HTML
-
在众多的光电对抗隐身干扰装备及防御措施中,类似烟幕的消极光电对抗隐身干扰装备,以其独特的隐身干扰效能成为高技术光电武器的“克星”,为现代高技术战场所需求。很多研究发现,泡沫可以干扰声波、雷达等信号。美国Jianjun Guo等研究了海洋泡沫对微波通信的影响[1];麻省理工学院研究了泡沫对微波的散射、吸收特性[2];德国RIpperger和Siegfried研究了微粒、泡沫对激光的影响特性[3];日本N.Seki在研究中发现气泡对可见光和红外光强烈的散射现象[4]。美军认为“烟幕是一个比我们曾经认为的要重要得多的战场因素,无论是我方采用它还是对抗敌方采用它,它完全应该被作为一个主要的在计划时要考虑的因素”。为促进烟幕武器向着“宽频谱”、“全波段”和“环保型”方向发展,美军研究出了“车载式泡沫伪装系统”(USP 4732181 专利),系利用压力将与水混合的水基泡沫发生剂喷洒出来形成泡沫伪装。俄罗斯来华专家介绍了一种干扰波段为0.4 μm~3.75 cm的幕障遮蔽干扰防卫装置,能够对可见光、红外、毫米波和厘米波实施全遮蔽干扰,使用专用发生器装置,可以在30 min内将16辆坦克车队有效隐身遮蔽40 min之久;用于干扰弹爆炸分散形成幕障干扰,成功率为80%,干扰持续时间16~17 s;因不造成悬浮微粒飘浮于大气中,故而为“环保型”。
鉴于上述,此文试图研究水基泡沫及其消光特性,意在获取泡沫幕障,进而研发水基泡沫云或水基泡沫与人工雾复合的“宽频谱”、“全波段”和“环保型”的烟幕武器装备。
为此,首先开展水基泡沫对可见光、红外、激光、毫米波、厘米波消光性能实验测试和水基泡沫对热成像遮蔽干扰有效性研究。
-
以羧酸类、硫酸盐类、磺酸盐类、磺化琥珀酸盐类等为起泡剂,以明胶、皂素、甲基纤维素等高分子化合物为稳泡剂,即可制取水基泡沫试样。鉴于文中研究需要充分考虑到泡沫适用性和宽频谱消光特性,通过配方筛选研究发现,以低表面张力的阴离子AES表面活性剂为起泡剂和以聚乙烯醇为稳泡剂的试样,可满足要求。进一步研究确立了实验试样配方为:水+起泡剂(AES和SDS复配)+稳泡剂(聚乙烯醇)+功能添加剂[5]。实验试样采用自制泡沫形成装置制备。泡沫试样为独立气泡,如图1所示;离散气泡群,如图2所示;粘连泡沫聚集体,如图3所示;漂浮的云状泡沫云,如图4所示。测试时,涉及泡沫云的泡沫厚度尺寸由自制泡沫筒给定(筒长即为泡沫厚度尺寸),如图5所示。
-
主要对可见光、红外(3~5 μm,8~14 μm)、激光(1.06 μm,10.6 μm)、毫米波(3 mm,8 mm)和厘米波(2 cm, 3 cm)的消光性能以及对8~14 μm波段热像遮蔽干扰效应进行了实验。
-
水基泡沫对可见光遮蔽性能实验测试,采用了瞬变光源分光测试仪(北京奥博迪光电技术有限公司、北京师范大学光电仪器厂产品),其光谱工作波段为0.40~1.00 µm,测试系统如图6所示。不同厚度泡沫对可见光遮蔽光谱透过率TS(可见光光强透过率)和光强透过率TI结果如表1所示。
Thickness of foams
camouflage effectThickness / cm 12 13 14 15 20 ${T_{\rm{S}}}$ 5.27% 3.51% 2.56% 1.83% 0 ${T_{\rm{I}}}$ 5.35% 3.21% 1.93% 0.59% 0 Table 1. Transmittance of different thickness of foams
-
采用(德)OPAG33傅里叶变换红外遥测光谱仪实验测试了泡沫的红外(3~5 μm, 8~14 μm)消光性能[6]。OPAG33测试系统由光源(标准红外灯)、泡沫发生器、OPAG33 FTIR光谱仪及计算机数据处理系统组成,如图7所示。测试时,泡沫试样选用了由泡沫发生器产生的泡沫云,测试场景如图8所示。
测试时,首先采集背景在某一波段的辐射光谱图,然后置入目标再测得同一波段下的辐射光谱图,二者辐射光谱图的比值即为被测的透过率,由公式(1)给出:
式中:
$\tau (\nu ,T)$ 为泡沫红外辐射透过率,%;${S_s}(\nu ,T)$ 为均匀泡沫时的单通道光谱;${S_b}(\nu ,T)$ 为背景单通道光谱;$\nu $ 为光谱频率;cm−1;$T$ 为绝对温度,K。泡沫的红外质量消光系数由公式(2)计算:
