Progress in holographic printing technique

Huang Yingqing¹, Su Jian², Chen Yibeí², Yan Xingpeng², Jiang Xiaoyu²

(1. Academy of Army Armored Forces, Beijing 100072, China; 2. Department of Information Communication, Academy of Army Armored Forces, Beijing 100072, China)

Abstract: Holographic printing technique can achieve a true three-dimensional display of the scene well. Based on different sources and different recording methods of interference patterns, holographic printing techniques can be classified as synthetic holographic stereogram printing, computer-generated hologram printing, and wavefront printing. Synthetic holographic stereogram printing can not record the depth information of the three-dimensional scene accurately, so there occurs the vergence-accommodation conflicts during the reconstruction of the hologram. Computer-generated hologram printing can record and reconstruct the depth information of the scene accurately, and solve the vergence-accommodation conflicts. However, the hologram is only a thin transmission hologram which can’t be reconstructed by white light. Wavefront printing can not only solve the vergence-accommodation conflicts, but also achieve a thick reflection hologram for white-light reconstruction with good observation effect. Principles of different holographic printing techniques were introduced, then research status of each technique was analyzed. Finally, the advantages and disadvantages of them were discussed to illustrate their own properties.

Key words: holography; holographic printing; stereogram; holographic element"
0 引言

全息术是一种基于光学干涉与衍射原理的三维显示技术，最早由 D. Gabor 提出并实现。近年来，计算机技术与全息术结合得更加紧密，全息打印技术得到了飞速发展，相比传统的光学全息，全息打印技术可以将虚拟场景的三维信息存储于全息记录介质，全息打印技术已被广泛应用于商业、军事、医疗、广告业等领域。

根据干涉光纹的不同来源及不同记录方式，可将全息打印技术分类为合成全息体视图打印、计算全息图打印与全息波前打印。合成全息体视图打印中，首先利用真实相机或者计算机渲染技术得到三维场景的多视角图片，再将含有视角图片信息的物光束与参考光束干涉，干涉条纹存储于全息记录介质；全息体视图再现时，通过观察含有视差信息的不同视角图片，进而产生立体感，视差会随着人眼位置的移动而改变。计算全息图打印中，利用计算机直接算出全息条纹，再将条纹加载至空间光调制器(Spatial Light Modulator, SLM)，投影至全息记录介质后被直接记录，可以得到各类薄的透射型全息图，如菲涅耳(Fresnel)全息图、彩虹全息图、像是全息图及全息体视图等。波前打印中，同样需要利用计算机算出全息图，但算法不同于计算全息图打印，且可以获得反射式体全息图。

全息打印技术发展迅速，应用广泛，文中将重点介绍其基本原理、研究现状，以及其它相关内容。

1 合成全息体视图打印

1.1 基本原理

合成全息体视图打印最早由 D. J. DeBitetto 提出，并由 M. C. King 等人发展。通过两步转换法，可以得到虚实结合的全息图，即再现像或凸现出全息记录介质显示，或显示于记录介质内部。两步变换法全息体视图的制作与再现过程如图 1 所示。在非相干条件下拍摄三维场景的多视角全视差图像，并将它们的 Fresnel 全息图依次记录于全息单元(Holographic element, Hogel)，为了分离孔径光阑平面与观察平面，主全息图(master hologram)需要通过像全息图的方式翻拍至转移全息图(transfer hologram)，这意味着必须经过两次曝光。

图 1 两步转换法全息体视图的制作与再现

自 20 世纪 90 年代起，美国麻省理工学院(MIT)的媒体实验室与日本东京工业大学的成像科学与工程实验室围绕合成全息体视图展开了积极的研究。为简化两步转换法的制作过程，分别提出了无限远相机法与单步 Lippmann 全息体视图打印方法。无限远相机法的核心思想是将视角图片转换成与视差相关的图片，当相机采样平面与全息记录平面足够远时，可近似认为进入全息单元的光源均为平行光，变换过程相当于对一系列数据的输入，变换原理如图 2 所示。假设共有 sxt(s=1, 2, ..., M, t=1, 2, ..., N)
第 4 期
www.irla.cn 第 47 卷

