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Abstract: Near-ground imaging spectroscopy applied in field provides new opportunity for development of
quantitative remote sensing in agriculture. It deserves concern about how to exert its data advantage of
integrating image and spectra into one, particularly in analyzing the influence of background targets, such as
soil, shadow on crop nutrient inversion model. In this research, imaging cubes of wheat group in the field
were collected by visible/near-infrared imaging spectrometer (VNIS). A normalized spectral index was set
up according to reflectance characteristics of illuminated soil, shadow soil, illuminated leaf and shadow leaf
in the image. Furthermore, the index was used to extract spectra of different targets in soybean images and
analyze the variation of determination coefficient R2 between normalized spectra of soybean group and
chlorophyll density before and after removing background soil. The results showed that when spectra of soil
and shadow leaf were removed, the sensitive bands of chlorophyll density shifted from red and near -
infrared ranges (727 nm, 922 nm) to red ranges (710 nm, 711 nm), meanwhile, the overall trend was that
visible ranges increased, near -infrared regions decreased and red bands had the highest determination
coefficient. Therefore, it can be concluded that spectral purification based on normalized spectral index has
important significance for quantitative research in agricultural remote sensing.
Key words: hyperspectral imaging; normalized spectral index; imagery classification;
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用于高光谱图像分类的归一化光谱指数的构建与应用
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摘 要： 成像高光谱的近地田间应用为农业定量遥感的发展提供了新的契机。 如何发挥其图谱合一的数
据优势，尤其在解析土壤、阴影等背景地物对作物养分反演模型的影响需要关注。 该研究借助可见/近红外
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0 Introduction

Presently, most classification methods for large -
scale remote sensing image are proposed according to

those images from satellite and aviation platforms.

Since the spatial resolution (a pixel size) of their

sensors is above meter -level, it is mainly used to

distinguish crop or vegetation from target objects

including residential area, bare soil, water body,

road, etc. References[1-4] used classified satellite images

including Landsat TM, Hyperion, SPOT, Quickbird

and IKONOS to research land coverage change, forest

biochemistry parameter mapping, rare tree extraction

from grassland and urban vegetation drawing, etc.

References [5-6] utilized classified aviation images

including PHI and AVIRIS to research mapping of

wheat biochemistry parameters and vegetation

coverage extraction. The above classification methods

of remote sensing images mainly are influenced by

many kinds of targets, so classification accuracy of

images is not high. The classification of small -scale

image has spatial resolution of centimeter -level are

conducted upon digital photo, those methods are

mainly used for segmentation of crops or vegetation in

the field from background targets, such as bare soil,

weeds, crop straw, etc. Some researchers classified

images of corn, wheat, soybean and rice, respectively[7-10],

then explored change of crop coverage, segmented

pest and disease damage area of crop leaf and

constructed inversion models of crop biophysiological

and biochemical parameters by using color

characteristics [11-12]. The above proposed segmentation

methods were mainly influenced by soil, weeds and
crop residues. The main reason is that the scope of
above image is limited; the target objects in the image
are simple, mainly containing vegetation and soil, and
red, green and blue bands. In recent years, near -
ground imaging hyperspectral spectrometer with cm -
level or mm -level spatial resolution has focused on
agricultural quantitative remote sensing, and the report
about classification methods of this sensor is rare.
According to some scholars [13 -14], spectral information
of soybean and corn leaves was collected by imaging
spectral system and quantitative inversion research was
conducted for biochemistry parameters; pest and
disease damage area of leaf was segmented by its
spectra and image characteristic were researched [15-16].
The above researches were all restricted to mixed
spectra of target objects. Still there was little research
to analyze for inversion of crop physiological and
biochemical parameters after classifying different
targets from spectral images of field crop. Although
researches were conducted by imaging sensor for
wheat nitrogen in different nitrogen levels, spectral
information used in modeling was still the mixed
information of vegetation and background target
without extensively exploring for the advantage of
spectral information of pure vegetation[17-18]. Then, for
this kind of spectral image, how to achieve division of
different targets. Whether the inversion model of crop
chlorophyll built with spectral information of pure
vegetation after classification was better than the result
of mixed vegetation. In view of this point, a

