水水体的影响占比

      Figure 7.  Percentage effect of bubbles and marine water at high wind speed

    • 文中利用基尔霍夫近似理论,综合考虑真实海水情况下近海面海雾、上层海洋气泡和海水中叶绿素等因素,建立了气海动态海面蓝绿激光跨介质下行传输模型。数值分析了蓝绿激光跨介质下行传输透过率随不同风速、不同海雾能见度、不同叶绿素浓度、传输深度和不同气泡浓度的变化。结果表明,当风速足够大时,上层海洋中气泡层对蓝绿激光散射的影响不容忽略;随着大气中海雾能见度的增大,蓝绿激光通过大气海面和海水的透过率逐渐增大,随着传输距离的增加,蓝绿激光的透过率减小,叶绿素和海雾的影响占到跨介质链路中的绝大部分,而由于海面风速不足以在上层海洋中产生大浓度的气泡层,因此,气泡所占的比例很小。随着传输距离的增加,叶绿素的影响逐渐增大,而海雾的影响一直减小。文中工作为气海-海气跨介质上下行传输链路上的激光雷达目标探测和无线光通信信道研究提供预先理论支持。

参考文献 (27)

目录

    /

    返回文章
    返回