留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短相干半导体激光器的射频调制特性及应用

魏超 初凤红 卞正兰 魏芳

魏超, 初凤红, 卞正兰, 魏芳. 短相干半导体激光器的射频调制特性及应用[J]. 红外与激光工程, 2023, 52(4): 20220553. doi: 10.3788/IRLA20220553
引用本文: 魏超, 初凤红, 卞正兰, 魏芳. 短相干半导体激光器的射频调制特性及应用[J]. 红外与激光工程, 2023, 52(4): 20220553. doi: 10.3788/IRLA20220553
Wei Chao, Chu Fenghong, Bian Zhenglan, Wei Fang. Radio frequency modulation characteristics and application of short coherent semiconductor laser[J]. Infrared and Laser Engineering, 2023, 52(4): 20220553. doi: 10.3788/IRLA20220553
Citation: Wei Chao, Chu Fenghong, Bian Zhenglan, Wei Fang. Radio frequency modulation characteristics and application of short coherent semiconductor laser[J]. Infrared and Laser Engineering, 2023, 52(4): 20220553. doi: 10.3788/IRLA20220553

短相干半导体激光器的射频调制特性及应用

doi: 10.3788/IRLA20220553
基金项目: 上海市科委地方院校能力建设项目(20020500700)
详细信息
    作者简介:

    魏超,男,硕士生,主要从事激光器相干控制技术方面的研究

    初凤红,女,教授,博士,主要从事光纤传感技术、光电检测技术方面的研究

    通讯作者: 卞正兰,女,讲师,博士,主要从事光纤传感、光电检测与控制方面的研究。
  • 中图分类号: TN248.4

Radio frequency modulation characteristics and application of short coherent semiconductor laser

Funds: Local College Capacity Building Project of Shanghai Municipal Science and Technology Commission (20020500700)
  • 摘要: 短相干激光光源在进行高精度的干涉测量时,可以消除被测光学元件前后表面反射形成的杂散光,是低相干干涉仪的理想光源。针对低相干干涉应用对光源的需求,依据速率方程和激光调制特性对射频调制下的短相干半导体激光器光谱特性进行了理论研究。搭建了短相干光源系统,研究了半导体激光器斜率效率$ \eta $、偏置电流$ {I_b} $、射频信号频率$ {f_m} $和幅度$ {A_m} $对其相干长度的影响。实验结果表明,斜率效率大的半导体激光器更有助于短相干特性的实现,随着调制信号频率和幅值增加,工作在阈值附近的激光器相干长度随之降低,该系统在$ {I_b} = 1.3{I_{th}} $$ {f_m} = {\text{950\;MHz}} $$ {A_m} = {\text{19\;dBm}} $的条件下获得了相干长度为90 $ {\text{μm}} $的短相干光源。并成功应用于斐索干涉仪上,获得了对比度$ K = 0.931\;8 $的清晰干涉图像,与现有短相干光源相比,对比度提高了约51.1%,实现了对平行平板玻璃面形的测量。
  • 图  1  LD线宽展宽方案

    Figure  1.  LD linewidth broadening scheme

    图  2  短相干光源实验装置图

    Figure  2.  Experimental setup of short coherent light source

    图  3  实验用FP激光器P-I特性曲线图

    Figure  3.  P-I characteristic curve of FP laser

    图  4  偏置电流对相干长度的影响

    Figure  4.  Effect of bias current on coherent length

    图  5  射频信号频率对相干长度的影响

    Figure  5.  Effect of RF signal frequency on coherence length

    图  6  射频信号幅值对相干长度的影响

    Figure  6.  Effect of RF signal amplitude on coherence length

    图  7  射频调制前后LD输出光谱图

    Figure  7.  LD output spectrum before and after RF modulation

    图  8  基于短相干光源的平行平板玻璃干涉测量实验装置图

    Figure  8.  Experimental setup of parallel plate glass interferometry based on short coherent light source

    图  9  透明平行平板玻璃表面干涉图像。(a)未调制的637 nm激光光源;(b)文中RF调制的637 nm激光光源;(c)其他短相干激光光源

    Figure  9.  Interference image of transparent parallel plate glass surface. (a) Unmodulated 637 nm laser source; (b) RF modulated 637 nm laser source in this paper; (c) Other short coherent laser source

