Volume 48 Issue 6
Jul.  2019
Turn off MathJax
Article Contents

Chen Ni, Zuo Chao, Byoungho Lee. 3D imaging based on depth measurement[J]. Infrared and Laser Engineering, 2019, 48(6): 603013-0603013(25). doi: 10.3788/IRLA201948.0603013
Citation: Chen Ni, Zuo Chao, Byoungho Lee. 3D imaging based on depth measurement[J]. Infrared and Laser Engineering, 2019, 48(6): 603013-0603013(25). doi: 10.3788/IRLA201948.0603013

3D imaging based on depth measurement

doi: 10.3788/IRLA201948.0603013
  • Received Date: 2019-01-05
  • Rev Recd Date: 2019-02-22
  • Publish Date: 2019-06-25
  • Three-dimensional(3D) imaging has attracted more and more interest because of its wide spread applications, especially in information and life science. These techniques can be broadly divided into two types:ray-based and wavefront-based 3D imaging. Issues such as imaging quality and system complexity of these techniques limit the applications significantly, and therefore many investigations are focused on 3D imaging from depth measurements. An overview of 3D imaging from depth measurements was presented, providing a summary of the connection between the ray-based and wavefront-based 3D imaging techniques, and showed the research direction of the depth measurement based 3D imaging research.
  • [1] Watanabe T M, Sato T, Gonda K, et al. Three-dimensional nanometry of vesicle transport in living cells using dual-focus imaging optics[J]. Biochem Biophys Res Commun, 2007, 359:1-7.
    [2] Tanida J, Kumagai T, Yamada K, et al. Thin observation module by bound optics (TOMBO):concept and experimental verification[J]. Appl Opt, 2001, 40:1806-1813.
    [3] Yamaguchi M. Light-field and holographic three-dimensional displays[J]. J Opt Soc Am A, 2016, 33:2348-2364.
    [4] Martnez-Corral M, Javidi B. Fundamentals of 3D imaging and displays:A tutorial on integral imaging, light-field, and plenoptic systems[J]. Adv Opt Photonics, 2018, 10:512-566.
    [5] Bruning J H, Herriott D R, Gallagher J E, et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses[J]. Appl Opt, 1974, 13:2693-2703.
    [6] Wolf E. Three-dimensional structure determination of semi-transparent objects from holographic data[J]. Opt Commun,1969, 1:153-156.
    [7] Born M, Wolf E. Principles of Optics[M]. 7th ed. Cambridge:Cambridge University Press, 1999.
    [8] Saleh B E, Teich M C, Saleh B E. Fundamentals of Photonics[M]. 2nd ed. Wiley:New York, 2007.
    [9] Gershun A. The light field[J]. J Math Phys, 1939, 18:51-151.
    [10] Lam E Y. Computational photography with plenoptic camera and light field capture:Tutorial[J]. J Opt Soc Am, 2015, 32:2021-2032.
    [11] Zheng J, Mic V, Gao P. Resolution enhancement in phase microscopy:A review[J]. Preprints, 2018,
    [12] Hong J, Kim Y, Choi H J, et al. Three-Dimensional display technologies of recent interest:principles, status, and issues[J]. Appl Opt, 2011, 50:H87-H115.
    [13] Park S G, Yeom J, Jeong Y, et al. Recent issues on integral imaging and its applications[J]. J Inf Dis, 2014, 15:37-46.
    [14] Zhao Y, Kwon K C, Piao Y L, et al. Depth-layer weighted prediction method for a full-color polygon-based holographic system with real objects[J]. Opt Lett, 2017, 42:2599-2602.
    [15] Li G, Hong K, Yeom J, et al. Acceleration method for computer generated spherical hologram calculation of real objects using graphics processing unit[J]. Chin Opt Lett, 2014, 12:060016.
    [16] Mait J N, Euliss G W, Athale R A. Computational imaging[J]. Adv Opt Photonics, 2018, 10:409-483.
    [17] Horisaki R, Ogura Y, Aino M, et al. Single-shot phase imaging with a coded aperture[J]. Opt Lett, 2014, 39:6466-6469.