成像高光仪，在近地田间采集小麦群体的成像立方体，根据影像中光照裸土、阴影裸土、光照叶片和阴
影叶片的反射光谱特征建立了归一化光谱分类指数， 并应用该指数提取大豆影像中不同类型地物的
光谱， 分析了背景土壤剔除前后的大豆植被归一化光谱与叶绿素密度的决定系数变化情况。 结果表
明：土壤和阴影叶片光谱去除后，反演叶绿素密度的敏感波段由红-近红外区间(727 nm， 922 nm)向
蓝、绿，尤其是红波段(710 nm, 711 nm)移动。 对叶绿素密度敏感的波段区间表现为可见光增加,近红外
减少，且红边波段决定系数最高。 由此说明，基于归一化光谱指数的植被光谱提纯对定量遥感反演研
究具有重要意义。
关键词： 高光谱成像； 归一化光谱指数； 图像分类； 光谱提纯； 小麦； 大豆
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normalized spectral classification index was set up in
this research according to reflectance characteristic of
pure wheat vegetation, soil, sun leaf and shadow leaf
in the image to achieve classification of targets after
imaging cubes of field wheat group are collected by
visible/near-infrared imaging spectrometer (VNIS). On
this basis, this index was used to collect targets
spectra in soybean image; then analyzed the variation
of determination coefficient R2 between normalized
spectra of soybean group and chlorophyll density
before and after removing background soil and
evaluated its feasibility in near -ground imaging
spectral classification. Finally it showed that vegetation
spectral purification research was meaning for setup of
quantitative remote sensing inversion model.

1 Materials and methods

1.1 Experimental design
Test 1: The soybean variety, zhonghuang13 was

chosen as experimental material, and was seeded on
July 1, 2010 with normal filed management. When
soybean was flowering period, the field data was
collected in State Precision Agriculture Research
Demonstration Base in Xiaotangshan Town,
Changping District, Beijing (40.18°N, 116.27°E) on
August 29, 2010.

Test 2: Field calibration was conducted between
ASD (ASD Field spec FR2500) and VNIS (visible
and near -infrared imaging spectrometer) in Beijing
Academy of Agriculture and Forestry Sciences (39.93°
N, 116.27°E) on March 25, 2011. Blue cloth, green
cloth, grey cloth, black cloth, standard white panel
and standard grey panel were selected as standard
reference objects and every data collection was
completed in 30 minutes. During the period that
standardization data was received, imaging data of
wheat group during jointing stage was collected by
VNIS.

It was sunny with gentle breeze when two tests were
conducted; the time was from 10:00 am to 16:00 pm.

1.2 Instruments introduction
The instruments used in this research were VNIS

and ASD. The sketch map was shown in Fig.1. The
former is composed by a Hamamatsu C8484 -05G
camera, a V10E spectrograph, a 1.9/35 mm C-mount
zoom lens, and a mirror scanner (Fig.1). The
Hamamatsu C8484 -05G is a high spectral resolution
digital camera. The V10E spectrograph has a slit size
of 30 μm by 14.3 mm and can collect hyperspectral
imagery in the wavelength range of 400 -1 000 nm
with a spectral resolution of 2.8 nm. Together with
the mirror scanner, the Hamamatsu C8484 -05G
collects the images in a push -broom manner and
generates hyperspectral image cubes with effective
pixels of 1 344 (spatial axis) by 1 024 (spectral axis).
The angular field of view of the imaging spectrometer
is 14° (horizontal) by 11° (vertical) by 18°
(diagonal). The latter has 350 -2 500 nm of spectral
regions and 25° view field, in which its spectral
resolution is 3 nm from 350 nm to 1 000 nm and
spectrum sampling interval is 1.4 nm, but its spectral
resolution is 10 nm and spectrum sampling interval is
2 nm from 1 000 nm to 2 500 nm. In this paper,
wavelength of the ASD was interpolated to sampling
interval of VNIS.