1, 2, ⋯, N) 幅视角图片，每幅图片含有 in×jn(i=1, 2, ⋯, m, j=1, 2, ⋯, n) 个像素，视角图片矩阵表示为 P(i, j)。将所有视角图片矩阵相同位置处的像素提取出来组成新的矩阵 H(i, j)，表示与视差相关的图片，全息体视图再现像的分辨率等于全息单元的个数。

单步 Lippmann 全息体视图打印方法中，用于全息单元的曝光图片不是相机采样，而是通过视角投影获得的，基本原理如图 3 所示[18]。根据全息单元的中心位置，将各物点依次投影至液晶显示屏 (LCD)，投影时需要考虑空间物点的遮挡关系，移除视差像，全息图再现时，全息单元向各个方向衍射光线，与曝光图片计算生成的方向相反，然后观察者将会感知到三维场景。

图 3 单步 Lippmann 全息体视图制作原理
Fig.3 Principle of the single-step Lippmann holographic stereogram method

两步转换法过程复杂，且由于二次曝光时难以获得大幅面的平行光，制作大尺寸的全息图较为困难；采用无限远相机法与单步 Lippmann 全息体视图打印方法时仅需要通过单次曝光，但前者的再现图像分辨率较低，特别是对于小视场的全息图，其图像处理过程较为复杂。笔者提出了一种基于有效视角图片分割重组 (Effective Perspective Images’ Segmentation and Mosaicking, EPISM) 算法的全息体视图打印方法[19]，其基本原理如图 4 所示。根据光线追踪原理和光路的可逆性模拟人眼的锥状放射观察效果，通过有效视角图片段的拼接组合得到最终的合成有效视角图片，该方法的图片处理方式简单，且再现像的分辨率较高。

图 4 基于 EPISM 算法的全息体视图原理
Fig.4 Principle of the EPISM based holographic stereogram method

1.2 合成全息体视图打印的研究现状

1.2.1 幅面、视场角、无畸变的全息显示

MIT 团队对大幅面、大视场合成全息体视图的制作原理进行了研究，并对再现像中的透视畸变问题提出了解决方案，提出了所谓的“超全息图”(Ultragram)，改善了水平视差全息体视图的畸变特性[16-21]。S.A. Benton 等通过拼接全息单元实现了平方米级幅面的全息显示[20]。

俄罗斯学者 A. Y. Zherdev 等从能量利用率和视场角角度比较了传统的基于散射与折射原理的全息体视图打印系统，提出采用衍射透镜来扩大视场角，研制了复合全息透镜 (Composite Holographic Lens, CHL) 与振幅型衍射透镜 (Amplitude Diffractive Lens, ADL)，将这两种特殊的光学衍射透镜应用于全息打印，获得了 120°视场角的全息体视图效果[21]。

在合成全息体视图打印系统中使用物镜，远心镜头等光学器件后，经 SLM 后的图像将会产生畸变[22]，韩国学者 J. Park 等讨论了图像畸变问题，模拟了径
向畸变对于全视差全彩色白光可见全息体视图再现像效果的影响，并提出使用峰值信噪比 (Peak Signal-to-Noise Ratio, PSNR) 与结构相似度 (Structural Similarity, SSIM) 作为图像质量评判的标准[22-23]。

1.2.2 打印效率

全息体视图打印时需要对全息单元进行逐点曝光，打印效率十分关键。俄罗斯学者 A. V. Morozov 等分析了全息打印总时间与全息单元尺寸、材料感光灵敏度、激光功率、曝光时间、静台时间、定位平台移动时间等因素之间关系，提出了空间复用与时间复用的多全息单元打印技术，打印 10 cm×10 cm 幅面全息图时，可以将传统打印方法所需的 250 min 分别缩短至 67 min 和 32 min[21]。

哈尔滨师范大学的关承祥团队提出多通道全息图记录的方法，将 SLM 分割成多个通道，采集到的多视角图片也相应分割成多幅子图，子图重新组合后加载到 SLM 的多个通道，多通道同时曝光，显著减少了制作大幅面全息图所需的时间[21]。

