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Abstract: In the compressive sensing theory, the robust reconstruction of signals can be obtained from far

fewer measurements than those obtained by the Nyquist theorem. Thus, it has a great potential in the

onboard compression of hyperspectral images using minimal computational resources and storage memory.

In this paper, a compressive鄄sensing鄄based hyperspectral image compression method was presented using

spectral unmixing. At the encoder, the original image was compressed acquired by spatial sampling and

spectral sampling, respectively. Then, the spectral and spatial correlation of the compressed data were

studied. To improve the compression performance, spectral linear prediction was used to remove the

spectral correlation, and the predictive errors were compressed by JPEG -LS in a lossless manner to

generate the final bit鄄streams. At the decoder, the bit鄄streams were first decoded to obtain the sampled

data. Then, a spectral unmixing technique was employed to reconstruct the original hyperspectral image,

which can avoid the defect of conventional compressed sensing reconstruction. Experiments on data from

the Airborne Visible/Infrared Imaging Spectrometer sensor show that the proposed algorithm provides

better compression performance than JPEG2000 and DCT -JPEG2000 with a lower computational

complexity.
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结合光谱解混与压缩感知的高光谱图像有损压缩
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摘 要院 压缩传感技术可以利用远少于奈奎斯特采样定理所获得的采样数据进行信号的鲁棒性重

建。因此，该技术在计算资源和存储空间均受限的高光谱图像压缩中具有很大的应用潜力。提出了一
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种基于压缩感知与光谱解混的高光谱图像压缩算法。在编码端，分别通过空间采样和光谱采样来实现

图像采样点的压缩；然后，对采样数据的空间与谱间相关性进行了研究。为了提高压缩性能，采用谱

线性预测去除采样后的谱间相关性，利用 JPEG-LS对预测误差进行编码来生成最终的比特流。在解

码端，首先解码比特流以获得采样数据；采用光谱解混技术对原始高光谱图像进行重构，克服了传统

压缩感知重建的诸多不足。针对机载可见/红外成像光谱仪数据的实验结果表明，该算法比 JPEG2000

和 DCT-JPEG2000具有更好的压缩性能，并具有较低的计算复杂度。

关键词院 高光谱图像； 压缩感知； 光谱去相关； 光谱解混

S126003-2

0 Introduction

Hyperspectral imaging records hundreds of

spectral bands for each pixel, each of which contains

values that correspond to the reflected light in a

defined range of the electromagnetic spectrum. With

the increase in spectral and spatial resolutions, the

data volume of hyperspectral images rapidly increases.

This immense data volume engenders significant

challenges for onboard storage and transmission. To

solve this problem, efficient compression of the

hyperspectral image has received considerable attention

in recent years. Recent lossy compression methods

have increasingly attracted attention because lossless

compression methods are unable to provide the desired

compression ratio. In general, the satellite platforms

have limited capacity for storage memory and

computational resources; therefore, these systems

usually employ a simple technique to perform data

compression.

Although low鄄complexity KLT schemes, such as

the spectral decorrelator, have been proposed [1-3], the

complexity has not been significantly reduced to an

acceptable degree for hardware implementation.

Moreover, transform鄄based algorithms always require a

considerable volume of memory, as they are

simultaneously performed on all spectral vectors.

Meanwhile, compressive sensing (CS)[4] is a relatively

new theory for signal acquisition and reconstruction.

Compared with traditional methods, this scheme can

significantly reduce the consumption of imaging

resources. Several hyperspectral compressive sensing

(HCS) methods have been proposed. Fowler proposed

compressive鄄projection principal component analysis

(CPPCA)[5], which is driven by projections at the sensor

onto randomly chosen lower鄄dimensional subspaces.

Given only these random projections, the CPPCA

decoder recovers not only the coefficients associated

with the PCA transform but also an approximation to

the PCA transform basis. Experimental results on

hyperspectral data showed that CPPCA outperformed a

multiple鄄vector variant of compressed sensing for the

reconstruction quality. However, although HCS

methods significantly reduce the costs of imaging,

storage, and transmission, a means of precisely

reconstructing the original image from a few

measurements remains challenging. Jia proposed an

efficient reconstruction approach for compressive

sensors by exploiting four important priors: spatial

piecewise smoothness, adjacent spectrum correlation,

low rank, and a structure similarity property [6]. Chen

proposed multi鄄hypothesis prediction (MH) to exploit

the spatial correlation of neighboring pixels for the

compressive鄄projection hyperspectral image[7]. Based on

the correlation coefficients between bands, a two鄄

phase hypothesis generation procedure was used to

recover the hyperspectral image. However, the MH

computational complexity was extremely high, and the

algorithm was invalid when the sampling rate was less

than 0.2.

