Volume 45 Issue 4
May  2016
Turn off MathJax
Article Contents

Yang Ping, Song Hong, Lou Lixuan, Liu Tengjun, Zhang Jiaheng, Wang Hangzhou, Zhan Shuyue, Huang Hui, Mu Quanquan, Yang Wenjing. Comparison on wavefront aberration correction for laser beam propagating over saline water and sands[J]. Infrared and Laser Engineering, 2016, 45(4): 432001-0432001(7). doi: 10.3788/IRLA201645.0432001
Citation: Yang Ping, Song Hong, Lou Lixuan, Liu Tengjun, Zhang Jiaheng, Wang Hangzhou, Zhan Shuyue, Huang Hui, Mu Quanquan, Yang Wenjing. Comparison on wavefront aberration correction for laser beam propagating over saline water and sands[J]. Infrared and Laser Engineering, 2016, 45(4): 432001-0432001(7). doi: 10.3788/IRLA201645.0432001

Comparison on wavefront aberration correction for laser beam propagating over saline water and sands

doi: 10.3788/IRLA201645.0432001
  • Received Date: 2015-08-11
  • Rev Recd Date: 2015-09-04
  • Publish Date: 2016-04-25
  • Wavefront aberration characterization and correction in laser beam propagating over saline water and sand was investigated in this paper. An experimental setup was built for wavefront aberration measurement and correction by an adaptive optics(AO) system. Based on the input-output data of the AO system, a model was established for the AO system and a closed-loop controller was built. Experimental results show that the laser beam propagating over sands surfers more severe wavefront aberration by the turbulence. After closed-loop AO correction, the variance of the spots displacement in the wavefront sensor is reduced by 28% forsaline water and 10% for sands. By doing this research, the feasibility of using close-loop AO systemsfor wavefront aberration correction in marine environment is investigated.
  • [1] Majumdar A K, Ricklin J C. Free-space Laser Communications:Principles and Advances[M]. Berlin:Springer, 2008.
    [2] Yang Huizheng, Li Xinyang, Jiang Wenhan. Applications of adaptive optics technology in atmospheric laser communications system[J]. Laser Optoelectronics Progress, 2007, 44(10):61-68. (in Chinese)杨慧珍, 李新阳, 姜文汉. 自适应光学技术在大气光通信系统中的应用进展[J]. 激光与光电子学进展, 2007, 44(10):61-68.
    [3] Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media[M]. Bellingham, WA:SPIE Press, 2005.
    [4] Zhou Renzhong, Yan Jixiang. Theory of Adaptive Optics[M]. Beijing:Beijing University of Technology Press, 1996. (in Chinese)周仁忠, 阎吉祥. 自适应光学理论[M]. 北京:北京理工大学出版社, 1996.
    [5] Yura H T, McKinley W G. Optical scintillation statistics for IR ground-to-space laser communication systems[J]. Applied Optics, 1983, 22(21):3353-3358.
    [6] Andrews L C, Phillips R L, Yu P T. Optical scintillations and fade statistics for a satellite-communication system[J]. Applied Optics, 1995, 34(33):7742-7751.
    [7] Miller W B, Andrews L C, Ricklin J C. Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam[J]. JOSA A, 1994, 11(10):2719-2726.
    [8] Tyson R K. Bit-error rate for free-space adaptive optics laser communications[J]. JOSA A, 2002, 19(4):753-758.
    [9] Friehe C A, La Rue J C, Champagne F H, et al. Effects of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer[J]. JOSA, 1975, 65(12):1502-1511.
    [10] Sun Chuanrong, Tao Shuwang, Luo Yong. Land-sea breeze and the application of wind profile in the wind speed forecasting to wind farm along the coast[J]. Chinese Journal of Geophysics, 2009, 52(3):630-636. (in Chinese)孙川永, 陶树旺, 罗勇,等. 海陆风及沿海风速廓线在风电场风速预报中的应用[J]. 地球物理学报, 2009, 52(3):630-636.
    [11] Cai Rongshuo, Yan Bangliang, Huang Ronghui. A numerical model and its simulation of the land and sea breeze over the Taiwan Strait[J]. Chinese Journal of Atmospheric Sciences, 2003, 727(1):86-96. (in Chinese)蔡榕硕, 严邦良, 黄荣辉. 台湾海峡海陆风数值模式与数值模拟试验[J]. 大气科学, 2003, 27(1):86-96.