  • [1] Wang Jun, Chen Lei. Measurement of homogeneity of optical glass with parallel surfaces using low coherence light sources [J]. Acta Photonica Sinica, 2008, 37(12): 2515-2519. (in Chinese)
    [2] Shibata H, Ozaki N, Yasuda T, et al. Imaging of spectral-domain optical coherence tomography using a superluminescent diode based on InAs quantum dots emitting broadband spectrum with Gaussian-like shape [J]. Japanese Journal of Applied Physics, 2015, 54(4S): 04DG07. doi:  10.7567/JJAP.54.04DG07
    [3] Yi Ji. Visible light optical coherence tomography in biomedical imaging [J]. Infrared and Laser Engineering, 2019, 48(9): 0902001. (in Chinese) doi:  10.3788/IRLA201948.0902001
    [4] Gao Bo, Li Qiang, Liu Ang, et al. Measuring refractive index of transparent plate by low-coherent interference [J]. Chinese Journal of Lasers, 2019, 46(8): 0804004. (in Chinese) doi:  10.3788/CJL201946.0804004
    [5] Kácik D, Tatar P, Martinček I. Measurement of PDMS refractive index by low-coherence interferometry[C]//2014 ELEKTRO, IEEE, 2014: 662-665.
    [6] Yang Guang, Chen Lei, Hu Chenhui, et al. Low coherence carrier frequency interference method for measurement of the liquid crystal cell surface [J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(2): 108. (in Chinese) doi:  10.3788/YJYXS20203502.0108
    [7] Sun Qinyuan, Chen Lei, Zheng Donghui, et al. Dynamic Fizeau interferometer using low-coherence light source [J]. Infrared and Laser Engineering, 2018, 47(2): 0220001. (in Chinese) doi:  10.3788/IRLA201847.0220001
    [8] Lee H J, Joo K N. Coherence function control of a multi-mode laser diode by the frequency modulation and its low coherence interferometric application [J]. Precision Engineering, 2014, 38(4): 964-968. doi:  10.1016/j.precisioneng.2014.05.006
    [9] Wada K, Hirata K, Yoshida M, et al. A gain-switched laser diode as a low-coherence light source [J]. Optics Communications, 2003, 228(1-3): 49-54. doi:  10.1016/j.optcom.2003.09.088
    [10] Feng Yong, Zhang Wenxi, Wu Zhou, et al. Short coherent light source based on current modulation in semiconductor lasers [J]. Optics and Precision Engineering, 2021, 29(6): 1321-1328. (in Chinese) doi:  10.37188/OPE.20212906.1321
    [11] Wada K, Kitamura M, Akage Y, et al. Intensity and phase correlation method for determining the linewidth enhancement factor of semiconductor lasers [J]. Optics Communications, 1994, 110(3-4): 345-350. doi:  10.1016/0030-4018(94)90437-5
    [12] Khomenko A, Cloud G L, Haq M. Application of low-coherence interferometry for in situ nondestructive evaluation of thin and thick multilayered transparent composites [J]. Optical Engineering, 2015, 54(12): 125103. doi:  10.1117/1.OE.54.12.125103
    [13] 中国科学院院刊. 短相干激光器[EB/OL]. (2020-03-05)[2022-05-21]. http://www.bulletin.cas.cn/thesisDetails?columnId=35568866&Fpath=home&index=0&lang=zh.
    [14] 4D Technology. AccuFiz D[EB/OL]. (2020-08-20)[2022-05-21]. https://4dtechnology.com/products/fizeau interferometers/accufiz-d-short-coherence-fizeau-interferometer/.