    [18] Fienup J R. Phaseretrieval algorithms:Acomparison[J]. Appl Opt, 1982, 21:2758-2769.
    [19] Testorf M, Hennelly, B, Ojeda-Castaneda J. Phase-Space Optics[M]. New York:McGraw-Hill Professional Publishing, 2009.
    [20] Teague MR. Deterministic phase retrieval:A Green's function solution[J]. J Opt Soc Am, 1983, 73:1434-1441.
    [21] Gabor D. A new microscopic principle[J]. Nature, 1948, 161:777-778.
    [22] Poon T C. Digital Holography and Three-Dimensional Display:Principles and Applications[M]. London:Springer, 2006.
    [23] Boesl U. Time-of-flight mass spectrometry:Introduction to the basics[J]. Mass Spectrom Rev, 2016, 36:86-109.
    [24] Geng J. Structured-light 3D surface imaging:A tutorial[J]. Adv Opt Photonics, 2011, 3:128-160.
    [25] Banks M S, Read J C A, Allison R S, et al. Stereoscopy and the Human Visual System[J]. SMPTE Motion Imaging J, 2012, 121:24-43.
    [26] Orth A, Crozier K B. Light field moment imaging[J]. Opt Lett, 2013, 38:2666-2668.
    [27] Levoy M. Light fields and computational imaging[J]. Computer, 2006, 39:46-55.
    [28] Levoy M, Ng R, Adams A, et al. Light field microscopy[J]. ACM Trans Gr, 2006, 25:924-934.
    [29] Ng R. Fourier slice photography[J]. ACM Trans Gr, 2005, 24:735-744.
    [30] Levoy M, Hanrahan P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 1996:31-42.
    [31] Ng R, Levoy M, Brdif M, et al. Light field photography with a hand-held plenoptic camera[J]. Comput Sci Tech Rep, 2005, 2:1-11.
    [32] Xiao X, Javidi B, Martinez-Corral M, et al. Advances in three-dimensional integral imaging:sensing, display, and applications[J]. Appl Opt, 2013, 52:546-560.
    [33] Wilburn B, Joshi N, Vaish V, et al. High performance imaging using large camera arrays[J]. ACM Trans Gr, 2005, 24:765-776.
    [34] Lin X, Wu J, Zheng G, et al. Camera array based light field microscopy[J]. Biomed Opt Express, 2015, 6:3179-3189.
    [35] Georgiev T, Zheng K C, Curless B, et al. Spatio-angular resolution tradeoffs in integral photography[J]. Render Tech,2006:263-272.
    [36] Veeraraghavan A, Raskar R, Agrawal A, et al. Dappled photography:Mask enhanced cameras for heterodyned light fields and coded aperture refocusing[J]. ACM Trans Gr, 2007, 26:69.
    [37] Liang C K, Lin T H, Wong B Y, et al. Programmable aperture photography:Multiplexed light field acquisition[J]. ACM Trans Gr, 2008, 27:55:1-55:10.
    [38] Fuchs M, Kachele M, Rusinkiewicz S. Design and fabrication of faceted mirror arrays for light field capture[J]. Comput Gr Forum, 2013, 32:246-257.
    [39] Manakov A, Restrepo J F, Klehm O, et al. A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging[J]. ACM Trans Gr, 2013, 32:1-47.
    [40] Levoy M, Zhang Z, Mcdowall I. Recording and controlling the 4D light field in a microscope using microlens arrays[J]. J Microsc, 2009, 235:144-162.
    [41] Ng R. Digital light field photography[D]. San Francisco:Standford University, 2006.
    [42] Park J H, Hong K, Lee B. Recent progress in three-dimensional information processing based on integral imaging[J]. Appl Opt, 2009, 48:H77-H94.
    [43] Chen N, Park J H, Kim N. Parameter analysis of integral Fourier hologram and its resolution enhancement[J]. Opt Express, 2010, 18:2152-2167.
