Volume 48 Issue 2
Feb.  2019
Turn off MathJax
Article Contents

Liang Li, Wen Long, Jiang Chunping, Chen Qin. Research progress of terahertz sensor based on artificial microstructure[J]. Infrared and Laser Engineering, 2019, 48(2): 203001-0203001(17). doi: 10.3788/IRLA201948.0203001
Citation: Liang Li, Wen Long, Jiang Chunping, Chen Qin. Research progress of terahertz sensor based on artificial microstructure[J]. Infrared and Laser Engineering, 2019, 48(2): 203001-0203001(17). doi: 10.3788/IRLA201948.0203001

Research progress of terahertz sensor based on artificial microstructure

doi: 10.3788/IRLA201948.0203001
  • Received Date: 2018-09-05
  • Rev Recd Date: 2018-10-03
  • Publish Date: 2019-02-25
  • Recently, terahertz(THz) technology has developed rapidly, showing promising potential in the fields of communication, anti-terrorism, monitoring and biomedicine, etc. In particular, terahertz biosensor has attracted extensive attentions in biotechnology, because many biological molecules and materials have their finger prints in the THz absorption spectra, and the damage by the low power terahertz wave is low. However, the THz wave-matter interaction is relatively weak because of the mismatch between the long wavelength of THz wave and the size of biomolecules, which limits the performance of terahertz sensors. Current research interest is manipulating the spatial and spectral distributions of the electromagnetic fields based on the microstructures to enhance the sensitivity of the sensors. In this review, we are going to introduce the working mechanisms of various microstructure THz sensors and the recent progress, and then discuss their advantages and disadvantages, finally we conclude the major issues to be resolved and predict the future developing trend and potential applications.
  • [1] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3):910-928.
    [2] Yao Jianquan. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(6):703-707. (in Chinese)
    [3] Menikh A. Terahertz-biosensing Technology:Progress, Limitations, and Future Outlook[M]. Berlin:Springer, 2010:283-295.
    [4] Chen T, Li S, Sun H. Metamaterials application in sensing[J]. Sensors (Basel), 2012, 12(3):2742-2765.
    [5] Yan Xin, Zhang Xingfang, Liang Lanju, et al. Research progress in the application of biosensors by using metamaterial in terahertz wave[J]. Spectroscopy and Spectral Analysis, 2014, 34(9):2365-2372. (in Chinese)
    [6] Nagel M, Richter F, Haring-Bolivar P, et al. A functionalized THz sensor for marker-free DNA analysis[J]. Physics in Medicine Biology, 2003, 48(22):3625.
    [7] Al-Douseri F M, Chen Y, Zhang X C. THz wave sensing for petroleum industrial applications[J]. International Journal of Infrared and Millimeter Waves, 2006, 27(4):481-503.
    [8] O'Hara J F, Withayachumnankul W, Al-Naib I. A review on thin-film sensing with terahertz waves[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(3):245-291.
    [9] Luther J M, Jain P K, Ewers T, et al. Localized surface plasmon resonances arising from free carriers in doped quantum dots[J]. Nature Materials, 2011, 10(5):361.
    [10] Kim J B, Lee J H, Moon C K, et al. Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes[J]. Advanced Materials, 2013, 25(26):3571-3577.
    [11] Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons enhance optical transmission through subwavelength holes[J]. Physical Review B, 1998, 58(11):6779.
    [12] Pitchappa P, Manjappa M, Ho C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Advanced Optical Materials, 2016, 4(4):541-547.
    [13] Qu Y, Li Q, Gong H, et al. Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films[J]. Advanced Optical Materials, 2016, 4(3):480-486.
    [14] Nicholls L H, Rodrguez-Fortuno F J, Nasir M E, et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials[J]. Nature Photonics, 2017, 11(10):628.
    [15] Park J, Kang J H, Kim S J, et al. Dynamic reflection phase and polarization control in metasurfaces[J]. Nano Letters, 2016, 17(1):407-413.
    [16] Huang Y W, Lee H W H, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9):5319-5325.
    [17] Sherrott M C, Hon P W C, Fountaine K T, et al. Experimental demonstration of230 phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 2017, 17(5):3027-3034.
    [18] Lee D E, Lee Y J, Shin E, et al. Mach-zehnder interferometer refractive index sensor based on a plasmonic channel waveguide[J]. Sensors, 2017, 17(11):2584.
    [19] Chu C S, Lin K Z, Tang Y H. A new optical sensor for sensing oxygen based on phase shift detection[J]. Sensors and Actuators B:Chemical, 2016, 223:606-612.
    [20] York T, Powell S B, Gao S, et al. Bioinspired polarization imaging sensors:from circuits and optics to signal processing algorithms and biomedical applications[J]. Proceedings of the IEEE, 2014, 102(10):1450-1469.
