Volume 48 Issue 6
Jul.  2019
Turn off MathJax
Article Contents

Zhang Jialin, Chen Qian, Zhang Xiangyu, Sun Jiasong, Zuo Chao. Lens-free on-chip microscopy:theory, advances, and applications[J]. Infrared and Laser Engineering, 2019, 48(6): 603009-0603009(33). doi: 10.3788/IRLA201948.0603009
Citation: Zhang Jialin, Chen Qian, Zhang Xiangyu, Sun Jiasong, Zuo Chao. Lens-free on-chip microscopy:theory, advances, and applications[J]. Infrared and Laser Engineering, 2019, 48(6): 603009-0603009(33). doi: 10.3788/IRLA201948.0603009

Lens-free on-chip microscopy:theory, advances, and applications

doi: 10.3788/IRLA201948.0603009
  • Received Date: 2019-01-10
  • Rev Recd Date: 2019-02-20
  • Publish Date: 2019-06-25
  • Wide field-of-view (FOV) and high-resolution is one of the goals of optical microscopy. However, limited by the optical design in traditional optical microscopes, the space bandwidth product (SBP) is generally in the order of megapixels, and thus, high-resolution and wide FOV cannot be achieved at the same time. On the other hand, complex optical systems have also made microscopes increasingly expensive, cumbersome, complex and difficult to maintain, greatly limiting their promotion and application. Lensfree on-chip microscopy is a new computational imaging technology:without the imaging lens to focus, the sample is directly attached to the imaging sensor to record the diffraction patterns and the object information can be achieved with the corresponding reconstructed method. Due to its wide FOV, high-resolution, label-free detection, low-cost, perfect portability and three-dimensional (3D) imaging, the lensfree on-chip microscope is expected to expand the boundaries of traditional microscopic imaging technology and becomes a new type of fast, point-of-care testing (POCT) tool. In this paper, a review was given to introduce the basic principles, experimental systems, reconstruction methods and applications of lens-free imaging. Finally, the changeling problems as well as future research directions were also discussed.
  • [1] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645.
    [2] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology[J]. Applied Spectroscopy, 2011, 65(9):967-980.
    [3] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11):780-782.
    [4] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7):686-698.
    [5] Nomarski G M. Differential microinterferometer with polarized waves[J]. J Phys Radium Paris, 1955, 16:9S.
    [6] Tsien R Y. The green fluorescent protein[J]. Annual Review of Biochemistry, 1998, 67(1):509-544.
    [7] Betzig E. Single molecules, cells, and super-resolution optics (nobel lecture)[J]. Angewandte Chemie International Edition, 2015, 54(28):8034-8053.
    [8] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10):793-796.
    [9] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2):82-87.
    [10] Stephens D J, Allan V J. Light microscopy techniques for live cell imaging[J]. Science, 2003, 300(5616):82-86.
    [11] Schneckenburger H, Weber P, Wagner M, et al. Light exposure and cell viability in fluorescence microscopy[J]. Journal of Microscopy, 2012, 245(3):311-318.
    [12] Sun Jiasong, Zhang Yuzhen, Chen Qian, et al. Fourier ptychographic microscopy:theory, advances, and applications[J]. Acta Optica Sinica, 2016, 36(10):1011005. (in Chinese)
    [13] Coskun A F, Ozcan A. Computational imaging, sensing and diagnostics for global health applications[J]. Current Opinion in Biotechnology, 2014, 25:8-16.
    [14] Brady D J, Choi K, Marks D L, et al. Compressive holography[J]. Optics Express, 2009, 17(15):13040-13049.
    [15] Xu W, Jericho M H, Meinertzhagen I A, et al. Digital in-line holography for biological applications[J]. Proceedings of the National Academy of Sciences, 2001, 98(20):11301-11305.
    [16] Greenbaum A, Luo W, Su T-W, et al. Imaging without lenses:achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9):889-895.
    [17] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5):5346-5362.
    [18] Kou S S, Waller L, Barbastathis G, et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[J]. Optics Letters, 2010, 35(3):447-449.
    [19] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation:fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8):9220-9244.
    [20] Zuo C, Sun J, Li J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Scientific Reports, 2017, 7(1):7654.
    [21] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy:a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2):023903.
    [22] Rodenburg J M. Ptychography and related diffractive imaging methods. Advances in Imaging and Electron Physics[M]. Burlington:Elsevier, 2008:87-184.