    [44] Chen N, Yeom J, Jung J H, et al. Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays[J]. Opt Express,2011, 19:26917-26927.
    [45] Denisyuk Y N. On the reflection of optical properties of an object in a wave field of light scattered by it[J]. Dokl Akad Nauk, SSSR, 1962, 144:1275-1278.
    [46] Leith E N, Upatnieks J. Wavefront reconstruction with continuous-tone objects[J]. J Opt Soc Am, 1963, 53:1377-1381.
    [47] Hariharan P, Oreb B F, Eiju T. Digital phase-shifting interferometry:A simple error-compensating phase calculation algorithm[J]. Appl Opt, 1987, 26:2504-2506.
    [48] Nugent K A. X-ray non-interferometric phase imaging:A unified picture[J]. J Opt Soc Am A, 2007, 24:536-547.
    [49] Chen N, Ren Z, Li D, et al. Analysis of the noise in back-projection light field acquisition and its optimization[J]. Appl Opt, 2017, 56:F20-F26.
    [50] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. New Zealand:Roberts Company, 2005.
    [51] Park J H, Seo S W, Chen N, et al. Fourier hologram generation from multiple incoherent defocused images[C]//The Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, 2010:7690-7698.
    [52] Park J H, Seo S W, Chen N, et al. Hologram synthesis from defocused images captured under incoherent illumination[C]//Proceedings of the Digital Holography and Three-Dimensional Imaging, 2010:12-14.
    [53] Levin A, Durand F. Linear view synthesis using a dimensionality gap light field prior[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010:1831-1838.
    [54] Marwah K, Wetzstein G, Bando Y, et al. Compressive light field photography using overcomplete dictionaries and optimized projections[J]. ACM Trans Gr, 2013, 32, 46:1-46:12.
    [55] Bailey S W, Echevarria J I, BodenheimerB, et al. Fast depth from defocus from focal stacks[J]. Vis Comput, 2014, 31:1697-1708.
    [56] Kuthirummal S, Nagahara H, Zhou C, et al. Flexible depth of field photography[J]. IEEE Trans Pattern Anal Mach Intell, 2011, 33:58-71.
    [57] Zeng G L. One-angle fluorescence tomography with in-and-out motion[J]. J Electron Imaging, 2013, 22:043018.
    [58] McMillan L, Bishop G. Plenoptic modeling:An image-based rendering system[C]//Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995:39-46.
    [59] Park J H, Lee S K, Jo N Y, et al. Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays[J]. Opt Express, 2014, 22:25444-25454.
    [60] Mousnier A, Vural E, Guillemot C. Partial light field tomographic reconstruction from a fixed-camera focal stack[J]. Computer Science, 2015, 22(8):347-356.
    [61] Wang H, Chen N, Zheng S, et al. Fast and high-resolution light field acquisition using defocus modulation[J]. Appl Opt, 2018, 57:A250-A256.
    [62] Wang H, Chen N, Liu J, et al. Light field imaging based on defocused photographic images[C]//Digital Holography and Three-Dimensional Imaging, 2017:W3A-3.
    [63] Chen N, Ren Z, Lam E Y. High-resolution Fourier hologram synthesis from photographic images through computing the light field[J]. Appl Opt, 2016, 55:1751-1756.
    [64] Liu J, Xu T, Yue W, et al. Light-field moment microscopy with noise reduction[J]. Opt Express, 2015, 23:29154-29162.
    [65] Zhang Z, Levoy M. Wigner distributions and how they relate to the light field[C]//Proceedings of the 2009 IEEE International Conference on Computational Photography (ICCP), 2009:1-10.
    [66] Liu C, Qiu J, Jiang M. Light field reconstruction from projection modeling of focal stack[J]. Opt Express, 2017, 25:11377-11388.
    [67] Yin X, Wang G, Li W, et al. Iteratively reconstructing 4D light fields from focal stacks[J]. Appl Opt, 2016, 55:8457-8463.
    [68] Jiang Z, Pan X, Liu C, et al. Light field moment imaging with the ptychographic iterative engine[J]. AIP Adv, 2014, 4:107108.