    [21] Maier S A, Andrews S R, Martin-Moreno L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 2006, 97(17):176805.
    [22] Joy S R, Erementchouk M, Mazumder P. Spoof surface plasmon resonant tunneling mode with high quality and Purcell factors[J]. Physical Review B, 2017, 95(7):075435.
    [23] Garcia-Vidal F J, Martin-Moreno L, Pendry J B. Surfaces with holes in them:new plasmonic metamaterials[J]. Journal of Optics A:Pure and Applied Optics, 2005, 7(2):S97.
    [24] Kats M A, Woolf D, Blanchard R, et al. Spoof plasmon analogue of metal-insulator-metal waveguides[J]. Optics Express, 2011, 19(16):14860-14870.
    [25] Drexler C, Shishkanova T V, Lange C, et al. Terahertz split-ring metamaterials as transducers for chemical sensors based on conducting polymers:a feasibility study with sensing of acidic and basic gases using polyaniline chemosensitive layer[J]. Microchimica Acta, 2014, 181(15-16):1857-1862.
    [26] Liu C, Liu P, Yang C, et al. Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications[J]. Journal of Optics, 2017, 19(11):115102.
    [27] Okamoto K, Tsuruda K, Diebold S, et al. Terahertz sensor using photonic crystal cavity and resonant tunneling diodes[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(9):1085-1097.
    [28] Benz A, Deutsch C, Brandstetter M, et al. Terahertz active photonic crystals for condensed gas sensing[J]. Sensors, 2011, 11(6):6003-6014.
    [29] Astley V, Reichel K S, Jones J, et al. Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities[J]. Applied Physics Letters, 2012, 100(23):231108.
    [30] Islam M, Chowdhury D R, Ahmad A, et al. Terahertz plasmonic waveguide based thin film sensor[J]. Journal of Lightwave Technology, 2017, 35(23):5215-5221.
    [31] Rich R L, Myszka D G. Advances in surface plasmon resonance biosensor analysis[J]. Current Opinion in Biotechnology, 2000, 11(1):54-61.
    [32] Haes A J, Van Duyne R P. A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles[J]. Journal of the American Chemical Society, 2002, 124(35):10596-10604.
    [33] Limaj O, Etezadi D, Wittenberg N J, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes[J]. Nano Letters, 2016, 16(2):1502-1508.
    [34] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424:824.
    [35] Im H, Shao H, Park Y I, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor[J]. Nature Biotechnology, 2014, 32(5):490.
    [36] Baaske M D, Foreman M R, Vollmer F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform[J]. Nat Nanotechnol, 2014, 9(11):933-942.
    [37] Li Y C, Chang Y F, Su L C, et al. Differential-phase surface plasmon resonance biosensor[J]. Analytical Chemistry, 2008, 80(14):5590-5595.
    [38] Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685):847-855.
    [39] Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons[J]. Science, 2005, 308(5722):670-672.
    [40] Yu N, Wang Q J, Kats M A, et al. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nature Materials, 2010, 9(9):730-735.
    [41] Brongersma M L, Kik P G. Surface Plasmon Nanophotonics[M]. Berlin:Springer, 2007.
    [42] Ng B, Wu J, Hanham S M, et al. Spoof plasmon surfaces:a novel platform for THz sensing[J]. Advanced Optical Materials, 2013, 1(8):543-548.
    [43] Huang W P. Coupled-mode theory for optical waveguides:an overview[J]. JOSA A, 1994, 11(3):963-983.
    [44] Liu G, He M, Tian Z, et al. Terahertz surface plasmon sensor for distinguishing gasolines[J]. Applied Optics, 2013, 52(23):5695-5700.
    [45] Chen Q, Cumming D R S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J]. Optics Express, 2010, 18(13):14056-14062.
    [46] Schrter U, Heitmann D. Surface-plasmon-enhanced transmission through metallic gratings[J]. Physical Review B, 1998, 58(23):15419-15421.
    [47] Ng B, Hanham S M, Wu J, et al. Broadband terahertz sensing on spoof plasmon surfaces[J]. ACS Photonics, 2014, 1(10):1059-1067.
    [48] Sihvola A. Metamaterials in electromagnetics[J]. Metamaterials, 2007, 1(1):2-11.
    [49] Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6):063908.
    [50] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792.
    [51] Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz[J]. Science, 2004, 306(5700):1351-1353.
    [52] Zhang F, Zhao Q, Kang L, et al. Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial[J]. Physical Review B, 2009, 80(19):195119.
    [53] Cong L, Manjappa M, Xu N, et al. Fano resonances in terahertz metasurfaces:a figure of merit optimization[J]. Advanced Optical Materials, 2015, 3(11):1537-1543.
    [54] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths:diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194.
    [55] Zheng G, Mhlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4):308.
    [56] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2):829-834.