    [23] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9):739-745.
    [24] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(4):1336-1350.
    [25] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18):20724-20744.
    [26] Wang L V. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photonics, 2009, 3(9):503-509.
    [27] Li J, Chen Q, Sun J, et al. Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations[J]. Biomedical Optics Express, 2018, 9(6):2526-2542.
    [28] Javidi B, Ponce-Daz R, Hong S-H. Three-dimensional recognition of occluded objects by using computational integral imaging[J]. Optics Letters, 2006, 31(8):1106-1108.
    [29] Choi W, Fang-Yen C, Badizadegan K, et al. Tomographic phase microscopy[J]. Nature Mmethods, 2007, 4(9):717.
    [30] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 1982, 21(15):2758-2769.
    [31] Elser V. Phase retrieval by iterated projections[J]. JOSA A, 2003, 20(1):40-55.
    [32] Gonsalves R A. Phase retrieval from modulus data[J]. JOSA, 1976, 66(9):961-964.
    [33] Cands E, Eldar Y, Strohmer T, et al. Phase retrieval via matrix completion[J]. SIAM Review, 2015, 57(2):225-251.
    [34] Meinel A B. Aperture synthesis using independent telescopes[J]. Applied Optics, 1970, 9(11):2501-2504.
    [35] Mico V, Zalevsky Z, Garca-Martnez P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. JOSA A, 2006, 23(12):3162-3170.
    [36] Pacheco S, Salahieh B, Milster T, et al. Transfer function analysis in epi-illumination Fourier ptychography[J]. Optics Letters, 2015, 40(22):5343-5346.
    [37] Ma B, Zimmermann T, Rohde M, et al. Use of Autostitch for automatic stitching of microscope images[J]. Micron, 2007, 38(5):492-499.
    [38] Cui X, Lee L M, Heng X, et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the National Academy of Sciences, 2008, 105(31):10670-10675.
    [39] Su T, Seo S, Erlinger A, et al. Towards wireless health:lensless on-chip cytometry[J]. Optics and Photonics News, 2008, 19(12):24-24.
    [40] Seo S, Su T-W, Tseng K D, et al. Lensfree holographic imaging for on-chip cytometry and diagnostics[J]. Lab on a Chip, 2009, 9(6):777-787.
    [41] Isikman S, Seo S, Sencan I, et al. Lensfree cell holography on a chip:from holographic cell signatures to microscopic reconstruction[C]//2009 IEEE LEOS Annual Meeting Conference Proceedings, 2009:404-405.
    [42] Lee S A, Leitao R, Zheng G, et al. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis[J]. PLOS ONE, 2011, 6(10):e26127.
    [43] Zheng G, Lee S A, Antebi Y, et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)[J]. Proceedings of the National Academy of Sciences, 2011, 108(41):16889-16894.
    [44] Pang S, Cui X, DeModena J, et al. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate[J]. Lab on a Chip, 2010, 10(4):411-414.
    [45] Garcia-Sucerquia J, Xu W, Jericho S K, et al. Digital in-line holographic microscopy[J]. Applied Optics, 2006, 45(5):836-850.
    [46] Garcia-Sucerquia J, Xu W, Jericho M H, et al. Immersion digital in-line holographic microscopy[J]. Optics Letters, 2006, 31(9):1211-1213.
    [47] Kanka M, Riesenberg R, Kreuzer H J. Reconstruction of high-resolution holographic microscopic images[J]. Optics Letters, 2009, 34(8):1162-1164.
    [48] Kanka M, Riesenberg R, Petruck P, et al. High resolution (NA=0.8) in lensless in-line holographic microscopy with glass sample carriers[J]. Optics Letters, 2011, 36(18):3651-3653.
    [49] Mudanyali O, Tseng D, Oh C, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications[J]. Lab on a Chip, 2010, 10(11):1417-1428.
    [50] Bishara W, Su T-W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11):11181-11191.
    [51] Hahn J, Lim S, Choi K, et al. Video-rate compressive holographic microscopic tomography[J]. Optics Express, 2011, 19(8):7289-7298.
    [52] Luo W, Zhang Y, Grcs Z, et al. Propagation phasor approach for holographic image reconstruction[J]. Scientific Reports, 2016, 6:22738.