    [69] Teague M R. Irradiance moments:their propagation and use for unique retrieval of phase[J]. J Opt Soc Am, 1982, 72:1199-1209.
    [70] Falaggis K, Kozacki T, Kujawin'ska M, et al. Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function[J]. Opt Lett, 2014, 39:30-33.
    [71] Martinez-Carranza J, Falaggis K, Kozacki T. Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers[J]. Opt Lett, 2014, 39:182-185.
    [72] Liu C, Qiu J, Zhao S. Iterative reconstruction of scene depth with fidelity based on light field data[J]. Appl Opt, 2017, 56:3185-3192.
    [73] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Opt Express, 2013, 21:24060-24075.
    [74] Gerchberg R W, Saxton W O. A practical algorithm for the determination of the phase from image and diffraction plane pictures[J]. J Phys D Appl Phys, 1972, 35:237-246.
    [75] Gureyev T E, Roberts A, Nugent K A. Partially coherent fields, the transport-of-intensity equation, and phase uniqueness[J]. J Opt Soc Am A, 1995, 12:1942-1946.
    [76] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Phys Rev Lett, 1998, 80:2586-2589.
    [77] Yang G Z, Dong B Z, Gu B Y, et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system:A comparison[J]. Appl Opt, 1994, 33:209-218.
    [78] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Opt Lett, 1978, 3:27-29.
    [79] Cederquist J N, Fienup J R, Wackerman C C, et al. Wave-front phase estimation from Fourier intensity measurements[J]. J Opt Soc Am A, 1989, 6:1020-1026.
    [80] Devaney A J, Chidlaw R. On the uniqueness question in the problem of phase retrieval from intensity measurements[J]. J Opt Soc Am, 1978, 68:1352-1354.
    [81] Fienup J R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint[J]. J Opt Soc Am A, 1987, 4:118-123.
    [82] Guo C, Liu S, Sheridan JT. Iterative phase retrieval algorithms I:optimization[J]. Appl Opt, 2015, 54:4698-4708.
    [83] Rolleston R, George N. Image reconstruction from partial Fresnel zone information[J]. Appl Opt, 1986, 25:178-183.
    [84] Misell D L. An examination of an iterative method for the solution of the phase problem in optics and electron optics:I. Test calculations[J]. J Phys D Appl Phys, 1973, 6:2200-2216.
    [85] Fienup J R. Lensless coherent imaging by phase retrieval with an illumination pattern constraint[J]. Opt Express, 2006, 14:498-508.
    [86] Guo C, Shen C, Li Q, et al. A fast-converging iterative method based on weighted feedback for multi-distance phase retrieval[J]. Sci Rep, 2018, 8:6436.
    [87] Konijnenberg A, Coene W, Pereira S, et al. Combining ptychographical algorithms with the Hybrid Input-Output (HIO) algorithm[J]. Ultramicroscopy, 2016, 171:43-54.
    [88] Lu X, Gao W, Zuo J M, et al. Atomic resolution tomography reconstruction of tilt series based on a GPU accelerated hybrid input-output algorithm using polar Fourier transform[J]. Ultramicroscopy, 2015, 149:64-73.
    [89] Rolleston R, George N. Stationary phase approximations in Fresnel-zone magnitude-only reconstructions[J]. J Opt Soc Am A, 1987, 4:148-153.
    [90] Dean B H, Bowers C W. Diversity selection for phase-diverse phase retrieval[J]. J Opt Soc Am A, 2003, 20:1490-1504.
    [91] Mayo S C, Miller P R, Wilkins S W, et al. Quantitative X-ray projection microscopy:phase-contrast and multi-spectral imaging[J]. J Microsc, 2002, 207:79-96.
    [92] Anand A, Pedrini G, Osten W, et al. Wavefront sensing with random amplitude mask and phase retrieval[J]. Opt Lett,2007, 32:1584-1586.
    [93] Almoro P F, Hanson S G. Random phase plate for wavefront sensing via phase retrieval and a volume speckle field[J]. Appl Opt, 2008, 47:2979-2987.