    [15] Wada K, Sato H, Yoshioka H, et al. Suppression of side fringes in low-coherence interferometric measurements using gain-or loss-modulated multimode laser diodes [J]. Japanese Journal of Applied Physics, 2005, 44(12R): 8484. doi:  10.1143/JJAP.44.8484
    [16] Gfroerer T, Bergthold M. Laser diode coherence [J]. American Journal of Physics, 2020, 88(9): 740-745. doi:  10.1119/10.0001487
    [17] Chen Qidao. Transient spectra of semiconductor laser [J]. Semiconductor Optoelectronics, 1989, 10(2): 20-27. (in Chinese) doi:  10.16818/j.issn1001-5868.1989.02.004
    [18] Li Jinjun, Sun Shuai, Guo Xiaochuan. Research on high frequency direct modulation of laser light source [J]. Physics Procedia, 2011, 19: 442-446. doi:  10.1016/j.phpro.2011.06.190
    [19] 郭长志. 半导体激光器速率方程理论[M]. 北京: 科学出版社, 2016.
  • [1] 李珊珊, 杨介伟, 杨天新, 王肇颖, 张恒康.  表征稳频半导体激光器频率特性的方法 . 红外与激光工程, 2023, 52(10): 20230063-1-20230063-7. doi: 10.3788/IRLA20230063
    [2] 王晓东, 胡松钰.  激光结构光测量连续调节智能光源控制器设计 . 红外与激光工程, 2021, 50(3): 20200180-1-20200180-9. doi: 10.3788/IRLA20200180
    [3] 陈晨, 许强, 孙锐, 张亚妮, 康翠萍, 张明霞, 袁振, 令维军.  调Q锁模运转的全固态Tm:LuAG陶瓷激光器 . 红外与激光工程, 2021, 50(4): 20190563-1-20190563-6. doi: 10.3788/IRLA20190563
    [4] 薛梦凡, 彭冬亮, 荣英佼, 申屠晗, 骆吉安, 陈志坤, 刘智惟.  采用实时功率反馈的半导体激光器幅度调制方法 . 红外与激光工程, 2019, 48(9): 905002-0905002(7). doi: 10.3788/IRLA201948.0905002
    [5] 陈杉杉, 张合, 徐孝彬.  激光引信窄脉冲光源驱动电路设计 . 红外与激光工程, 2018, 47(S1): 16-22. doi: 10.3788/IRLA201847.S106004
    [6] 何广龙, 徐莉, 金亮, 马晓辉, 吴国盛, 隋庆学, 张志敏.  双SESAM被动锁模超短脉冲光纤激光器 . 红外与激光工程, 2018, 47(5): 505002-0505002(6). doi: 10.3788/IRLA201847.0505002
    [7] 孙沁园, 陈磊, 郑东晖, 朱文华, 张瑞, 丁煜.  采用短相干光源的动态斐索干涉仪 . 红外与激光工程, 2018, 47(2): 220001-0220001(7). doi: 10.3788/IRLA201847.0220001
    [8] 吴华玲, 郭林辉, 余俊宏, 高松信, 武德勇.  500W级半导体激光器光纤耦合输出模块设计 . 红外与激光工程, 2017, 46(10): 1005005-1005005(6). doi: 10.3788/IRLA201756.1005005
    [9] 陈琦鹤, 范杰, 马晓辉, 王海珠, 石琳琳.  用于半导体激光器的高效率复合波导结构 . 红外与激光工程, 2017, 46(11): 1106006-1106006(6). doi: 10.3788/IRLA201746.1106006
    [10] 王立军, 彭航宇, 张俊, 秦莉, 佟存柱.  高功率高亮度半导体激光器合束进展 . 红外与激光工程, 2017, 46(4): 401001-0401001(10). doi: 10.3788/IRLA201746.0401001
    [11] 夏金宝, 刘兆军, 张飒飒, 邱港.  快速半导体激光器温度控制系统设计 . 红外与激光工程, 2015, 44(7): 1991-1995.
    [12] 李峙, 尧舜, 高祥宇, 潘飞, 贾冠男, 王智勇.  半导体激光器堆栈快轴光束质量计算的研究 . 红外与激光工程, 2015, 44(1): 85-90.
    [13] 彭龙瑶, 钟森城, 朱礼国, 孟坤, 刘乔, 彭其先, 赵剑衡, 张蓉竹, 李泽仁.  基于硅基石墨烯的全光控太赫兹波强度调制系统研究 . 红外与激光工程, 2015, 44(3): 974-978.
    [14] 丁秀昕, 张晞, 王洪波, 李立京, 李勤, 钟翔.  调制频率对φ-OTDR 分布式光纤扰动传感系统动态性能的影响 . 红外与激光工程, 2015, 44(1): 210-214.
    [15] 李江澜, 石云波, 赵鹏飞, 高文宏, 陈海洋, 杜彬彬.  TEC 的高精度半导体激光器温控设计 . 红外与激光工程, 2014, 43(6): 1745-1749.
    [16] 林平, 刘百玉, 缑永胜, 白永林, 王博, 白晓红, 秦君军, 朱炳利, 杨文正, 朱少岚, 高存孝, 欧阳娴.  基于半导体激光器的脉冲整形技术 . 红外与激光工程, 2014, 43(1): 103-107.
    [17] 胡黎明, 朱洪波, 王立军.  高亮度半导体激光器泵浦光纤耦合模块 . 红外与激光工程, 2013, 42(2): 361-365.
    [18] 韩顺利, 仵欣, 林强.  半导体激光器稳频技术 . 红外与激光工程, 2013, 42(5): 1189-1193.
    [19] 沈法华, 孙东松, 刘成林, 仇成群.  基于单固体F-P标准具的双频率多普勒激光雷达研究 . 红外与激光工程, 2013, 42(11): 2944-2950.
    [20] 张建心, 刘磊, 陈微, 渠红伟, 郑婉华.  光子晶体调制半导体激光器侧模 . 红外与激光工程, 2013, 42(1): 69-72.
  • 加载中
图(9)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  45
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-05
  • 修回日期:  2022-11-01
  • 网络出版日期:  2023-04-14
  • 刊出日期:  2023-04-25