    [53] Xiong Z, Melzer J E, Garan J, et al. Optimized sensing of sparse and small targets using lens-free holographic microscopy[J]. Optics Express, 2018, 26(20):25676.
    [54] Agbana T E, Gong H, Amoah A S, et al. Aliasing, coherence, and resolution in a lensless holographic microscope[J]. Optics Letters, 2017, 42(12):2271-2274.
    [55] Zhang W, Cao L, Jin G, et al. Full field-of-view digital lens-free holography for weak-scattering objects based on grating modulation[J]. Applied Optics, 2018, 57(1):A164.
    [56] Allier C, Morel S, Vincent R, et al. Imaging of dense cell cultures by multiwavelength lens-free video microscopy:cell cultures by lens-free microscopy[J]. Cytometry Part A, 2017, 91(5):433-442.
    [57] Serabyn E, Liewer K, Wallace J K. Resolution optimization of an off-axis lensless digital holographic microscope[J]. Applied Optics, 2018, 57(1):A172.
    [58] Feng S, Wu J. Resolution enhancement method for lensless in-line holographic microscope with spatially-extended light source[J]. Optics Express, 2017, 25(20):24735.
    [59] Feng S, Wang M, Wu J. Lensless in-line holographic microscope with Talbot grating illumination[J]. Optics Letters, 2016, 41(14):3157.
    [60] Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy[J]. Optics Express, 2012, 20(3):3129-3143.
    [61] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 2001, 199(1):65-75.
    [62] Zhang Y, Pedrini G, Osten W, et al. Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm[J]. Optics Express, 2003, 11(24):3234-3241.
    [63] Bishara W, Sikora U, Mudanyali O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array[J]. Lab on a Chip, 2011, 11(7):1276-1279.
    [64] Greenbaum A, Feizi A, Akbari N, et al. Wide-field computational color imaging using pixel super-resolved on-chip microscopy[J]. Optics Express, 2013, 21(10):12469-12483.
    [65] Greenbaum A, Sikora U, Ozcan A. Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging[J]. Lab on a Chip, 2012, 12(7):1242-1245.
    [66] Zheng G, Ah Lee S, Yang S, et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging[J]. Lab on a Chip, 2010, 10(22):3125-3129.
    [67] Luo W, Zhang Y, Feizi A, et al. Pixel super-resolution using wavelength scanning[J]. Light:Science Applications, 2016, 5(4):e16060.
    [68] Hussain A, Li Y, Liu D, et al. Lensless imaging through multiple phase patterns illumination[J]. Journal of Biomedical Optics, 2017, 22(11):110502.
    [69] Hussain A, Li Y, Liu D, et al. On-chip microscopy using random phase mask scheme[J]. Scientific Reports, 2017, 7(1):14768.
    [70] Feng S, Wang M, Wu J. Enhanced resolution in lensless in-line holographic microscope by data interpolation and iterative reconstruction[J]. Optics Communications, 2017, 402:104-108.
    [71] Zuo C, Chen Q, Sun J, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation:a review[J]. Chinese J Lasers, 2016, 43(6):0609002.
    [72] Gorthi S S, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope[J]. Optics Letters, 2012, 37(4):707-709.
    [73] Cheng H, Zhang Q, Wei S, et al. Phase retrieval based on transport-of-intensity equation[J]. Acta Photonica Sinica, 2011, 40(10):1566-1570.
    [74] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14):17172-17186.
    [75] Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics Express, 2015, 23(11):14314-14328.
    [76] Zhang J, Sun J, Chen Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7(1):11777.
    [77] Zhang J, Chen Q, Li J, et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J]. Optics Letters, 2018, 43(15):3714-3717.
    [78] Kesavan S V, Momey F, Cioni O, et al. High-throughput monitoring of major cell functions by means of lensfree video microscopy[J]. Scientific Reports, 2014, 4:5942.
    [79] Goodman J W. Statistical Optics[M]. Hoboken:John Wiley Sons, 2015.
    [80] Su T-W, Seo S, Erlinger A, et al. High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip[J]. Biotechnology and Bioengineering, 2009, 102(3):856-868.
    [81] Ozcan A, Demirci U. Ultra wide-field lens-free monitoring of cells on-chip[J]. Lab on a Chip, 2008, 8(1):98-106.
    [82] Zhang X, Khimji I, Atakan Gurkan U, et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting[J]. Lab on a Chip, 2011, 11(15):2535-2540.