    [94] Zhang F, Chen B, Morrison G R, et al. Phase retrieval by coherent modulation imaging[J]. Nat Commun, 2016, 7:13367.
    [95] Brady G R, Guizar-Sicairos M, Fienup J R. Optical wavefront measurement using phase retrieval with transverse translation diversity[J]. Opt Express, 2009, 17:624-639.
    [96] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Appl Phys Lett, 2004, 85:4795-4797.
    [97] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Opt Lett, 2005, 30:833-835.
    [98] Chen N, Yeom J, Hong K, et al. Fast converging algorithm for wavefront reconstruction based on a sequence of diffracted intensity images[J]. J Opt Soc Korea, 2014, 18:217-224.
    [99] Bao P, Zhang F, Pedrini G, et al. Phase retrieval using multiple illumination wavelengths[J]. Opt Lett, 2008, 33:309-311.
    [100] Zhou A, Chen N, Wang H, et al. Analysis of Fourier ptychographic microscopy with half of the captured images[J]. J Opt, 2018, 20:095701.
    [101] Zhou A, Wang W, Chen N, et al. Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction[J]. Opt Express, 2018, 26:23661-23674.
    [102] Gao P, Pedrini G, Osten W. Phase retrieval with resolution enhancement by using structured illumination[J]. Opt Lett, 2013, 38:5204-5207.
    [103] Almoro P, Pedrini G, Osten W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field[J]. Appl Opt, 2006, 45:8596-8605.
    [104] Camacho L, Mic V, Zalevsky Z, et al. Quantitative phase microscopy using defocussing by means of a spatial light modulator[J]. Opt Express, 2010, 18:6755-6766.
    [105] Agour M, Almoro P F, Falldorf C. Investigation of smooth wave fronts using SLM-based phase retrieval and a phase diffuser[J]. J Eur Opt Soc Rapid Publ, 2012, 7:12051.
    [106] Almoro P F, Glckstad J, Hanson S G. Single-plane multiple speckle pattern phase retrieval using a deformable mirror[J]. Opt Express, 2010, 18:19304-19313.
    [107] Roddier F, Roddier C, Roddier N. Curvature sensing:A new wavefront sensing method[C]//Proceedings of the 32nd Annual International Technical Symposium on Optical and Optoelectronic Applied Science and Engineering, 1988.
    [108] Bajt S, Barty A, Nugent K, et al. Quantitative phase-sensitive imaging in a transmission electron microscope[J]. Ultramicroscopy, 2000, 83:67-73.
    [109] Nugent K A. Coherent methods in the X-ray sciences[J]. Adv Phys, 2010, 59:1-99.
    [110] Allman B, McMahon P, Nugent K, et al. Phase radiography with neutrons[J]. Nature, 2000, 408:158-159.
    [111] Streibl N. Phase imaging by the transport equation of intensity[J]. Opt Commun, 1984, 49:6-10.
    [112] Barty A, Nugent K A, Paganin D, et al. Quantitative optical phase microscopy[J]. Opt Lett, 1998, 23:817-819.
    [113] Kou S S, Waller L, Barbastathis G, et al. Quantitative phase restoration by direct inversion using the optical transfer function[J]. Opt Lett, 2011, 36:2671-2673.
    [114] Zuo C, Chen Q, Qu W, et al. Noninterferometric single-shot quantitative phase microscopy[J]. Opt Lett, 2013, 38:3538-3541.
    [115] Zuo C, Chen Q, Asundi A. Light field moment imaging:Comment[J]. Opt Lett, 2014, 39:654.
    [116] Woods S C, Greenaway A H. Wave-front sensing by use of a Green's function solution to the intensity transport equation[J]. J Opt Soc Am A, 2003, 20:508-512.
    [117] Allen L, Oxley M. Phase retrieval from series of images obtained by defocus variation[J]. Opt Commun, 2001, 199:65-75.
    [118] Pinhasi S V, Alimi R, Perelmutter L, et al. Topography retrieval using different solutions of the transport intensity equation[J]. J Opt Soc Am A, 2010, 27:2285-2292.