Fig.1 Demonstration of VNIS and ASD collecting data

1.3 Data collection and processing
When field calibration of VNIS was conducted

with ASD, the observation height was fixed according
to view range of two instruments. VNIS was placed
on spider, 80 cm from mirror face to observation
target. ASD was fixed on multi-purpose spider, 55 cm
from the detector to observation target. Then, the view
range of the former was a 25 ×25 cm2 and the latter
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was a circle with the diameter of 24.2 cm, which
guaranteed visual range conformity of two
instruments. When data collection was conducted for
wheat canopy, the time difference of two instruments
was 15 s and this guaranteed data were synchronously.

When imaging cube of soybean was collected by
VNIS, the mirror face on the instrument was 178 cm
to soybean canopy, and the view field was a 36×36cm2.
The obtained hyperspectral images were transferred
into relative reflectance and then applied in
quantitative inversion research of corp. The relative
reflectance inversion in this paper was referenced[19].

After spectral data was gathered, corresponding
fresh plants were taken to measure chlorophyll density
and the detailed measurement methods referenced[20].

2 Results

2.1 Development of normalized spectral index
2.1.1 Reduce the shadow effects

At present, spectral information of target object
obtained either by imaging sensor or non -imaging
sensor is mixed. In the field, this mixed information
is jointly composed by crops, weeds, straw, soil and
shadows. Studies have shown that, when growth
monitoring and nutrient diagnosis were conducted by
sensor for green vegetation, the shadows caused by
different parts of the same target or different targets
have certain influence on quantitative remote sensing
diagnosis [ 21 ] . However , this problem is well
resolved by imaging spectra . Fig .2 (a) was wheat
spectral image under natural illumination. It was seen
clearly that, left part area was obviously shadow
region, which was caused by sheltering of leaves in
the upper layer and it was hard to visually judge
whether it was wheat leaf or soil. Then the result
may have great error if different targets were
classified directly by reflectance image. Normalized
reflectance method (Formula 1) was used in this
research to remove spectral difference between
illuminated and shadow targets so that visual

interpretation was resolved and imaging classification
precision was improved [22-24]. Fig.2 (b) was the result
of wheat reflectance image after normalized treatment.
Comparing Figs.2(a) and 2(b), it was found that shadow
leaf and shadow soil in the image were clearly
showed to provide data support for threshold division
of targets when image was classified.

Rij =
Rij

1
K j
移Rijj # (1)

Where R ij represents normalized reflectance, i, j

represent starting and ending bands respectively and K
represents the total number of bands.

Fig.2 Original image and normalized spectral image

2.1.2 Normalized spectral index
Normalized spectral index proposed in this paper

was calculated by selecting spectral characteristic value
of different targets in the image within visible and
near -infrared spectral bands. Spectral image involved
in the research was mainly composed by illuminated
leaf, sun soil, shadow leaf and shadow soil and their
spectral reflectance curves were shown in Fig.3. Those
four targets had obvious spectral characteristic
difference at 551 nm (green peak), 670 nm (red valley)
and 760 -950 nm (near -infrared platform), meaning
that green vegetation had obvious reflection peak at
green peak in visible light bands; red valley had
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obvious absorption feature and near-infrared band has
high reflectance platform and the soil does neither
reflection peak nor has absorption valley. For four
targets, sun soil has the highest reflectance value at
670 nm and shadow leaf has the lowest reflectance
value; the whole order was represented as sun soil >
shadow soil >illuminated leaf >shadow leaf. However，
at near -infrared platform, the reflectance value of
shadow leaf was the highest and that of sun soil was
the lowest, just opposite to the order at 670 nm, so
the spectral feature at the two wavelengths could be
used to distinguish four targets. It was also known
from the Fig.3 that, four targets had obvious
reflectance difference at the band of 551 nm, which
could well distinguish soil from green vegetation, so
this band was also chosen as featured wavelength.
Based on above wavebands, normalized spectral index
was built upon. Firstly, subtraction calculation was
conducted by using 550 nm minus 670 nm. It must be
in this order so that the index of sun soil and part
shadow soil is negative, which can well separate soil
from other targets. Secondly, that using 765 nm minus
670 nm，the threshold of shadow leaf can be highlighted
to the greatest extend, which was convenient for

shadow leaf division. Additionally, in order to get the
maximum difference value in distinguishing different
target types, after calculating the above wavebands,
we can divide with spectral value at 670 nm so that
division threshold values among different targets
appear obvious value gradient. The formula (2) was

the result of threshold division. The proposed
normalized spectral index was shown in formula (3).