日本的 M. Yamaguchi 团队采用透镜阵列，对 12 个全息单元同时曝光，总的打印时间缩短至传统时间的 1/10[21]。

虽然连续激光器、脉冲激光器对于振动或者微小的温度变化并不敏感，曝光过程中静台时间可忽略，已有多位学者和公司采用脉冲激光器实现了全息体视图的打印[22-23]。

1.2.3 色彩还原特性

伴随新型全息感光材料的发展，近些年彩色反射全息图打印一直是研究的热点。浙江师范大学王辉团队分析了反射全息图衍射效率随波长的变化规律与色度学原理，提出了反射全息彩色三维显示的颜色系统，并对再现像质量进行了评价[23]。M. Yamaguchi 团队通过对再光线的光谱测量，提出了一种适用于全彩色全息体视图打印的色彩管理方法，同时讨论了照明光束角度的改变对色彩变化的影响，指出入射光在一定范围内变化时，特定的色彩仍然可以再现出来[23]。

根据记录材料的感光特性，制作彩色全息图时可采用多重曝光记录 (multi-exposure)[23] 或空间分割曝光 (space-division exposure)[23] 两种方法。前者是将三色激光 (Red, Green and Blue, RGB) 合成一束激光后同时曝光于全息单元，记录的效果取决于感光材料的动态范围[23]；后者是首先对全息单元进行空间分割，再对每个子区域进行某单色激光的曝光，由于记录密度的降低，采用该方法时 RGB 三色中的某色衍射光强将会下降至单色全息单元曝光时的 1/3。

M. Yamaguchi 团队提出了一种基于高密度光场重建的全视差全彩色全息显示方法[31]，并从角分辨率、全息单元排列结构的可见性和角度分析讨论了全息单元尺寸对再现效果的影响，结果表明当全息单元尺寸为 50 μm×50 μm 时，全息图可提供 1.08° 的角分辨率，满足人眼视觉系统的需求。

1.2.4 成像质量

M. Lucente 分析了水平视差全息体视图中全息单元尺寸与横向分辨率之间的关系[32]。K. Hong 等提出采用全息单元交叠的方法提高全息体视图再现像分辨率[32]，位移平台的移动间隔小于全息单元尺寸，可叠加的最大全息单元数目取决于全息记录介质的动态范围，但是由于频谱混淆，这种硬交叠方式会导致再现图像出现晕状模糊。

M. Yamaguchi 团队提出在全息单元之前加入限带的散射膜来提高全息体视图的显示分辨率[33]，但是引入了一定的附加噪声。

1.2.5 衍射效率

全息图的衍射效率与许多因素有关，比如记录介质特性、物光与参考光的光强、物光及参考光的偏振特性、及后续处理工艺等。当物光与参考光强比接近 1:1 时，全息图的衍射效率最佳。由于透镜傅里叶平面处物光的频谱很窄，M. A. Klug 等提出采用衍射膜来提高衍射效率[33]。此外，在光学全息中，有学者从记录介质材料特性的角度出发，在材料中添加纳米颗粒，提高了全息图的衍射效率，这些研究成果同样适用于合成全息体视图的打印。例如日本的 N. Suzuki 团队在光致聚合物中添加 13 nm 的二氧化硅纳米颗粒[33]，显著降低了能量的散射损失，获得了高对比度的衍射率调制；清华大学的曹良才团队在光致聚合物中添加金纳米颗粒[34-41]，有效地抑制了体全息光栅结构选择中的旁瓣衍射 (sidelobe diffraction)，提高了全息图的衍射效率。

1.2.6 全息记录介质的发展

传统的全息记录材料包括银盐、重铬酸盐明胶及光致聚合物等[41]。采用传统全息记录介质时，全息图一旦被写入将无法更改，导致了高昂的成本，限制
了其使用范围。因此，学者们致力于研究可刷新的全息记录介质。美国的 N. Peyghambarian 团队将基于全息单元的全息体视图直接写入光存储材料，实现了每 2 s 可以动态刷新的全息体视图[42-46]。日本的 N. Tsutsumi 团队利用聚合物中添加特殊的有机化合物，提高了可刷新记录介质的响应时间及衍射效率 [46-49]。上海大学的高洪跃团队研制了衍射效率可达 90% 的永久性光致聚合物记录材料 [46-47]，他们团队同样也进行动态全息三维显示方面研究 [48]。

1.2.7 噪声去除

合成全息体视图打印时，由于使用振动隔离的光学平台，影响全息打印效果的环境噪声主要来源于全息单元逐点曝光时移动平台的机械移动，为提高打印系统抵抗环境噪声的鲁棒性，韩国的 B. Lee 团队采用振动隔离算法设计了可最大限度降低环境噪声影响的打印系统 [49]。