式中:
$\alpha (\nu ,T)$ 为质量消光系数,m2·g−1;${C_m}$ 为泡沫质量浓度,g·m−3;$L$ 为测试光程,m。按上述方法测得的泡沫红外透过率随时间变化光谱图如图9所示。消光系数与波长的关系如图10所示[7]。
为探索水基泡沫对红外成像遮蔽干扰效应,采用SAT-HY6800型非制冷红外焦平面热像仪(320×240非制冷整体热敏电阻焦平面探测器,工作波段为8~14 μm,光阑为Ф50 mm,全屏伪彩显示、全屏测温)开展了实验。测试时,试样为离散泡沫群(泡径为0.5~3.5 cm,光程上泡沫数量约20个),环境温度为+20 ℃,空气相对湿度为40%,遮蔽干扰效果如图11所示,平均红外消光系数为0.431 m2·g−1,如表2所示[8]。
${T_{b0}}$/K ${T_{a0}}$/K ${T_b}$/K ${T_a}$/K ${C_m}$/g·m−3 $l$/m ${M_c}$/m2·g−1 Background 295.29 317.22 — — — — — Sample 1 295.29 317.22 294.82 291.01 11.94 0.35 0.451 Sample 2 295.29 317.22 295.03 290.81 10.83 0.41 0.402 Sample 3 295.29 317.22 301.56 304.47 12.03 0.38 0.449 Sample 4 295.29 317.22 302.61 306.53 11.78 0.35 0.422 Sample 5 295.29 317.22 302.29 296.92 11.05 0.31 0.430 Avg.=0.431 Table 2. Infrared extinction coefficient of foam on un-cooling focal plane thermal image with SAT-HY6800
以黑体辐射炉为目标、烟幕柜壁为背景,由于透过率
$\tau $ [9-10]为:所以:
式中:
${M_c}$ 为红外消光系数,m2·g−1;${C_m}$ 为泡沫质量浓度,g·m−3;$l$ 为测试光程,即泡沫层的厚度,m;${L_b}$ 为有泡沫时目标亮度,W·(m2∙sr)−1;${L_a}$ 为有泡沫时背景亮度,W·(m2∙sr)−1;${L_{b0}}$ 为无泡沫时目标亮度,W·(m2∙sr)−1;${L_{a0}}$ 为无泡沫时背景亮度,W·(m2∙sr)−1。而光的亮度
$L$ 与辐射能量$M$ 的关系为:根据Stefan-Boltzmann定律
$M = \sigma {T^4}$ ,可推导出:式中:
$T$ 为温度,K;$\sigma $ 为Stefan-Boltzmann常数,5.673×10−12 W∙ (cm2∙K4)−1;${T_b}$ 为背景温度,即有泡沫时的背景平均温度,K;${T_a}$ 为目标温度,即有泡沫时的目标区平均温度,K;${T_{b0}}$ 为背景起始温度,即无泡沫时的背景平均温度,K;${T_{a0}}$ 为目标起始温度,即无泡沫时的目标区平均温度,K。 -
泡沫对激光的消光性能测试,采用中国科学院安徽光学精密机械研究所制造的型号为YC-1.06-1D、YC-10.6-1D的1.06 μm和10.6 μm激光烟幕测试仪,测试系统如图12所示。
采用泡径分布为4~7 mm泡沫,其厚度分别为1 、2 、5 、7 和10 cm时,对激光的消光性能测试结果如图13、图14所示,其平均透过率如表3所示。厚度为10 cm不同泡径分布的泡沫对1.06 、10.6 μm激光衰减平均透过率如表4所示。
Figure 13. Attenuation curves of different thickness foam with different bubble size distributions of 4−7 mm to 1.06 μm laser
Figure 14. Attenuation curves of different thickness foam with bubble size distributions of 4−7 mm to 10.6 μm laser