短相干半导体激光器的射频调制特性及应用

doi: 10.3788/IRLA20220553
    作者简介:

    魏超,男,硕士生,主要从事激光器相干控制技术方面的研究

    初凤红,女,教授,博士,主要从事光纤传感技术、光电检测技术方面的研究

    通讯作者: 卞正兰,女,讲师,博士,主要从事光纤传感、光电检测与控制方面的研究。
基金项目:  上海市科委地方院校能力建设项目(20020500700)
  • 中图分类号: TN248.4

摘要: 短相干激光光源在进行高精度的干涉测量时,可以消除被测光学元件前后表面反射形成的杂散光,是低相干干涉仪的理想光源。针对低相干干涉应用对光源的需求,依据速率方程和激光调制特性对射频调制下的短相干半导体激光器光谱特性进行了理论研究。搭建了短相干光源系统,研究了半导体激光器斜率效率$ \eta $、偏置电流$ {I_b} $、射频信号频率$ {f_m} $和幅度$ {A_m} $对其相干长度的影响。实验结果表明,斜率效率大的半导体激光器更有助于短相干特性的实现,随着调制信号频率和幅值增加,工作在阈值附近的激光器相干长度随之降低,该系统在$ {I_b} = 1.3{I_{th}} $$ {f_m} = {\text{950\;MHz}} $$ {A_m} = {\text{19\;dBm}} $的条件下获得了相干长度为90 $ {\text{μm}} $的短相干光源。并成功应用于斐索干涉仪上,获得了对比度$ K = 0.931\;8 $的清晰干涉图像,与现有短相干光源相比,对比度提高了约51.1%,实现了对平行平板玻璃面形的测量。

English Abstract

    • 传统干涉仪在测量薄透明物体面形时,由于激光光源的高相干性,会使透明物体上下表面反射光形成干涉而产生干扰条纹,利用短相干光源相干长度短的特性可以有效避免上述问题[1]。目前,短相干光源已广泛应用于低相干干涉测量领域,如光学相干断层扫描[2-3]、有机材料折射率和厚度测量[4-5]、光学元件面形检测等[6-7]。通常用于低相干干涉仪的光源主要为超辐射发光二极管(SLD)、超短脉冲激光器、发光二极管(LED)等宽带光源。但是SLD输出光功率较小,超短脉冲激光器体型大且价格昂贵,LED光源准直性和光强稳定度较差。半导体激光器(LD)以其成本低、结构紧凑、功率相对较高且可用波长范围广等优点,已成为很多光学测量技术的首选光源[8]。但是,LD谱线宽较窄,相干长度较长,通过相干性控制技术降低其相干长度的研究具有重要意义。

      理论和实验研究表明,频率调制可以展宽LD的光谱线宽[9-10]。法布里-珀罗(FP)型激光器在高速大正弦信号调制下,呈现多纵模振荡而满足低相干条件[11]。使用射频信号对LD进行调制使其光谱展宽、获得短相干光源的方法具有成本低、操作简单、便于调节等优点,并且有利于设备的微型化、集成化,是短相干光源未来一段时间发展的主要方向。目前,使用频率调制实现LD短相干特性的研究仍然较少,Lee Ho-Jae等[7]在低相干扫描干涉仪应用中使用80 kHz的调制信号,将LD相干长度降至200 $ {\text{μm}} $。Khomenko等人[12]使用频率调制的方法获得了相干长度为150 $ {\text{μm}} $的短相干光源,并应用于透明复合材料的缺陷检测中。中国科学院空天信息创新研究院[13]、美国4D Technology公司[14]分别研发出了相干长度均为200 $ {\text{μm}} $的短相干激光器,可测量厚度大于0.2 mm的平行平板类光学元件。Wada K等人[15]研究了频率调制下不同波长的FP激光器对于边模的抑制。干涉仪的成像质量会受光源的影响,合适的参数对于LD通过射频调制获取高质量的短相干光源十分重要,现有的短相干光源用于大口径干涉仪时干涉图像质量较差。文中使用中心波长为637 nm的FP激光二极管作为短相干光源,相较于长波长的FP激光二极管,调制后的短波长激光器拥有更低的边模/主模抑制比,基于射频调制LD的方法获得短相干光源,文中基于LD线宽展宽原理,通过实验分析了激光器PI曲线斜率效率、偏置电流、射频信号频率和幅值等对LD相干长度的影响,并在同一条件下,与现有采用频率调制的短相干光源进行对比,验证其对干涉图像质量的改善效果。