日本的 M. Yamaguchi 团队研究了散斑噪声对全息再现效果的影响 [50]，全息体视图打印时采用散射膜可以均衡光场的强度分布，但不可避免地引入散斑噪声，M. Yamaguchi 等提出采用移动散射膜来降低颗粒噪声，采用多次曝光的方法来降低高频噪声。

1.2.8 频率响应特性分析

全息体视图系统是一种光学系统，若仅从几何光学角度对分析研究，难以深入理解系统的工作机理。有学者从角谱的角度出发，建立全息单元的角谱调控模型，分析其调控机理。研究其频率响应特性 [51]。P. St. Hilaire 等构建了水平视差像面全息体视图的调制传递函数 (MTF)，讨论了在狭缝平面固定深度物点的优化采样问题 [51]。新加坡南洋理工大学的 L. E. Helseth 考察了三维显示系统的光学传递函数 (OTF)，给出了人眼的斯泰尔斯-克劳福德效应 (Stiles-Crawford effect) 对光学传递函数的影响 [52]。分析了波前误差对全息体视图的再现效果的影响 [53]。针对传统全息体视图普遍采用的矩形光瞳存在的频谱泄漏问题，提出采用截断孔径的高斯和布莱克曼函数作为全息体视图系统的出瞳函数，分析了像差条件下，利用光学传递函数对出瞳尺寸进行优化，获得了一种出瞳函数的最优尺寸，截断孔径高斯光瞳和布莱克曼光瞳能够有效地改善全息体视图系统的频率响应特性。北京邮电大学的桑新柱教授团队建立了利用全息功能屏实现多视差显示的光学传递函数模型 [54]。全息体视图角谱调制特性的研究能够有效地指导全息打印系统的参数设计，提高打印质量。

1.2.9 典型光学打印系统及全息图实例

目前，除实验室研究以外，世界范围内主要有美国的 Zebra Imaging、欧洲的 Geola 和 XYZ Imaging 三家公司专业从事并提供与全息打印有关的商业服务 [55]。Zebra Imaging 公司是由 MIT 媒体实验室的科学家们创立，已成功实现高质量的全息体视图打印，自 2006 年起陆续为美军提供了数万张全息地图 [56]，图 5 为 Zebra Imaging 公司制作的全息地图。英国的 D. Brotherton-Ratcliffe 等将脉冲激光器作为光源，研究了合成全息图的自动拍摄技术，Geola 公司与 XYZ Imaging 公司合作，生产出了能够自动打印不同规格、高质量、真彩色全息图的激光全息打印机。第一代 RGB 三色脉冲激光全息打印机及打印的全息图如图 6 所示 [42-43]。

图 5 Zebra Imaging 公司制作的全息地图

Fig. 5 Holographic map produced by Zebra Imaging Inc

图 6 2001 年 Geola 公司生产的第一代 RGB 三色脉冲激光全息打印机 (a) 与打印的全息图 (b)

Fig. 6 The first RGB pulsed-laser holographic printer made by Geola in 2001 (a) and the printed hologram (b)

1.3 讨论

合成全息体视图打印时不需要进行复杂的衍射计算，但不同于传统的光学全息，该打印系统仅仅产生场景的二维视差图像，不能够正确地重构物体的完整波前信息，特别是其相位信息，从而导致全息体视图再现质量受到影响，会聚—调节矛盾
2 计算全息图打印

2.1 基本原理

随着计算机技术的发展，许多学者进行了计算全息图打印的研究。不同于合成全息体视图打印，计算全息图打印中采用计算机编码技术替代传统的物理干涉过程，直接得到计算全息图（Computer-Generated Hologram, CGH）。首先利用计算机生成全息条纹，再将全息条纹分割若干个子全息图，加载至SLM。经过成像镜头后，子全息图被缩印至全息记录介质。计算全息图打印系统又可称为直接条纹打印系统，全息打印时可以记录三维场景准确的深度信息，全息图再现时可以还原出完整的波前，因此能够克服合成全息体视图打印中的会聚-调节矛盾。