Meanwhile, the hypothesis of linear mixture

model (LMM) was introduced for HCS. Li compressed

the hyperspectral image along the spatial domain and

unmixed the hyperspectral image into a spatially
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continuous abundance matrix with a given endmember

matrix [ 8] . Zhang compressed the hyperspectral image

along the spectral domain and estimated an abundance

matrix by a locally similar sparsity prior with a

redundant endmember library[9]. However, it is difficult

to obtain the endmember or endmember library

through this approach while collecting compressed

hyperspectral data. Wang proposed a spatio鄄spectral

hybrid compressive sensing (SSHCS) scheme based on

spectral unmixing, which estimates endmembers and

the corresponding abundance fraction from spatial and

spectral sampled data, respectively [10]. In Ref.[11], the

hierarchical reweighted Laplace prior was proposed for

reconstruction, and a latent variable鄄based Bayesian

model was employed to learn the optimal

configuration of the reweighted Laplace prior.

Experimental results showed that the reweighted

Laplace prior鄄based HCS method was adaptive to the

unknown noise scene. Despite the above

advancements, to the best of our knowledge, the CS

technique has not been effectively used in

hyperspectral images compression. In most cases, it

has only been used to perform sampling and

reconstruction with no encoding of the sampled data.

The only work to date that applies CS in

hyperspectral image compression was presented in

Ref. [12], where a direct scheme that leverages the

spectral correlation to compress the CS hyperspectral

image was proposed. In addition, a designed flexible

recovery strategy was presented to speed up the

reconstruction. However, its performance was not

comprehensively evaluated. In this paper, we therefore

propose a CS-based lossy compression technique for

hyperspectral images using spectral unmixing, whereby

spatio鄄spectral hybrid sampling is performed on the

original hyperspectral image to fully exploit its high

degree of correlation. Because a strong spectral

correlation continues to exist among the sampled

data, spectral linear prediction is used to further

remove the spectral correlation, followed by JPEG -

LS lossless compression. At the decoder, spectral

unmixing is performed on the decoded image to

reconstruct the original image based on a linear

mixture model. Experimental results show that the

proposed algorithm has competitive performance and

low complexity compared to the existing transform鄄

based algorithms.

1 Compressive鄄sensing鄄based

hyperspectral image compression

Compressed sensing technology mainly involves

sampling and recovering the original data. It should be

noted that the CS technique only reduces the volume

of original data; moreover, the dynamic range of the

sampled data is much larger than that of the original

data. For data storage or transmission, it is necessary

to employ an efficient compression technique to

encode the sampled data.

The solution of the convex l1 -norm is widely

used in CS recovery. For HCS recovery, some priors

are generally introduced, such as total variation (TV),

low rank, and structure similarity [6]. However, the

optimal coefficients between multiple priors are

difficult to calculate, which may significantly reduce

the recovery accuracy. In addition, owing to the

constant iterative calculation, HCS recovery typically

has a high computational complexity from using the

solution of the convex l1 -norm. In the proposed

approach, the spectral unmixing is thus employed to

perform the HCS recovery, which estimates

endmembers and the corresponding abundance from

the sampled data. It then recovers the original data

based on the LMM. A flowchart of the proposed

algorithm is shown in Fig.1, where the spatio鄄spectral

hybrid sampling is performed on the original data at

first to obtain the sampled data at the encoder. Then,

spectral linear prediction is used to remove the

spectral correlation of sampled data, followed by

JPEG -LS lossless compression. At the decoder,

spectral unmixing is performed on the decoded

sampled data to recover the original data.

S126003-3
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Fig.1 Flowchart of the proposed algorithm

1.1 Spatio鄄spectral hybrid sampling

Unlike a natural image, the hyperspectral image

can be regarded as a three鄄dimensional data cube. To

represent the hyperspectral images, we define a matrix

X =[x1,x2, 噎 ,xL], where xl (l =1,2, 噎 ,L) is a one鄄

dimensional vector corresponding to the l -th band

(reshaped as a one鄄dimensional vector) with an MN

length.