    [12] Liu Jingxiong, Tang Wenwei, Zhu Chize. Discussion on calculation method of strong wind velocity on Zhejiang-Fujian coasts andTaiwan Strait in winter[J]. Journal of Applied Oceanography, 2004, 23(1):8-13. (in Chinese)刘京雄, 唐文伟, 朱持则,等. 浙闽沿海和台湾海峡海域冬季大风风速计算方法探讨[J]. 应用海洋学学报, 2004, 23(1):8-13.
    [13] Vetelino F S, Grayshan K, Young C Y. Inferring path average CN2 values in the marineenvironment[J]. JOSA A, 2007, 24(10):3198-3206.
    [14] Wasiczko L M, Moore C I, Burris H R, et al. Characterization of the marine atmosphere for free-space optical communication[C]//Defense and Security Symposium. International Society for Optics and Photonics, 2006:621501-621501-12.
    [15] Ma Xiaoshan, Zhu Wengyue, Rao Ruizhong. Anisotropy of beam wander of focused beamin atmospheric boundary layer above sea level[J]. High Power Laser and Particle Beams, 2006, 18(6):922-926. (in Chinese)马晓珊, 朱文越, 饶瑞中. 海面大气边界层中聚焦光束漂移各向异性的实验研究[J]. 强激光与粒子束, 2006, 18(6):922-926.
    [16] Sergeyev A V, Roggemann M C. Monitoring the statistics of turbulence:Fried parameter estimation from the wavefront sensor measurements[J]. Applied Optics, 2011, 50(20):3519-3528.
    [17] Levine B M, Martinsen E A, Wirth A, et al. Horizontal line-of-sight turbulence over near-ground paths and implications for adaptive optics corrections in laser communications[J]. Applied Optics, 1998, 37(21):4553-4560.
    [18] Liu Chao, Hu Lifa, Mu Quanquan. Bandwidth requirements of adaptive opticalsystem for horizontal turbulence correction[J]. Optics and Precision Engineering, 2010, 18(10):2137-2142. (in Chinese)刘超, 胡立发, 穆全全,等. 校正水平湍流波面的自适应光学系统的带宽需求[J]. 光学精密工程, 2010, 18(10):2137-2142.
    [19] Hinnen K, Verhaegen M, Doelman N. Exploiting the spatiotemporal correlation in adaptive optics using data-driven H2-optimal control[J]. JOSAA, 2007, 24(6):1714-1725.
    [20] Paschall R N, Anderson D J. Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements[J]. Applied Optics, 1993, 32(31):6347-6358.
    [21] Golub G H, Van Loan C F. Matrix Computations[M]. Baltirrore:The Johns Hopkins University Press, 1996:374-426.
    [22] Verhaegen M, Verdult V. Filtering and system identification; A least squares approach[J]. Signal Processing IEEE Transactions on, 2011, 40(10):2433-2458.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(247) PDF downloads(177) Cited by()

Related
Proportional views

Comparison on wavefront aberration correction for laser beam propagating over saline water and sands

doi: 10.3788/IRLA201645.0432001
  • 1. School of Media &Design,Hangzhou Dianzi University,Hangzhou 310018,China;
  • 2. Ocean College,Zhejiang University,Zhoushan 316021,China;
  • 3. State Key Laboratory of Satellite Ocean Environment Dynamics,Hangzhou 310012,China;
  • 4. State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;
  • 5. Blue-Science Opto-Electronics Co. Ltd,Hangzhou 310018,China

Abstract: Wavefront aberration characterization and correction in laser beam propagating over saline water and sand was investigated in this paper. An experimental setup was built for wavefront aberration measurement and correction by an adaptive optics(AO) system. Based on the input-output data of the AO system, a model was established for the AO system and a closed-loop controller was built. Experimental results show that the laser beam propagating over sands surfers more severe wavefront aberration by the turbulence. After closed-loop AO correction, the variance of the spots displacement in the wavefront sensor is reduced by 28% forsaline water and 10% for sands. By doing this research, the feasibility of using close-loop AO systemsfor wavefront aberration correction in marine environment is investigated.

Reference (22)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return