计算全息图打印仅能够制作薄的透射型全息图，但不仅限于透射型全息图的类型，如彩虹全息图、像全息图、Fresnel全息图与全息立体图等[58-61]。传统的计算全息图生成算法包括基于干涉的方法与多视角投影法[62-63]。不足之处在于获取三维场景的数据较为困难，巨大的数据量对于全息图生成算法以及记录介质的空间带宽积（Space-Bandwidth Product, SBP）提出了苛刻要求，同时，由于三维显示的分辨率远超人眼的分辨能力，造成了信息的浪费[64-65]。M. Lucente于1994年提出了基于特定衍射条纹（diffraction-specific fringe）的计算全息体视图算法[66-67]，并将其应用于实时显示中。基于衍射条纹的全息体视图算法中，当再现平面与全息体视图平面的距离满足夫琅和费（Fraunhofer）衍射条件时，可将再现平面视为全息单元的频谱面，全息体视图平面被空间采样，再现平面被角度采样，全息单元由若干个基元全息图组成，基元全息图被设计为不同频率的数字光栅，用来控制再现光的衍射方向，并对应于再现平面上特定的空间频谱。在光学全息及基于干涉算法的计算全息图中，再现频谱是连续的，然而基于衍射条纹算法的全息图中再现频谱是离散的。笔着采用该方法快速生成了三维场景的全视差全息体视图，并进行了SLM下的光学再现实验[68]。由于立体视觉效果来源于视差图像，会聚-调节矛盾同样存在于传统的基于衍射条纹的计算全息体视图中，为克服这一点，可在基元全息图的计算过程中加入相位因子，进而获得具有深度信息的全息单元，基于衍射条纹算法的全息体视图将被应用于计算全息图打印中。

2.2 计算全息图打印的研究现状

2.2.1 分辨率匹配

计算全息图打印时，为避免计算全息图缩印至全息记录介质过程中成像质量的下降，必须考虑系统的分辨率匹配问题。考虑到多级再现像的混叠以及图像的失真，笔者进行了计算全息图生成与打印过程的分辨率匹配算法研究，并提出采用双远心镜头减少图像的失真[69]。王辉团队设计了计算全息图自动缩印系统，讨论了计算全息图与打印系统参数之间的关系[66]。

2.2.2 成像质量

在三维全息显示中，日本东京工业大学的K. Wakunami团队指出全息体视图再现时图像的分辨率受到空间采样、角采样和全息单元衍射效应的共同影响，距全息面越远时，图像的分辨率下降越明显[70]，于是提出了线采样（Ray-Sampling, RS）平面算法，在三维场景附附近设置一个虚拟的采样平面，根据角差理论，视差图像由虚拟采样平面传递到全息平面时可通过傅里叶变换得到波前，且该过程中图像的分辨率不会下降[70]。笔者在K. Wakunami的研究基础上定量分析了虚拟采样平面与三维场景之间的准确位置关系，确定了采样平面的位置和全息单元的最佳尺寸[71]。

2.2.3 全息体视图相位调控特性

相比合成全息体视图无法重构三维场景完整波前信息的不足，在计算全息中可以构建全息单元的相位调控模型，分析全息单元对于相位的调控机制和特性，进而对全息单元进行优化设计，实现主动相位调控以解决合成全息体视图打印中的会聚-调节
矛盾，该研究成果可应用于计算全息体视图打印中。D. M. Hoffman 等研究了会聚-调节矛盾引起不适以及视觉疲劳的原因[29]。T. Shibata 等通过实验给出了立体显示中由于会聚-调节矛盾导致的不适区域的定义，分析了不适区域与观察距离之间的关系[30]。M. Yamaguchi 等提出在全息图中加入近似的相位信息来增强全息图的深度表现能力[31]，并不断改进算法，提高精度与速度[32-34]。清华大学的张浩等采用点源法与全息体视图相结合的计算全息方法，实现了能够提供正确的会聚与调节特性的全视差全息视图[35]，但由于采用了物理干涉的原理，其计算量大，运算速度慢，继而他们又采用逆向菲涅耳衍射思想的分层全息视图算法，得到了包含三维场景准确深度信息的全息图[36]，由于使用了快速傅里叶变换 (FFT) 算法，运算速度大为提高。笔者也在改善全息体视图成像质量上进行了相关研究[37]。