    • LD的相干长度$ \Delta x $可用激光器中心波长$ \lambda $,谱线宽度$ \Delta \lambda $表示为:

      $$ \Delta x = \frac{{\mathop \lambda \nolimits^2 }}{{\Delta \lambda }} $$ (1)

      可见,要降低LD的相干长度,需要将激光器的线宽展宽。基于射频调制的LD线宽展宽方案如图1所示。高速大正弦信号加载在恒流驱动上,带有偏置的射频信号对FP激光器进行直接调制,输出为多纵模,进而可以实现激光器的线宽展宽。

      图  1  LD线宽展宽方案

      Figure 1.  LD linewidth broadening scheme

    • LD有源区内电子和光子之间相互的能量交换是由其自发辐射和受激辐射过程所支配的,光子和电子之间能量交换的速率可以用速率方程来描述。基于FP腔的LD工作在阈值附近时输出的激光光谱一般是多纵模的[16],其速率方程有如下形式[17]

      $$ \frac{{{\text{d}}N}}{{{\text{d}}t}} = \frac{J}{{eV}} - \frac{N}{{{\tau _e}}} - \frac{C}{n}{g_m}{S _ m} $$ (2)
      $$ \frac{{{\text{d}}{S _m}}}{{{\text{d}}t}} = \frac{{\varGamma \gamma N}}{{{\tau _e}}} + \frac{C}{n}{g_m}{S _ m} - \frac{{{S _m}}}{{{\tau _p}}} $$ (3)

      其中:

      $$ {g_m}{\text{ = }}g\left( {N{{ - }}{N'}} \right)\left[ {1 - {{\left( {\frac{m}{M}} \right)}^2}} \right]\quad m = 0, \pm 1, \pm 2, \cdots , \pm M $$ (4)

      式中:$ N $为注入电子浓度;$ J $为注入电流密度;$ e $为电子电荷;$ V $为有源区体积;$ {\tau _e} $为载流子寿命;$ C $为光速;$ n $为有源区折射率;$ {g_m} $$ m $阶模的增益;$ {S _m} $$ m $阶模的光子密度;$ \varGamma $为限制因子;$ \gamma $为自发辐射因子;$ {\tau _p} $为光子寿命;$ g $为微分增益系数;${N'}$为透明载流子浓度;$ M $为边模数。

      $ \dfrac{{{\text{d}}N}}{{{\text{d}}t}} = 0 $$ \dfrac{{{\text{d}}{S _ m}}}{{{\text{d}}t}} = 0 $,得到$ m $阶模的光子密度$ {S_ m} $的表达式为:

      $$ {S _m} = \dfrac{{\dfrac{{N\gamma }}{\varGamma }}}{{\dfrac{C}{n}g{\tau _e}\left( {{N_{{\text{th}}}} - N} \right)\left[1 + \dfrac{{N - {N'}}}{{{N_{{\text{th}}}} - N}}{{\left( {\dfrac{m}{M}} \right)}^2}\right]}} $$ (5)

      式中:$ {N_{{\text{th}}}} $为阈值载流子浓度,其表达式为:

      $$ {N_{{\text{th}}}} = {N'} + \frac{C}{{n{\tau _p}\varGamma g}} $$ (6)

      通常半高宽为$ \Delta \lambda $的光谱高斯增益曲线$ G(\lambda ,\Delta \lambda ) $可以表示为:

      $$ G\left( {\lambda ,\Delta \lambda } \right) = \sqrt {\frac{{\ln 2}}{{\text{π }}}} \frac{1}{{\Delta \lambda }}\exp \left( { - \frac{{4{{(\lambda - {\lambda _0})}^2}\ln 2}}{{{{(\Delta \lambda )}^2}}}} \right) $$ (7)

      式中:$ {\lambda _0} $为中心波长,若主模光强下降一半处对应的$ q $阶模波长为$ \lambda q $,则有

      $$ G\left( {\lambda q,\Delta \lambda } \right){\text{ = }}{S _ q} $$ (8)

      FP激光器线宽$ \Delta \lambda $可以表示为:

      $$ \Delta \lambda = \frac{1}{2}\sqrt {\frac{{\ln 2}}{{\text{π }}}} \left( {\frac{{C{\tau _{\text{e}}}\varGamma G}}{{nN\gamma }}M + \frac{{n - C{\tau _{\text{e}}}{\tau _p}\varGamma G}}{{nN\gamma {\tau _p}}}} \right) $$ (9)