    [83] Moscelli N, van den Driesche S, Witarski W, et al. An imaging system for real-time monitoring of adherently grown cells[J]. Sensors and Actuators A:Physical, 2011, 172(1):175-180.
    [84] Bok Kim S, Bae H, Min Cha J, et al. A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging[J]. Lab on a Chip, 2011, 11(10):1801-1807.
    [85] Jin G, Yoo I-H, Pack S P, et al. Lens-free shadow image based high-throughput continuous cell monitoring technique[J]. Biosensors and Bioelectronics, 2012, 38(1):126-131.
    [86] Dolega M E, Allier C, Kesavan S V, et al. Label-free analysis of prostate acini-like 3D structures by lensfree imaging[J]. Biosensors and Bioelectronics, 2013, 49:176-183.
    [87] Kwak Y H, Lee J, Lee J, et al. A simple and low-cost biofilm quantification method using LED and CMOS image sensor[J]. Journal of Microbiological Methods, 2014, 107:150-156.
    [88] Penwill L A, Batten G E, Castagnetti S, et al. Growth phenotype screening of Schizosaccharomyces pombe using a Lensless microscope[J]. Biosensors and Bioelectronics, 2014, 54:345-350.
    [89] Pushkarsky I, Liu Y, Weaver W, et al. Automated single-cell motility analysis on a chip using lensfree microscopy[J]. Scientific Reports, 2014, 4:4717.
    [90] Tsai H F, Tsai Y C, Yagur Kroll S, et al. Water pollutant monitoring by a whole cell array through lens-free detection on CCD[J]. Lab on a Chip, 2015, 15(6):1472-1480.
    [91] Kesavan S V, Garcia F P N Y, Menneteau M, et al. Real-time label-free detection of dividing cells by means of lensfree video-microscopy[J]. Journal of Biomedical Optics, 2014, 19(3):036004.
    [92] Lee L M, Cui X, Yang C. The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts[J]. Biomedical Microdevices, 2009, 11(5):951.
    [93] Coskun A F, Sencan I, Su T W, et al. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects[J]. Optics Express, 2010, 18(10):10510-10523.
    [94] Coskun A F, Su T W, Ozcan A. Wide field-of-view lens-free fluorescent imaging on a chip[J]. Lab on a Chip, 2010, 10(7):824-827.
    [95] Shanmugam A, Salthouse C D. Lensless fluorescence imaging with height calculation[J]. Journal of Biomedical Optics, 2014, 19(1):016002.
    [96] Coskun A F, Sencan I, Su T W, et al. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip[J]. Analyst, 2011, 136(17):3512-3518.
    [97] Coskun A F, Sencan I, Su T W, et al. Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view[J]. PLOS ONE, 2011, 6(1):e15955.
    [98] Martinelli L, Choumane H, Ha K N, et al. Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays:Role of a high rejection of excitation light[J]. Applied Physics Letters, 2007, 91(8):083901.
    [99] Lee S A, Ou X, Lee J E, et al. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor[J]. Optics Letters, 2013, 38(11):1817-1819.
    [100] Ozcan A, McLeod E. Lensless imaging and sensing[J]. Annual Review of Biomedical Engineering, 2016, 18(1):77-102.
    [101] Khademhosseinieh B, Sencan I, Biener G, et al. Lensfree on-chip imaging using nanostructured surfaces[J]. Applied Physics Letters, 2010, 96(17):171106.
    [102] Khademhosseinieh B, Biener G, Sencan I, et al. Lensfree color imaging on a nanostructured chip using compressive decoding[J]. Applied Physics Letters, 2010, 97(21):211112.
    [103] Han C, Pang S, Bower D V, et al. Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator[J]. Analytical Chemistry, 2013, 85(4):2356-2360.
    [104] Richardson W H. Bayesian-based iterative method of image restoration[J]. JOSA, 1972, 62(1):55-59.
    [105] Lucy L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 1974, 79:745.
    [106] Pech-Pacheco J L, Cristobal G, Chamorro-Martinez J, et al. Diatom autofocusing in brightfield microscopy:a comparative study[C]//Proceedings of 15th International Conference on Pattern Recognition, 2000, 3:314-31.
    [107] Mudanyali O, Oztoprak C, Tseng D, et al. Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy[J]. Lab on a Chip, 2010, 10(18):2419-2423.