超视图 (Super Multi-View, SMV) 是解决全息体视图中会聚-调节矛盾的另一种方法[38-40]。当视点之间的间隔小于人眼瞳孔的直径时，不同的视差图像能够同时进入单眼的瞳孔，从而产生单目立体图像，进而将不同解会聚-调节矛盾问题。但是视差图像的大量增加会致使计算量的增加和数据处理时间的增加，使全息体视图相对于传统计算全息技术的优势不复存在。

2.2.4 典型光学打印系统及全息图实例

日本学者在计算全息图打印领域进行了长期研究[41]。日本大学的 H. Yoshikawa 团队设计了如图 7(a) 所示的计算全息图打印系统[42]，包括控制系统与光学系统两部分，控制系统由 X-Y 方向位移平台与快门组成。计算全息图被依次加载至 SLM，经 L_1 与 L_4 组成的微镜系统后被曝光记录于全息干板，由计算机控制位移平台的运动、快门的开闭，以及计算全息图的加载更新。该系统可实现 0.44 μm 像素间隔的计算全息图打印。采用该系统打印的彩虹全息图[86]与 Fresnel 全息图[43]的再现结果如图 7(b) 与图 7(c) 所示。H. Yoshikawa 团队还完成了计算机制柱面全息图(computer-generated cylindrical hologram)[44]，计算机制圆盘全息图(computer-generated disk hologram)[45]，计算机制像全息图 (computer-generated image hologram) [39]，以及计算机制局部柱面全息图 (computer-generated alcove hologram) 的打印[46]。

图 7 H. Yoshikawa 团队研制的计算全息图打印系统原理图 (a)，彩虹全息图再现效果 (b) 和 Fresnel 全息图再现效果 (c)

图 8 王辉团队研制的彩虹全息图打印系统 (a) 与彩虹全息图再现效果 (b)

2.3 讨论

计算全息图打印可记录与再现三维场景的准确深度信息，解决合成全息体视图打印中存在的会聚-调节矛盾，由于不需要物光光束与参考光光束的物理干涉，打印系统对振动隔离的要求并不高。但是计算全息图打印系统需要成像镜头与全息记录介质之间的精确对焦，稍有偏差，干涉纹样的打印质量将会大大下降，再现效果会大打折扣；计算全息图打印无法实现可自光再现的反射全息，观察效果受到局限；同时，即便采用了多种改进型算法，生成计算全息图时仍需要较大的计算量。
3 全息波前打印

3.1 基本原理

由于全息的干涉波样三维结构复杂，计算全息图打印无法制作可白光再现的反射全息图，而合成全息体视图打印无法准确记录与再现三维场景的深度信息，因此 H. Yoshikawa 团队提出了全息波前打印[85]，全息波前打印是合成全息体视图打印与计算全息图打印的综合。在计算全息图打印中，基元全息图是直接印制至全息记录介质，而全息波前打印中，基元全息图经过衍射成像后，物光波前传播到全息记录介质并与参考光干涉形成布拉格层而被记录。

全息波前打印的基本原理是计算全息图中包含的三维场景信息的光线[86]，假设三维场景位于全息平面，由多个自发光点组成，全息平面被等间隔分割成多个虚拟窗口，每个虚拟窗口分别对应一幅基元全息图。如果光点发出的光线能够通过虚拟窗口到达基元全息图，则该基元全息图将记录该光点的信息。存在两种典型的基元全息图生成方法，一种是无透镜傅里叶全息图（lensless Fourier hologram）算法[87]，另一种是位相的快速体视图（Fast Phased-Added Stereogram，FPAS）算法[86]，为获得三维场景的波前信息，它们各自对应的打印系统是不同的。图9所示，前者是记录微缩后的+1级物光波前衍射光（图9(a)），后者是记录会聚的+1级物光波前衍射光（图9(b)）。

如图9(a)所示，将计算后的基元全息图加载至SLM，并被平行光垂直照明，衍射光波经透镜组（Lens 1 与 Lens 2）后与参考光干涉，在Lens 1 的后焦面处放置空间滤波器，去除不必要的光波成分，如-1级衍射光和0级透射光，最终将在全息记录介质上形成干涉纹样，记录三维场景的波前信息。而图9(b)中，采用4f系统对+1级衍射光成像，并使用透镜Lens 3 将光波会聚至全息记录介质。H. Kang等详细分析了以上两种打印系统的不同特性[81]，如视场角、SBP等。