    [119] Gureyev T E, Roberts A, Nugent K A. Phase retrieval with the transport-of-intensity equation:Matrix solution with use of Zernike polynomials[J]. J Opt Soc Am A, 1995, 12:1932-1941.
    [120] Gureyev T E, Nugent K A. Phase retrieval with the transport-of-intensity equation. Ⅱ. Orthogonal series solution for nonuniform illumination[J]. J Opt Soc Am A, 1996, 13:1670-1682.
    [121] Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Opt Commun,1997, 133:339-346.
    [122] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation:fast solution with use of discrete cosine transform[J]. Opt Express, 2014, 22:9220-9244.
    [123] Zuo C, Chen Q, Li H, et al. Boundary-artifact-free phase retrieval with the transport of intensity equation Ⅱ:Applications to microlens characterization[J]. Opt Express,2014, 22:18310-18324.
    [124] Huang L, Zuo C, Idir M, et al. Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms[J]. Opt Lett,2015, 40:1976-1979.
    [125] Volkov V, Zhu Y, Graef M D. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 2002, 33:411-416.
    [126] Martinez-Carranza J, Falaggis K, Kozacki T, et al. Effect of imposed boundary conditions on the accuracy of transport of intensity equation-based solvers[C]//Proceedings of the Modeling Aspects in Optical Metrology IV, 2013:87890N.
    [127] Frank J, Altmeyer S, Wernicke G. Non-interferometric, non-iterative phase retrieval by Green's functions[J]. J Opt Soc Am A, 2010, 27:2244-2251.
    [128] Ishizuka A, Mitsuishi K, Ishizuka K. Direct observation of curvature of the wave surface in transmission electron microscope using transport intensity equation[J]. Ultramicroscopy, 2018, 194:7-14.
    [129] Ishizuka A, Ishizuka K, Mitsuishi K. Boundary-artifact-free observation of magnetic materials using the transport of intensity equation[J]. Microsc Microanal, 2018, 24:924-925.
    [130] Schmalz J A, Gureyev T E, Paganin D M, et al. Phase retrieval using radiation and matter-wave fields:Validity of Teague's method for solution of the transport-of-intensity equation[J]. Phys Rev A, 2011, 84:023808.
    [131] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Opt Express, 2014, 22:17172-17186.
    [132] Ferrari J A, Ayubi G A, Flores J L, et al. Transport of intensity equation:Validity limits of the usually accepted solution[J]. Opt Commun, 2014, 318:133-136.
    [133] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Opt Express, 2013, 21:5346-5362.
    [134] Waller L, Tian L, Barbastathis G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives[J]. Opt Express, 2010, 18:12552-12561.
    [135] Paganin D, Barty A, McMahon P J, et al. Quantitative phase-amplitude microscopy. Ⅲ. The effects of noise[J]. J Microsc, 2004, 214:51-61.
    [136] Martin A, Chen F R, Hsieh W K, et al. Spatial incoherence in phase retrieval based on focus variation[J]. Ultramicroscopy, 2006, 106:914-924.
    [137] Ishizuka K, Allman B. Phase measurement of atomic resolution image using transport of intensity equation[J]. Microscopy, 2005, 54:191-197.
    [138] Soto M, Acosta E. Improved phase imaging from intensity measurements in multiple planes[J]. Appl Opt, 2007, 46:7978-7981.
    [139] Cong W, Wang G. Higher-order phase shift reconstruction approach:Higher-order phase shift reconstruction approach[J]. Med Phys, 2010, 37:5238-5242.
    [140] Bie R, Yuan X H, Zhao M,et al. Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression[J]. Opt Express,2012, 20:8186-8191.
    [141] Gureyev T, Pogany A, Paganin D, et al. Linear algorithms for phase retrieval in the Fresnel region[J]. Opt Commun, 2004, 231:53-70.
    [142] Martinez-Carranza J, Falaggis K, Kozacki T. Multi-filter transport of intensity equation solver with equalized noise sensitivity[J]. Opt Express, 2015, 23:23092-23107.