    [57] Driscoll T, Andreev G O, Basov D N, et al. Tuned permeability in terahertz split-ring resonators for devices and sensors[J]. Applied Physics Letters, 2007, 91(6):062511.
    [58] Chiam S Y, Singh R, Gu J, et al. Increased frequency shifts in high aspect ratio terahertz split ring resonators[J]. Applied Physics Letters, 2009, 94(6):064102.
    [59] Cubukcu E, Zhang S, Park Y S, et al. Split ring resonator sensors for infrared detection of single molecular monolayers[J]. Applied Physics Letters, 2009, 95(4):043113.
    [60] Wang B X, Wang G Z, Sang T. Simple design of novel triple-band terahertz metamaterial absorber for sensing application[J]. Journal of Physics D:Applied Physics, 2016. 49(16):165307.
    [61] Hu X, Xu G, Wen L, et al. Metamaterial absorber integrated microfluidic terahertz sensors[J]. Laser Photonics Reviews, 2016, 10(6):962-969.
    [62] Singh R, Al-Naib I A I, Koch M, et al. Asymmetric planar terahertz metamaterials[J]. Optics Express, 2010, 18(12):13044-13050.
    [63] Wu X, Quan B, Pan X, et al. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specificbiosensor[J]. Biosensors and Bioelectronics, 2013, 42:626-631.
    [64] Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing[J]. Applied Physics Letters, 2007, 91(18):184102.
    [65] Singh R, Cao W, Al-Naib I, et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 2014, 105(17):171101.
    [66] Chiam S Y, Singh R, Zhang W, et al. Controlling metamaterial resonances via dielectric and aspect ratio effects[J]. Applied Physics Letters, 2010, 97(19):191906.
    [67] Tao H, Strikwerda A C, Liu M, et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications[J]. Applied Physics Letters, 2010, 97(26):261909.
    [68] Srivastava Y K, Cong L, Singh R. Dual-surface flexible THz Fano metasensor[J]. Applied Physics Letters, 2017, 111(20):201101.
    [69] Wu P C, Sun G, Chen W T, et al. Vertical split-ring resonator based nanoplasmonic sensor[J]. Applied Physics Letters, 2014, 105(3):033105.
    [70] Liu Z, Liu Z, Li J, et al. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials[J]. Scientific Reports, 2016, 6:27817.
    [71] Cheng Y, Mao X S, Wu C, et al. Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing[J]. Optical Materials, 2016, 53:195-200.
    [72] Wang W, Yan F, Tan S, et al. Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators[J]. Photonics Research, 2017, 5(6):571-577.
    [73] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402.
    [74] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7):2342-2348.
    [75] Cattoni A, Ghenuche P, Haghiri-Gosnet A M, et al. 3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography[J]. Nano Letters, 2011, 11(9):3557-3563.
    [76] Cong L, Tan S, Yahiaoui R, et al. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers:a comparison with the metasurfaces[J]. Applied Physics Letters, 2015, 106(3):031107.
    [77] Sun Y, Xia X, Feng H, et al. Modulated terahertz responses of split ring resonators by nanometer thick liquid layers[J]. Applied Physics Letters, 2008, 92(22):221101.
    [78] O'Hara J F, Singh R, Brener I, et al. Thin-film sensing with planar terahertz metamaterials:sensitivity and limitations[J]. Optics Express, 2008, 16(3):1786-1795.
    [79] Wang B X, Zhai X, Wang G Z, et al. A novel dual-band terahertz metamaterial absorber for a sensor application[J]. Journal of Applied Physics, 2015, 117(1):014504.
    [80] Yahiaoui R, Tan S, Cong L, et al. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber[J]. Journal of Applied Physics, 2015, 118(8):083103.
    [81] Yang D, Tian H, Ji Y. High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing[J]. Applied Optics, 2015, 54(1):1-5.
    [82] Fan F, Gu W H, Wang X H, et al. Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array[J]. Applied Physics Letters, 2013, 102(12):121113.
    [83] Hanham S M, Watts C, Otter W J, et al. Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies[J]. Applied Physics Letters, 2015, 107(3):032903.
    [84] Li X, Song J, Zhang J X J. Design of terahertz metal-dielectric-metal waveguide with microfluidic sensing stub[J]. Optics Communications, 2016, 361:130-137.
    [85] Zhang Y, Li T, Zeng B, et al. A graphene based tunable terahertz sensor with double Fano resonances[J]. Nanoscale, 2015, 7(29):12682-12688.
    [86] He X, Zhang Q, Lu G, et al. Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials[J]. Rsc Advances, 2016, 6(57):52212-52218.
    [87] Chen X, Fan W, Song C. Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing[J]. Carbon, 2018. 133:416-422.
    [88] 李向军. 基于太赫兹时域谱技术的有机分子溶液检测与分析研究[D]. 杭州:浙江大学, 2011.
    [89] Bui T S, Dao T D, Dang L H, et al. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules[J]. Scientific Reports, 2016, 6:32123.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(745) PDF downloads(238) Cited by()