The spatio鄄spectral hybrid compressive sampling

scheme is employed to perform hyperspectral CS. By

using this scheme, the observation data consists of two

parts, one part is the spatial compressive sampled data,

Y1 =A1X; the other part is the spectral compressive

sampled data Y2=XA
T

2 , where A1 is the spatial measurement

matrix with a size of P 伊MN, and A2 is the spectral

measurement matrix with a size of K伊L. By the well鄄

known properties of the Kronecker product, 忆茚忆 , the

total observed data Y is composed of spatial sampled

data Y1 and spectral sampled data Y2, which can be

converted into a standard form as:

Y=
Y1

Y2

蓘 蓡 =AX (1)

Complete measurement matrix A can be written as:

A=
IL茚A1

A2茚IN
蓘 蓡 (2)

where IL and IN denotes the identity matrix with

dimensions of L忆L and N忆N, respectively.

For matrix A1, a special kind of measurement

matrix is employed, where each row of the

measurement matrix contains only one "1" element,

while the others are "0". Owing to the special

characteristic of A1, the range of Y1 is the same as X.

For the spectral measurement matrix, we chose the

general random projection matrix, A2. Note that the

total sampling rate (SR) is the sum of the spatial

sampling rate, SR1, and the spectral sampling rate,

SR2, where SR1=P/MN and SR2=K/L.

1.2 Correlation analysis of sampled data

As noted, the hyperspectral image has both

spatial and spectral correlations. To achieve high

compression performance, the above correlation must

be considered. For the proposed algorithm, there are

two sampling approaches: spatial sampling and

spectral sampling. Before the compression algorithm is

used on the sampled data, it is necessary to exploit

the spectral and spatial correlations of the sampled

hyperspectral image.

Figure 2 (a) provides the spectral correlation of

the hyperspectral image sampled by spatial sampling

with SR1 =0.01. Figure 2 (b) presents the spectral

correlation of the hyperspectral image sampled by

spectral sampling with SR2 =0.2. As shown, a strong

spectral correlation exists in the sampled hyperspectral

image. Thus, to achieve high performance, an efficient

algorithm should be employed to remove the spectral

correlation.

(a) Spatial sampling(SR1=0.01) (b) Spectral sampling (SR2=0.2)

Fig.2 Spectral correlation of the sampled hyperspectral image

Figure 3 depicts the spatial correlation of each

band sampled in the above two approaches.

Regardless of which sampling manner is employed, it

is apparent that the sampled data still has a strong

spatial correlation that should be removed by an

effective compression algorithm. With respect to

onboard hyperspectral image compression, the sampled

elements must be encoded by a certain compression

S126003-4
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technique to be transmitted to the decoder in the

ground. On the other hand, the values of the sampled

elements are usually much larger than those of the

original elements since each sampled element is

obtained by weighting all original elements using each

row of the measurement matrix. Therefore, it is

necessary to compress the sampled elements to

achieve real鄄time transmission with limited bandwidth

for the onboard hyperspectral image.

(a) Spatial sampling(SR1=0.01) (b) Spectral sampling(SR2=0.2)

Fig.3 Spatial correlation of the sampled hyperspectral image

1.3 Prediction鄄based compression for sampled data

Information loss occurs in HCS; thus, to ensure

the reconstructed quality, lossless compression is

selected to encode the sampled data. In particular,

linear prediction is employed to remove the spectral

correlation since the prediction鄄based algorithm can

provide perfect performance for lossless compression

with low complexity.

For the hyperspectral image obtained by spectral

sampling, each band is divided into non鄄overlapping

blocks with a size of s伊s for adaptation to the local

features. Let xk,i,j denote the pixel of the current block

in the i-th line, j-th pixel, and k-th band, with k=

1,2,噎 , K and i,j=1,2,噎 ,s. The pixel xk,i,j is linearly

predicted from the decoded pixels xk-1,i,j of the previous

block. Let k be the average value of the current

block and let k-1 be the average value of the co鄄located

block in the (k-1)-th band. The predicted value of

the current block can be expressed as:

x軃k,i,j= k(xk-1,i,j- k-1)+ k (3)

where k is the prediction coefficient, which can be

computed by the least鄄squares estimator as:

k=

N

i=1

移
N

j= 1

移(xk-1,i,j- k-1)(xk,i,j- k)

N

i=1

移
N

j= 1

移(xk,i,j- k)(xk,i,j- k)

(4)

The predictive error can be calculated as:

ek,i,j=xk,i,j-x軃k,i,j (5)

The error samples of each block are compressed

in a lossless manner by JPEG -LS to generate the

final bit鄄stream because JPEG -LS can effectively

remove the spatial correlation of each block and

achieve better lossless compression performance.