      式中:$ G $为受激辐射净增益。从上式可以得LD的谱线宽度正比于模式数量,即$ \Delta \lambda \propto M $。物理原理为:LD在高频大信号调制作用下,注入电流的变化使得载流子浓度$ N $发生变化,载流子浓度的变化又必然引起折射率的变化,光模的频率发生漂移,从而使更多的模式达到阈值增益,激光器主模的强度下降,而次模的强度相对增加,除主模外的其他边模的光子浓度$ {S_ m} $同时出现振荡,因此,FP激光器输出光谱纵模数增多,导致其谱线越宽。

    • LD输出功率与注入电流的大小直接相关。为了获得更高的调制效率,使输出信号不失真,需要在加调制信号电流的同时加上一个偏置电流$ {I_b} $,且通常选择在阈值电流$ {I_{th}} $附近[18]。注入电流包括直流分量和交流分量,可以表示为:

      $$ I = {I_b} + {I_m}\cos {\omega _m}t $$ (10)

      式中:$ {I_b} $为偏置电流;$ {I_m} $为调制信号的幅度;$ {\omega _m} $为调制信号的角频率。注入电流对模式功率的直接调制,必然伴随着模式相位和频率的调制[18],此时,输出激光光波的强度可以表示为:

      $$ E\left( t \right) = {E_0}\left( {1 + \frac{{{I_m}}}{{{E_0}}}\cos {\omega _m}t} \right)\cos \left( {{\omega _{\text{c}}}t + \alpha \sin {\omega _m}t + {\varphi _c}} \right) $$ (11)

      式中:$ {E_0} $为激光信号幅度;$ {\omega _{\text{c}}} $为激光信号角频率;$ {\varphi _c} $为激光信号相位角;$ \alpha $为调制系数。其表达式为:

      $$ \alpha = \frac{{\Delta \omega }}{{{\omega _m}}} $$ (12)

      式中:$ \Delta \omega $为最大角频率调制量,其值与调制信号幅值成正比。利用三角函数公式和贝塞尔函数公式将公式(11)展开为:

      $$ \begin{split} E\left( t \right) =& {E_0}{{{J}}_0}\left( \alpha \right)\cos \left( {{\omega _{\text{c}}}t + {\varphi _c}} \right){\text{ + }} \\& \frac{{{I_m}}}{2}{{{J}}_0}\left( \alpha \right)\cos \left( {\left( {{\omega _{\text{c}}} + {\omega _m}} \right)t + {\varphi _c}} \right) +\\& \frac{{{I_m}}}{2}{{{J}}_0}\left( \alpha \right)\cos \left( {\left( {{\omega _{\text{c}}} - {\omega _m}} \right)t + {\varphi _c}} \right) + \\& \left( {{E_0} + \frac{{{I_m}}}{2}} \right)\sum\limits_{{{n}} = 1}^\infty {{{{J}}_{{n}}}\left( \alpha \right)} \{ \cos \left[ {\left( {{\omega _{\text{c}}} + n{\omega _m}} \right)t + {\varphi _c}} \right] + \\& {{\left( { - 1} \right)}^n}\cos \left[ {\left( {{\omega _{\text{c}}} - n{\omega _m}} \right)t + {\varphi _c}} \right] \} \end{split} $$ (13)

      从上式可知电流调制的结果是在基频$ {\omega _{\text{c}}} $两侧间隔$ {\omega _m} $处产生无穷多对新的频率成分,在光谱中称为边模,边模强度与调制信号频率和幅度有关。激光器的谱线宽度即半高全宽(Full Width at Half Maxima, FWHM)是边模光强为主模光强一半处两个边模波长之差[19]。新产生的边模越多、距离主模越远、强度越大谱线展的就会越宽。

    • 实验搭建了短相干光源系统,使用光谱仪测量激光器输出光谱线宽,研究了两台不同斜率效率FP激光器的短相干特性,并将获得的短相干光源应用于斐索干涉仪,实现对平行平板玻璃面形的检测。基于短相干光源的实验装置如图2所示。中心波长为635 nm和637 nm的LD安装在LDM9LP激光器底座上,激光器驱动器的最大驱动电流为1 A,最大温度控制电流为4.5 A,最大温度控制电压为3 V,TEC加热/冷却能力可达7 W,最大射频输入功率为500 mW,调制频率可从200 kHz到1 GHz。自制恒流源电路输出电流范围可以任意调节,且加入了延时启动电路和功率保护电路,能够有效保护激光器。WTC3243温度控制芯片最大驱动电流可达±2.2 A,温度稳定度可达到0.0009 ℃,通过调整控制回路的P、I值可以精确控制温度。射频模块采用HMC830芯片,该芯片输出频率25~3000 MHz,输出幅度经放大器放大后可达19 dBm,相位噪声低至−110 dBc/Hz。AQ6370D型光谱仪用来测量600~1 700 nm波段的光谱,测量精度可达0.01 nm。