Related
Proportional views

Research progress of terahertz sensor based on artificial microstructure

doi: 10.3788/IRLA201948.0203001
  • 1. Key Lab of Nanodevices and Applications,Suzhou Institute of Nano-tech and Nano-bionics,Chinese Academy of Sciences,Suzhou 215123,China;
  • 2. School of Nano Technology and Nano Bionics,University of Science and Technology of China,Hefei 230026,China;
  • 3. Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications,Institute of Nanophotonics,Jinan University,Guangzhou 511443,China

Abstract: Recently, terahertz(THz) technology has developed rapidly, showing promising potential in the fields of communication, anti-terrorism, monitoring and biomedicine, etc. In particular, terahertz biosensor has attracted extensive attentions in biotechnology, because many biological molecules and materials have their finger prints in the THz absorption spectra, and the damage by the low power terahertz wave is low. However, the THz wave-matter interaction is relatively weak because of the mismatch between the long wavelength of THz wave and the size of biomolecules, which limits the performance of terahertz sensors. Current research interest is manipulating the spatial and spectral distributions of the electromagnetic fields based on the microstructures to enhance the sensitivity of the sensors. In this review, we are going to introduce the working mechanisms of various microstructure THz sensors and the recent progress, and then discuss their advantages and disadvantages, finally we conclude the major issues to be resolved and predict the future developing trend and potential applications.

Reference (89)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return