Rcal =

X＜0; Sun soil
0≤X＜0.12; Shadow soil
0.12≤X＜3.0; Sun leaf (2)
3.0≤X; Shadow lea

a
$
$
$
$
$$
#
$
$
$
$
$$
% f

Rcal =
( R1 -R2 )

R2
×(R3 -R2 ) (3)

Where R 1 , R 2 and R 3 represent single wavelength of

551 nm, 670 nm and 765 nm respectively and Rcal

represents result of bands calculation.

Fig.3 Spectral curves of different objects

2.1.3 Imagery classification and spectral purification
Based on the above band math, identified result

of imagery classification was shown in Fig.4. The
white part in the image represented sun soil; the
brown part represented shadow soil; the light green
part represented sun leaves and the dark green part
represented shadow leaves. On this basis, mask
treatment of image was conducted according to
threshold regions among different targets. Figure 5 was

Fig.4 Identified result of imagery classification

Fig.5 Masking images of wheat leaves and bare soil
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the result map of wheat and soil after mask treatment.
Among that, the black part in Fig.5 (a) represented
sun soil and shadow soil and others represented
wheat; the black part in Fig.5 (b) represented sun
leaves and shadow leaves and others represented soil.
By comparing Fig.5 (a) and Fig.5 (b), it was found
good separation between wheat group and soil. In
addition, spectral mean values of sun soil, shadow
soil, sun leaves and shadow leaves were also
extracted and the result was shown in Fig.6. Since
the masked result was similar to Fig.5, the
corresponding images in the paper were not listed.

The follow -up work of this research was to
purify spectral information of different targets after
imagery classification and the result was shown in
Fig.6. It can be seen from the figure that reflectance
spectra of mixed targets in visible and near -infrared
bands was bigger than purified that, which was
explained that background soil made great contribution
to spectral enlargement; after background soil was
masked, spectra of wheat leaves was rapidly
decreased, especially showing in near -infrared band;
shadow leaves of wheat was continued to be masked,
reflectance of sun leaves continually decreased at
near -infrared regions and was not obvious at visible
light bands; and reflectance value of shadow leaves
was the lowest at visible and near-infrared band. By
analyzing the above results, it was known that
background so il exerted great influence on spectral
information obtained by sensor, especially at near -
infrared band. Because multi -scattering phenomenon
influenced light radiative transfer when background
targets and target vegetation all existed, reflectivity at
near -infrared band was obviously enlarged;
meanwhile, shadow proportion of target was also a
factor to impact on sensor to obtain spectral
information. For example, reflectance of shadow
leaves in Fig.6 had no obvious green peak
characteristic at 551 nm and was almost a straight line
from 400 nm to 700 nm, then shadow area directly
influenced on spectral information quantity obtained

from the researched target; finally impacted on
analysis result of quantitative remote sensing. So, it
had realistic significance to research for the influence
of background target and shadow on the accuracy for
diagnostic model of crop nutrient.

Fig.6 Spectral curves of different typological objects

2.2 Application of normalized spectral index
This research applied normalized spectral index to

take spectral information of pure soybean vegetation,
soil, sun leaves and shadow leaves from soybean
images, respectively. The result was consistent with

that in Fig.5, so it was not listed. Spectral influence
of those components on crop chlorophyll density
inversion was analyzed one by one and the significance
of image classification on setup of crop quantitative
remote sensing inversion model was discussed. Figures
7 (a), 7 (b) and 7 (c) were determination coefficients

(R2) between chlorophyll density and NDVI of mixed
vegetation, pure vegetation, and illuminated vegetation.