      图  2  短相干光源实验装置图

      Figure 2.  Experimental setup of short coherent light source

    • LD的P-I曲线在阈值以上具有非常好的线性关系,定义激光器斜率效率$ \eta $表达式为:

      $$ \eta = \frac{{\Delta P}}{{\Delta I}} $$ (14)

      在相同的调制信号作用下,斜率效率大的LD拥有更大的输出功率变化,有助于实现好的调制效果。图3为实验所测FP激光器的P-I特性曲线。两台激光器的中心波长分别为635 nm和637 nm,P-I特性曲线斜率分别为2.72 W/A 和5.40 W/A,阈值电流均为${I_{th}} = 45\;{\text{ mA}}$,其工作温度通过温控系统控制在25 ℃。在实验中,改变偏置电流大小、射频信号频率和幅值,记录光谱的半高全宽来描述LD的相干性。

      图  3  实验用FP激光器P-I特性曲线图

      Figure 3.  P-I characteristic curve of FP laser

    • 根据LD直接调制特性理论分析,在实验中,设置射频信号频率$ {f_m} = {{950 \; {\rm{MHz}}}} $,幅值$ {A_m} = {{19\; {\rm{dBm}}}} $,研究偏置电流变化对LD相干长度的影响。实验结果如图4所示,在偏置电流较小时,激光器的线宽较窄,这是由于部分射频信号工作在激光器的阈值电流以下,导致激光器的输出功率异常低,影响激光器的射频调制性能;随着偏置电流的增大,两台激光器的谱线宽度随之增大,相干长度随之降低,均在偏置电流$ {I_b} = 1.3{I_{th}} $时达到最小,且637 nm激光器的相干长度比635 nm激光器更短,相干长度可降低至89.4 $ {\text{μm}} $;随着偏置电流的进一步增大,光源相干性增强,此时在其他条件不变的情况下,激光器的线宽主要受偏置电流的影响,增大的注入电流加剧了模式竞争,使LD输出纵模数量减少,谱线宽度变窄。

      图  4  偏置电流对相干长度的影响

      Figure 4.  Effect of bias current on coherent length

    • 为减小偏置电流的影响,设置偏置电流$ {I_b} = 1.3{I_{th}} $,射频信号幅值$ {A_m} = {{19\; {\rm{dBm}}}} $,改变调制信号频率100~950 MHz,研究射频调制信号频率对LD相干长度的影响。实验结果如图5所示,电流调制使LD谐振腔折射率发生变化,引起更多的模式产生振荡,在调制信号频率较低时,由于振荡模式可以响应电流的变化,射频调制的作用不明显,激光器的线宽较窄;随着调制信号频率的增大,此时模式数目不能响应于高频调制电流的快速变化,LD发射光谱呈现多纵模输出,因此两台激光器的线宽逐渐展宽,相干长度随之减小,且637 nm激光器的相干长度比635 nm激光器更短,当调制频率为950 MHz时,相干长度可降低至88.6 $ {\text{μm}} $

      图  5  射频信号频率对相干长度的影响

      Figure 5.  Effect of RF signal frequency on coherence length

    • 设置偏置电流$ {I_b} = 1.3{I_{th}} $,射频信号频率${f_m} = {{950\; {\rm{MHz}}}}$,改变调制信号幅值0~19 dBm,研究射频信号幅值对LD相干长度的影响。实验结果如图6所示,随着调制信号幅值的增大,由于LD内振荡模式的增益发生变化,主模强度下降,边模强度相对增加,调制深度的增大使两台激光器的线宽逐渐展宽,相干长度随之减小,且637 nm激光器的相干长度比635 nm激光器更短,在调制幅值为19 dBm时,相干长度可降低至89.9 $ {\text{μm}} $

      图  6  射频信号幅值对相干长度的影响

      Figure 6.  Effect of RF signal amplitude on coherence length

      综上所述,在偏置电流$ {I_b} = 1.3{I_{th}} $、射频信号频率$ {f_m} = {{950\; {\rm{MHz}}}} $、射频信号幅值$ {A_m} = {{19\; {\rm{dBm}}}} $时,光源相干长度最短。因此,使激光器工作在略大于阈值电流的状态,提高射频调制信号频率和幅值,选择斜率效率更大的FP激光器,更有利于短相干特性的实现。