Thickness/cm 1 2 5 7 10 1.06 μm
transmittance57.25% 47.03% 26.23% 12.00% 6.02% 10.6 μm transmittance 61.97% 52.98% 41.63% 23.04% 7.63% Table 3. Average transmittance of laser with different thickness of foam bubble size distribution of 4−7 mm
Foam bubble size 1.3−2.5 cm 4−7 mm 0.8−2 mm 1.06 μm transmittance 17.86% 6.02% 0 10.6 μm transmittance 48.98% 7.63% 0 Table 4. Average transmittance of laser with thickness of 10 cm different foam bubble size distributions(1.06 μm,10.6 μm)
-
采用电子科技集团第五十研究所毫米波辐射参数采集仪(3、8 mm),开展了泡沫对3、8 mm波衰减特性的测试实验,测试系统如图15所示。
经实验,泡沫对毫米波具有良好的衰减特性。同等条件下8 mm波的衰减效果优于3 mm波。当采用20 cm厚的泡沫云为试样时,3 mm波衰减分贝数值和功率透过率如表5所示;8 mm波的衰减效果如图16所示(由图可见,衰减峰值可达20 dB以上)。
Category Min Max Avg Attenuation decibels / dB 16.08 13.82 14.93 Transmittance 2.47% 4.15% 3.21% Table 5. Test results of 3 mm millimeter-wave with thickness of 20 cm foams
实验发现,泡沫云泡沫泡径大小分布对毫米波衰减效果影响显著。泡径为2~3.5 cm的80 cm厚度泡沫云对8 mm波衰减效果如图17所示;泡径为0.8~2 cm的80 cm厚度泡沫云对8 mm波衰减效果如图18所示。
-
为探索泡沫对厘米波的衰减特性,采用南京理工大学微波实验室的厘米波信号采集分析器(Agilent / HP 8720 D)配合厘米波信号发射器(发射功率14.8 mW)和接收器(扫描周期20 ms,间距3 m),开展了泡沫对厘米波衰减性能实验测试。泡沫对厘米波的衰减性能实验测试系统,如图19所示。
当泡沫试样厚度为20、60 和80 cm时,其对2、3 cm波的衰减效果如图20、图21、图22所示,其衰减值与衰减率如表6所示[5]。
Thickness /cm 2 cm/dB Result of 2 cm 3 cm /dB Result
of 3 cm20 2.3 16.8% 8.5 42.5% 60 12.5 81.2% 17.4 92.3% 80 29.9 100% 18.1 90.5% Table 6. Test results of 2, 3 cm centimeter-wave with different thickness foams
-
通过以上实验,得出以下结论:
(1)实验研究结果表明:水基泡沫对可见光、红外、激光、毫米波乃至厘米波均有良好的消光特性。烟幕消光靠的是烟幕中气溶胶“微粒”对光的吸收与散射,水基泡沫消光机制也不例外,也是靠泡沫中一个个的“气泡”对光的吸收与散射。但“气泡”与烟幕中气溶胶“微粒”二者有差异,水基泡沫尤其是粘连泡沫聚集体(泡沫云)是多面体结构,多界面效应决定了泡沫具有较强的消光性能。以球面体“气泡”为例,它有四类界面[11],如图23所示。入射光在泡沫液膜内多次反射和折射,光程增加,对入射电磁波耗能必加大,消光性能必然优于一般气溶胶烟幕。
(2)水基泡沫,因水原料不存在污染,属于“环保型”,又因水分子中的-OH基对红外具有良好的本征吸收功效,红外消光性能佳,开发研究以水为原料的烟幕武器值得提倡。
(3)若以水基泡沫形成泡沫云或使之与人工雾复合构成幕障为工程化研究目标,在完善稳泡剂、功能添加剂和快速形成泡装置技术研究基础上,是一种可以获取“宽频谱”、“全波段”、“环保型”的新型烟幕武器装备。