It can be seen from Fig .7 (a) , when vegetation
and soil existed as a mixed target, sensitive bands of
chlorophyll were 727 nm and 922 nm, which came
from red light and near infrared light, respectively,

and it was consistence with construction principle of
vegetation index NDVI. It meant that both were
achieved based on combined operation of red and near
infrared bands [25]. After soil spectra removed, sensitive
bands became 710 nm and 711 nm, which all located
at red light region, but sensitivity of blue and green

light was obviously increased and it was consistence
with principle proposed by predecessors that vegetation
growth vigor wa s monitored by normalized difference

Zhang Dongyan et al：Development and application of normalized spectral index based on
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green index and normalized difference vegetation
index of blue and green bands [26-27]. Its determination
coefficient with chlorophyll density was shown in
Fig.7 (b), which showed that sensitive regions to
chlorophyll density enlarged, especially in blue and
green bands. It can be explained that background soil
exerted great influence on monitoring biochemistry
index of vegetation group using optics remote sensing
and it was same to previous research results [28]. Based
on this, in this paper, vegetation spectral information
of shadow leaves was removed to attempt to analyze
the influence extent of shadow part on quantitative

remote sensing inversion and the result was shown in
Fig.7(c). By comparing figures 7 (c) and 7 (b), it can
be found that, after spectra of shadow leaves removed,
sensitive bands to chlorophyll density were visible
bands increased, near -infrared bands decreased and
red bands had the highest determination coefficient.
Therefore, it was explained that shadow leaves
influenced on choice of sensitive bands when using
vegetation index to evaluate chlorophyll density.

3 Discussion

The classification for targets in the image was

achieved by normalized spectral index proposed in the
paper. Compared with traditional classification method
of remote sensing, separation in layers for different
components was emphasized for targets in the field
where target type was single, while the influence of
many targets on classification result must be

considered for traditional remote sensing classification.
Secondly, the relevance with its biochemistry index
was analyzed after spectral information of pure crops
was collected; by comparing the result of mixed
targets with that before purification, it was found the
relevant coefficient and determination coefficient after

purification were obviously higher than the mixed
result, which provided key research concept for
construction of small-scale quantitative model of crop
biochemistry parameter.

Computer visualization technology is always an
important means to judge crop′ s life information.

Although there are some advantages of quickly getting
information and little disturbance from environment,
etc, it cannot be extensively used to diagnose for crop
nutrient, pest and disease damage, and it also is
seriously restricted for it only contained a little
information in blue, green, and red region;
furthermore, only qualitative analysis was applied and
the demand of current quantitative remote sensing in
agriculture could not be satisfied. The imaging spectra
has real -time im aging characteristic that spectra at

Fig.7 Determination coefficients (R2) between chlorophyll density

and NDVI of mixed vegetation(7(a)), pure vegetation(7(b)),

illuminated vegetation(7(c))
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certain parts was collected according to variation part
in the figure in order to achieve quantitative analysis
for nutrient, pest and disease damage threat of single
crop leaf or in group level.

Detection researches of crop spectra were
frequently conducted using ASD. Data obtained by
this spectrometer was composed by mixed spectra of
different targets, the mixture of vegetation, soil,
weeds and crop straw, etc. At present, most diagnosis
models for nutrient, water, pest and disease damage
threat set up by domestic and foreign researchers with
spectra data were mostly influenced by background
targets[20]. Although influence of background targets on
spectra data was reduced by vegetation index built by
some scholars or adopting differentiation spectral
treatment methods, the influence of different
illumination and background targets on model
precision still existed [28]. The spectral information of
research target can be purified by imaging
classification in near -ground imaging spectra
particularly the influence of soil background on mixed
spectra was discussed and the influence of different
illumination and shadow ratios on imaging spectra
data was studied. It had extremely important
significance in observation research of multiple angles.

4 Conclusions

The normal ized spectral index that was the
classification method for imaging -based targets, was
proposed based on normalized spectral reflectance.
This method contained green, red and near -red
spectral characteristics, different from traditional
remote sensing imaging classification and digital
imaging classification methods.

After spectral information of pure crop and target
with soil background in the images were purified
based on imaging classification, it was found great
different between mixed spectra and pure crop spectra
at near-infrared band; furthermore, reflectivity of pure
crop was rapidly dropped soil background was masked

and the drop was biggest at near-infrared band.
Normalized spectral classification index was

applied in soybean spectra image that spectral
information was collected for pure soybean vegetation,
soil, sun leaves and shadow leaves and spectral
influence for those components on crop chlorophyll
density inversion was analyzed one by one; it was
found that: shadow leaves influenced on choice for
vegetation chlorophyll density sensitive band.
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