3.2 典型光学打印系统及全息图实例

图10(a)为含有4f结构的波前打印系统[85]，T. Yamaguchi 团队采用该系统完成了全息图的打印，再现效果如10(b)所示，该全息图含有42×60个全息单元，全息图幅面为84 mm ×84 mm，水平和垂直方向视场角分别为16°与9°。
H. Kang 团队发展了全彩色波前打印，全息图被分割为多个子全息图，分别对应 RGB 三色激光进行记录，对 SLM 进行分割利用，实现了高效的彩色波前全息打印[18,20]。彩色波前打印系统与全息图光学再现结果如图 11 所示。H. Kang 团队还采用增加相位信息的改进型算法提高了体视图的计算速度[90]。

图 11 H. Kang 团队提出的彩色波前打印系统(a)与彩色全息图光学再现效果(b)

Fig.11 Setup of the color wavefront printing system proposed by H. Kang’s group (a) and optical reconstruction effect of the color hologram (b)

清华大学的曹良才团队长期从事全息材料改进相关的研究工作[90-91]，他们向光致聚合物中掺杂金纳米颗粒，使其具有良好的角度复用性和高衍射效率，采用旋转记录介质或者旋转物光束的两种角度复用技术实现了动态全息显示，图 12 为某旋转时钟的动态再现结果，共有 120 帧[90]。

图 12 曹良才团队研制的时钟全息图的 120 帧动态再现结果

Fig.12 Dynamic display of a revolving clock reconstructed by 120 frames made by L. Cao’s group

K. Wakunami 团队分析了全息单元尺寸对全息图再现效果的影响[92]，尺寸过小时，全息单元之间的栅格效应将很明显，尺寸过小时，全息单元的衍射效应将导致相位信息的不连续。他们同时考虑了全息单元的栅格效应与衍射效应，采用全息单元交叠的打印方法获得了较好的再现效果，图 13 为是否采用交叠打印时再现像前视效果的对比。

图 13 采用全息单元交叠打印方法与否时，全息图再现像的对比

Fig.13 Comparison of different reconstructed images with Hogels overlapping approach or not

3.3 讨 论

全息波前打印中，全息记录介质上存储的基元全息图不再是计算全息图的二维平面图像，而是编码了三维场景颜色、方向、深度等信息的波前，它既可以解决合成全息体视图打印中的会聚-调节矛盾，又可以解决计算全息图打印无法制作白光再现反射全息图的不足。然而由于需要计算干涉纹样，全息波前打印同样需要较大的运算量，同时由于采用物光束与参考光束物理干涉的干涉纹样记录方式，使用非脉冲激光器时，全息波前打印对于振动隔离同样有着较高的要求。

4 结 论

全息打印可以实现三维场景逼真的立体显示效果，文中详细介绍了三种典型的全息打印技术，以及各自的研究现状。第一类是合成全息体视图打印，全息图再现三维场景的多视图图片，通过双目视差感知立体效果，由于无法记录与再现三维场景准确的深度信息，存在会聚-调节矛盾。第二类是计算全息图打印，计算全息图可以准确记录三维场景的深度信息，解决会聚-调节矛盾，然而无法制作白光可见的反射全息图。第三类是全息波前打印，既可以解决合成全息体视图打印中的会聚-调节矛盾，又可以
实现白光可见的反射全息图打印，是观察效果最佳的全息打印技术。

致 谢

特别感谢本文撰写过程中，袁泉博士（北京源泉超影光电科技开发有限责任公司）关于文章结构的讨论及相关文字表述的修改。

参考文献:


Maruyama S, Ono Y, Yamaguchi M. High-density recording of full-color full-parallax holographic stereogram[C]//SPIE, 2006, 6912: 69120N.


曾超, 高洪跃, 刘吉成, 等. 动态全息三维显示研究最新进展[J]. 物理学报, 2015, 64(12): 124215.


Yu C, Yuan J, Fan F C, et al. The modulation function and


【黄应清, 赵凯, 蒋晓瑜, 等. 用波前平面提高全息立体图像分辨率[J]. 中国激光, 2016, 43(2): 0209002.】


[87] Miyamoto O, Yamaguchi T, Yoshikawa H. The volume hologram printer to record the wavefront of a 3D object[C]//SPIE, 2012, 8201: 82010N.