    [108] Denis L, Fournier C, Fournel T, et al. Numerical suppression of the twin image in in-line holography of a volume of micro-objects[J]. Measurement Science and Technology, 2008, 19(7):074004.
    [109] Hardie R C, Barnard K J, Bognar J G, et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system[J]. Optical Engineering, 1998, 37(1):247-261.
    [110] Park S C, Park M K, Kang M G. Super-resolution image reconstruction:a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3):21-36.
    [111] Elad M, Hel-Or Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[J]. IEEE Transactions on Image Processing, 2001, 10(8):1187-1193.
    [112] Mudanyali O, Bishara W, Ozcan A. Lensfree super-resolution holographic microscopy using wetting films on a chip[J]. Optics Express, 2011, 19(18):17378-17389.
    [113] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light:Science Applications, 2015, 4(3):e261.
    [114] Goodman J W. Introduction to Fourier Optics[M]. Colorado:Roberts and Company Publishers, 2005.
    [115] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1):27-29.
    [116] Koren G, Polack F, Joyeux D. Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints[J]. JOSA A, 1993, 10(3):423-433.
    [117] Mudanyali O, McLeod E, Luo W, et al. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses[J]. Nature Photonics, 2013, 7(3):247-254.
    [118] Greenbaum A, Zhang Y, Feizi A, et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy[J]. Science Translational Medicine, 2014, 6(267):267ra175.
    [119] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3:1717.
    [120] Wei Q, McLeod E, Qi H, et al. On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography[J]. Scientific Reports, 2013, 3:1699.
    [121] Min J, Yao B, Zhou M, et al. Phase retrieval without unwrapping by single-shot dual-wavelength digital holography[J]. Journal of Optics, 2014, 16(12):125409.
    [122] Bao P, Situ G, Pedrini G, et al. Lensless phase microscopy using phase retrieval with multiple illumination wavelengths[J]. Applied Optics, 2012, 51(22):5486-5494.
    [123] Meng H, Hussain F. In-line recording and off-axis viewing technique for holographic particle velocimetry[J]. Applied Optics, 1995, 34(11):1827-1840.
    [124] Isikman S O, Bishara W, Ozcan A. Partially coherent lensfree tomographic microscopy[J]. Applied Optics, 2011, 50(34):H253-H264.
    [125] Isikman S O, Bishara W, Mavandadi S, et al. Lens-free optical tomographic microscope with a large imaging volume on a chip[J]. Proceedings of the National Academy of Sciences, 2011, 108(18):7296-7301.
    [126] Su T-W, Isikman S O, Bishara W, et al. Multi-angle lensless digital holography for depth resolved imaging on a chip[J]. Optics Express, 2010, 18(9):9690-9711.
    [127] Berdeu A, Momey F, Laperrousaz B, et al. Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy[J]. Applied Optics, 2017, 56(13):3939.
    [128] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1):269-271.
    [129] Greenbaum A, Akbari N, Feizi A, et al. Field-portable pixel super-resolution colour microscope[J]. PLOS ONE, 2013, 8(9):e76475.
    [130] Kim D S, Choi J H, Nam M H, et al. LED and CMOS image sensor based hemoglobin concentration measurement technique[J]. Sensors and Actuators B:Chemical, 2011, 157(1):103-109.
    [131] Lee J, Kwak Y H, Paek S H, et al. CMOS image sensor-based ELISA detector using lens-free shadow imaging platform[J]. Sensors and Actuators B:Chemical, 2014, 196:511-517.
    [132] Tanaka T, Saeki T, Sunaga Y, et al. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging[J]. Biosensors and Bioelectronics, 2010, 26(4):1460-1465.
    [133] Grcs Z, Orz L, Kiss M, et al. In-line color digital holographic microscope for water quality measurements[C]//Laser Applications in Life Sciences. International Society for Optics and Photonics, 2010, 7376:737614.
    [134] Jack K. Video Demystified:a Handbook for the Digital Engineer[M]. Burlington:Elsevier, 2011.
    [135] Ren Z, Xu Z, Lam E Y. Autofocusing in digital holography using deep learning[C]//Three-Dimensional and Multidimensional Microscopy:Image Acquisition and Processing XXV. International Society for Optics and Photonics, 2018, 10499:104991V.
    [136] Ren Z, Xu Z, Lam E Y. Learning-based nonparametric autofocusing for digital holography[J]. Optica, 2018, 5(4):337-344.