    [143] Sun J, Zuo C, Chen Q. Iterative optimum frequency combination method for high efficiency phase imaging of absorptive objects based on phase transfer function[J]. Opt Express, 2015, 23:28031-28049.
    [144] Jenkins M H, Long J M, Gaylord T K. Multifilter phase imaging with partially coherent light[J]. Appl Opt, 2014, 53:D29-D39.
    [145] Zhong J, Claus R A, Dauwels J, et al. Transport of intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes[J]. Opt Express, 2014, 22:10661-10674.
    [146] Xue B, Zheng S, Cui L, et al. Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes[J]. Opt Express, 2011, 19:20244-20250.
    [147] Zheng S, Xue B, Xue W, et al. Transport of intensity phase imaging from multiple noisy intensities measured in unequally-spaced planes[J]. Opt Express, 2012, 20:972-985.
    [148] Savitzky A, Golay M J E. Smoothing and differentiation of data by dimplified least squares procedures[J]. Anal Chem,1964, 36:1627-1639.
    [149] Gorry P A. General least-squares smoothing and differentiation of nonuniformly spaced data by the convolution method[J]. Anal Chem, 1991, 63:534-536.
    [150] Luo J, Ying K, He P, et al. Properties of Savitzky-Golay digital differentiators[J]. Dig Signal Process, 2005, 15:122-136.
    [151] Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Opt Express, 2015, 23:14314-14328.
    [152] Waller L, Kou S S, Sheppard C J R, et al. Phase from chromatic aberrations[J]. Opt Express, 2010, 18:22817-22825.
    [153] Nguyen T, Nehmetallah G, Tran D, et al. Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations[J]. Appl Opt, 2015, 54:10443-10453.
    [154] Almoro P F, Waller L, Agour M, et al. Enhanced deterministic phase retrieval using a partially developed speckle field[J]. Opt Lett, 2012, 37:2088-2090.
    [155] Gorthi S S, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope[J]. Opt Lett, 2012, 37:707-709.
    [156] Zuo C, Sun J, Li J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Sci Rep, 2017, 7:7654.
    [157] Li J, Chen Q, Zhang J, et al. Efficient quantitative phase microscopy using programmable annular LED illumination[J]. Biomed Opt Express, 2017, 8:4687-4705.
    [158] Chakraborty T, Petruccelli J C. Source diversity for transport of intensity phase imaging[J]. Opt Express, 2017, 25:9122-9137.
    [159] Chakraborty T, Petruccelli J C. Optical convolution for quantitative phase retrieval using the transport of intensity equation[J]. Appl Opt, 2018, 57:A134-A141.
    [160] Shaked N T, Katz B, Rosen J. Review of three-dimensional holographic imaging by multiple-viewpoint projection-based methods[J]. Appl Opt, 2009, 48:H120-H136.
    [161] McCrickerd J T, George N. Holographic stereogram from sequential component photographs[J]. Appl Phys Lett, 1968, 12:10-12.
    [162] Benton S A. Survey of holographic stereograms[C]//Proceedings of the Processing and Display of Three-Dimensional Data, 1983.
    [163] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2:104-111.
    [164] Adelson E H, Bergen J R. The Plenoptic Function and the Elements of Early Vision[M]. Cambridge:MIT Press, 1991:3-20.
    [165] Gureyev T E, Paganin D M, Stevenson A W, et al. Generalized Eikonal of partially coherent beams and its use in quantitative imaging[J]. Phys Rev Lett, 2004, 93:068103.
    [166] Bastiaans M J. Application of the Wigner distribution function to partially coherent light[J]. J Opt Soc Am A, 1986, 3:1227-1238.
    [167] Walther A. Radiometry and coherence[J]. J Opt Soc Am,1968, 58:1256-1259.
    [168] Zuo C, Chen Q, Tian L, et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields:The phase space perspective[J]. Opt Lasers Eng, 2015, 71:20-32.
    [169] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals[J]. Proc IEEE, 1992, 80:520-538.