    • 通过对两台激光器的短相干特性研究,选用斜率效率更大的637 nmFP激光器作为短相干激光器系统光源,图7为光谱仪采集的射频调制前后的光谱图。不加调制时,工作在阈值附近的FP激光器输出光谱线宽较窄为1.588 nm,相干长度为256 $ {\text{μm}} $;在偏置电流为$ {I_b} = 1.3{I_{th}} $和频率${f_m} = {950} \;{\rm{MHz}}$、幅值$ {A_m} = {{{{19}} \;{\rm{dBm}}}} $的高速大正弦信号调制下,模式增益发生改变,激光器主模的强度下降,而次模的强度相对增加,更多模式发生振荡,形成类高斯的光谱,这与前述的理论一致,展宽后的光谱线宽可以达到4.456 nm,此时激光器的相干长度降至90 $ {\text{μm}} $

      图  7  射频调制前后LD输出光谱图

      Figure 7.  LD output spectrum before and after RF modulation

      将该短相干光源应用于斐索干涉仪上,对厚度为0.15 mm的透明平行平板玻璃面形进行测量,见图8

      图  8  基于短相干光源的平行平板玻璃干涉测量实验装置图

      Figure 8.  Experimental setup of parallel plate glass interferometry based on short coherent light source

      测量原理为:FP激光器输出的短相干光源发出一束平行细光束,经分光棱镜BS1被分为光束P1和P2。P1和P2分别经平面镜M1和平面镜M2反射后再次经过BS1相遇,其中平面镜M1固定,平面镜M2可移动,从而会在P1和P2之间引入2$ \Delta $的光程差。P1和P2重合后进入光纤,经扩束镜L1和准直物镜L2后扩束准直,分别在参考镜R和被测样品T上反射,通过调整R和T之间的距离为$ \Delta $,匹配P1和P2之间的光程差,由于光源相干长度小于被测样品厚度,仅有参考镜R下表面和被测样品T上表面反射的光小于相干长度,满足干涉条件,反射的光束经过分光棱镜BS2和成像镜头L3后通过CCD采集、软件处理后输出干涉条纹,通过干涉条纹的凹凸判断平行平板玻璃面形平整度。

      该短相干光源可以有效避免平板玻璃上下表面反射光干涉混叠所引起的背景噪声,如图9所示。未调制时的激光光源由于相干性好,线宽窄,相干长度较长,平板玻璃上下表面的反射光也会形成干涉,与平板玻璃表面的干涉条纹相互叠加,对面形信息形成了严重干扰,如图9(a)所示;经过射频调制的光源相干长度降低,小于平板玻璃的厚度,平板玻璃上下表面的反射光不会产生干涉,因此,CCD采集到仅有携带平板玻璃面形信息的两束光干涉形成的条纹图,避免了干扰条纹的产生,如图9(b)所示。

      通常干涉图像的质量用干涉条纹的对比度$ K $来衡量,它的定义为:

      $$ K = \frac{{{I_{\max }} - {I_{\min }}}}{{{I_{\max }} + {I_{\min }}}} $$ (15)

      式中:$ {I_{\max }} $为干涉场中某点附近光强的极大值;$ {I_{\min }} $为该点附近光强的极小值。使用文中的参数获得的短相干光源使得干涉图像拥有更高的图像质量,如图9(b)所示,相比现有的短相干光源[13],对比度可达0.9318,提升了约51.1%,在避免背景噪声的同时,携带面型信息的干涉条纹显示更加清晰。

      图  9  透明平行平板玻璃表面干涉图像。(a)未调制的637 nm激光光源;(b)文中RF调制的637 nm激光光源;(c)其他短相干激光光源

      Figure 9.  Interference image of transparent parallel plate glass surface. (a) Unmodulated 637 nm laser source; (b) RF modulated 637 nm laser source in this paper; (c) Other short coherent laser source

    • 文中通过速率方程和LD调制特性对射频调制下的LD光谱特性进行了理论研究,LD线宽与纵模数、射频调制信号频率和幅值呈现正相关的关系。基于理论搭建了短相干光源系统,并通过实验研究了激光器斜率效率、偏置电流、射频信号频率和幅值对LD相干长度的影响。实验结果表明:选用斜率效率更大的LD,在偏置电流$ {I_b} = 1.3{I_{th}} $条件下,随着调制信号频率和幅值增大,激光器相干长度降低,在射频信号频率$ {f_m} = {{950\; {\rm{MHz}}}} $、幅值$ {A_m} = {{19\; {\rm{dBm}}}} $时相干长度最短可以达到90 $ {\text{μm}} $,可用于测量厚度薄至0.09 mm的透明平行平板类光学元件,得到的干涉图像对比度为0.9318,对比现有短相干光源拥有更高的清晰度。文中的研究提高了短相干光源的性能,在低相干干涉测量领域有广阔的应用前景。

参考文献 (19)

目录

    /

    返回文章
    返回