    [137] Zhang G, Guan T, Shen Z, et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express, 2018, 26(15):19388-19405.
    [138] Wang H, Lyu M, Situ G. eHoloNet:a learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 2018, 26(18):22603-22614.
    [139] Nguyen T, Bui V, Lam V, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 2017, 25(13):15043-15057.
    [140] Goy A, Arthur K, Li S, et al. Low photon count phase retrieval using deep learning[J]. Physical Review Letters, 2018, 121(24):243902.
    [141] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7):803-813.
    [142] Lyu M, Wang W, Wang H, et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 2017, 7(1):17865.
    [143] Rivenson Y, Grcs Z, Gnaydin H, et al. Deep learning microscopy[J]. Optica, 2017, 4(11):1437-1443.
    [144] Wang H, Rivenson Y, Jin Y, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 2019, 16(1):103.
    [145] Nehme E, Weiss L E, Michaeli T, et al. Deep-STORM:super-resolution single-molecule microscopy by deep learning[J]. Optica, 2018, 5(4):458-464.
    [146] Ouyang W, Aristov A, Lelek M, et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology, 2018, 36(5):460-468.
    [147] Rivenson Y, Zhang Y, Gnaydin H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light:Science Applications, 2018, 7(2):17141.
    [148] Horisaki R, Fujii K, Tanida J. Single-shot and lensless complex-amplitude imaging with incoherent light based on machine learning[J]. Optical Review, 2018, 25(5):593-597.
    [149] Sinha A, Lee J, Li S, et al. Lensless computational imaging through deep learning[J]. Optica, 2017, 4(9):1117.
    [150] Ahn D, Lee J, Moon S, et al. Human-level blood cell counting on lens-free shadow images exploiting deep neural networks[J]. The Analyst, 2018, 143(22):5380-5387.
    [151] Flaccavento G, Lempitsky V, Pope I, et al. Learning to count cells:applications to lens-free imaging of large fields[J]. Microscopic Image Analysis with Applications in Biology, 2011, 1:3.
    [152] Feizi A, Zhang Y, Greenbaum A, et al. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning[J]. Lab on a Chip, 2016, 16(22):4350-4358.
    [153] Huang X, Guo J, Wang X, et al. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing[J]. PLOS ONE, 2014, 9(8):e104539.
    [154] Rempfler M, Kumar S, Stierle V, et al. Cell lineage tracing in lens-free microscopy videos[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, 2017:3-11.
    [155] Grcs Z, Tamamitsu M, Bianco V, et al. A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples[J]. Light:Science Applications, 2018, 7(1):66.
    [156] Huang X, Wang X, Yan M, et al. A robust recognition error recovery for micro-flow cytometer by machine-learning enhanced single-frame super-resolution processing[J]. Integration, the VLSI Journal, 2015, 51:208-218.
    [157] Su T-W, Choi I, Feng J, et al. Sperm trajectories form chiral ribbons[J]. Scientific Reports, 2013, 3:1664.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2535) PDF downloads(779) Cited by()

Related
Proportional views

Lens-free on-chip microscopy:theory, advances, and applications

doi: 10.3788/IRLA201948.0603009
  • 1. School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

Abstract: Wide field-of-view (FOV) and high-resolution is one of the goals of optical microscopy. However, limited by the optical design in traditional optical microscopes, the space bandwidth product (SBP) is generally in the order of megapixels, and thus, high-resolution and wide FOV cannot be achieved at the same time. On the other hand, complex optical systems have also made microscopes increasingly expensive, cumbersome, complex and difficult to maintain, greatly limiting their promotion and application. Lensfree on-chip microscopy is a new computational imaging technology:without the imaging lens to focus, the sample is directly attached to the imaging sensor to record the diffraction patterns and the object information can be achieved with the corresponding reconstructed method. Due to its wide FOV, high-resolution, label-free detection, low-cost, perfect portability and three-dimensional (3D) imaging, the lensfree on-chip microscope is expected to expand the boundaries of traditional microscopic imaging technology and becomes a new type of fast, point-of-care testing (POCT) tool. In this paper, a review was given to introduce the basic principles, experimental systems, reconstruction methods and applications of lens-free imaging. Finally, the changeling problems as well as future research directions were also discussed.

Reference (157)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return