    [170] Bastiaans M J. The Wigner distribution function applied to optical signals and systems[J]. Opt Commun, 1978, 25:26-30.
    [171] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Opt Express, 2013, 21:14430-14441.
    [172] Dragoman D. Phase-space interferences as the source of negative values of the Wigner distribution function[J]. J Opt Soc Am A, 2000, 17:2481-2485.
    [173] Bastiaans M J. Uncertainty principle for partially coherent light[J]. J Opt Soc Am, 1983, 73:251-255.
    [174] Paganin D, Gureyev T E, Mayo S C, et al. X-ray omni microscopy[J]. J Microsc, 2004, 214:315-327.
    [175] Li J, Chen Q, Sun J, et al. Multimodal computational microscopy based on transport of intensity equation[J]. J Biomed Opt, 2016, 21:126003.
    [176] Friberg A T. On the existence of a radiance function for finite planar sources of arbitrary states of coherence[J]. J Opt Soc Am, 1979, 69:192-198.
    [177] Oh S B, Kashyap S, Garg R, et al. Rendering wave effects with augmented light field[J]. Comput Gr Forum, 2010, 29:507-516.
    [178] Schwiegerling J.Wavefront Sensing:Shack-Hartmann sensing[J]. J Refract Surg, 2001, 17:573-577.
    [179] Waller L. Phase imaging with partially coherent light[C]//Proceedings of the Three-dimensional and multidimensional microscopy:Image acquisition and processing XX, 2013.
    [180] Iaconis C, Walmsley I A. Direct measurement of the two-point field correlation function[J]. Opt Lett, 1996, 21:1783-1785.
    [181] Marks D L, Stack R A, Brady D J. Three-dimensional coherence imaging in the Fresnel domain[J]. Appl Opt, 1999, 38:1332-1342.
    [182] Nugent K A. Wave field determination using three-dimensional intensity information[J]. Phys Rev Lett, 1992, 68:2261-2264.
    [183] Raymer M G, Beck M, McAlister D. Complex wave-field reconstruction using phase-space tomography[J]. Phys Rev Lett, 1994, 72:1137-1140.
    [184] Rydberg C, Bengtsson J. Numerical algorithm for the retrieval of spatial coherence properties of partially coherent beams from transverse intensity measurements[J]. Opt Express, 2007, 15:13613-13623.
    [185] Zhang Z, Chen Z, Rehman S, et al. Factored form descent:A practical algorithm for coherence retrieval[J]. Opt Express, 2013, 21:5759.
    [186] Tian L, Zhang Z, Petruccelli J C, et al. Wigner function measurement using a lenslet array[J]. Opt Express, 2013, 21:10511-10525.
    [187] Waller L, Situ G, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams[J]. Nat Photonics,2012, 6:474-479.
    [188] Allen L J, Faulkner H M L, Nugent K A, et al. Phase retrieval from images in the presence of first-order vortices[J]. Phys Rev E, 2001, 63:037602.
    [189] Lubk A, Guzzinati G, Brrnert F, et al. Transport of intensity phase retrieval of arbitrary wave fields including vortices[J]. Phys Rev Lett, 2013, 111:173902.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(807) PDF downloads(302) Cited by()

Related
Proportional views

3D imaging based on depth measurement

doi: 10.3788/IRLA201948.0603013
  • 1. Department of Electrical and Computer Engineering,Seoul National University,Seoul 08826,Korea;
  • 2. Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense,Nanjing University of Science and Technology,Nanjing 210094,China

Abstract: Three-dimensional(3D) imaging has attracted more and more interest because of its wide spread applications, especially in information and life science. These techniques can be broadly divided into two types:ray-based and wavefront-based 3D imaging. Issues such as imaging quality and system complexity of these techniques limit the applications significantly, and therefore many investigations are focused on 3D imaging from depth measurements. An overview of 3D imaging from depth measurements was presented, providing a summary of the connection between the ray-based and wavefront-based 3D imaging techniques, and showed the research direction of the depth measurement based 3D imaging research.

Reference (189)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return