2 Recovery of the hyperspectral images

At the decoder, we can easily obtain the sampled

data by using JPEG -LS and inverse spectral linear

prediction. For CS recovery, the application of matrix

decomposition has been proven as an effective

technique[5]. In this paper, we employ spectral unmixing

to reconstruct original data from the compressive

sampled data. It is known that the hyperspectral image

is usually regarded as a linear mixture model (LMM)

for spectral unmixing. Based on LMM, hyperspectral

images X can be written as:

X=

p

i=1

移siei=SE (6)

where the matrix X =[x1,x2, 噎 ,xL] represents the

hyperspectral images, and the endmember matrix E =

[e1,e2,噎,ep]
T is a p伊L matrix consisting of p endmember

signatures, and abundance matrix S=[s1,s2,噎 ,sp]
T is an

N伊P matrix consisting of the corresponding fraction of

each endmember.

By using LMM, the spatial sampled data Y1 can

be described as A1SE. Since the special structure of

matrix A1, A1S has the same structure as S. Therefore,

the spectral unmixing algorithm can be performed on

the compressed sampled data to extract endmembers

and abundance. Before endmember extraction, the

number of endmembers in the hyperspectral images

should be estimated. Hyperspectral signal identification

by the minimum error (HySime) [13] is employed to

estimate the endmember number, p, and the vertex



红外与激光工程

第 S1期 www.irla.cn 第 47卷

component analysis (VCA) [14] algorithm is used to

extract the endmembers from the spatial sampled data,

Y1. The VCA to obtain the endmember matrix is as

follow.

The p endmember spectra are first extracted from

Y1 and stored in endmember matrix E. Then an

intermediate vector v is chosen such that no object is

orthogonal to it. Next, all objects are projected into v

and the first endmember corresponding to the

maximum of the projection. The succeeding endmembers

are iteratively projected to a subspace orthogonal to

the span of the endmembers already determined. This

is done until the p endmembers are found.

Since both Y1 and Y2 are obtained from the same

scenario, the endmembers extracted from Y1 can also

be regarded as the endmembers of Y2. Thus, the spectral

sampled data Y2 can be expressed by introducing a

new matrix, B, as follows:

Y2=SB (7)

where B=EA
T

2 is the compressed endmembers matrix.

Since E and A2 are known, B is known. Our goal is

to find the abundance matrix, S, from spectral

sampled data Y2. Note that the p value presented in a

given scenario is usually much smaller than the

number of L values; however, the p value may be

smaller than the J value when SR2 is large. In this

case, the least squares method can be used to estimate

S from the spectral sampled data, Y2, because B is a

full鄄rank matrix. Once we obtain endmember matrix E

and abundance matrix S, the original hyperspectral

image can be reconstructed from the sampled data

according to Eq.(6).

3 Experimental results and discussion

The proposed algorithm was evaluated on both

raw and calibrated datasets collected in 2005 by an

Airborne Visible Infrared Imaging Spectrometer

(AVIRIS) sensor, which was pioneered by the Jet

Propulsion Laboratory of the US National Aeronautics

and Space Administration. All sequences comprised

224 bands recorded at different wavelengths in the

range of 380 to 2 500 nm, with a spectral resolution of

10 nm. The tested datasets were represented in 16 bits,

and each image had 512 lines, 224 bands, and 512 pixels

per line.

3.1 Reconstruct performance

We demonstrate the reconstruct performance of

proposed compressed sensing algorithm. For

comparison purposes, we also show results obtained

with state鄄of鄄the鄄art CPPCA[5]. We let the total sampling

rate vary from 0.1 to 0.5. Figure 4 shows the average

SNR(signal鄄to鄄noise ratio) of the recovered hyperspectral

imagery(aviris_sc0.raw and aviris_sc3.raw) with different

sampling rates. We can see that the reconstruct

average SNR ascends with the increase of the

oversampling rate. The reconstruct performance of

proposed algorithm outperforms the CPPCA. CPPCA

lacks stability when the number of measurements is

bellow the true signal subspace. However, the

proposed algorithm still keeps a higher reconstruct

precision when the sampling rate is less than 0.2.

Fig.4 SNR curves of different methods on AVIRIS raw data

3.2 Compression performance

In this study, we used the bit per pixel per band

(bpppb) and the SNR to evaluate the compression

performance. The block size s伊s was selected as 32伊

32 for the proposed algorithm. The final bpppb was

determined by the spatial sampling rate, spectral

sampling rate, and lossless compression method. We

compared the results of the proposed algorithm with

JPEG2000, DCT -JPEG2000 and DWT -JPEG2000

using a large range of bitrates. Note that JPEG2000 is

S126003-6
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a well鄄known compression standard that is primarily

used for still image compression. DCT-JPEG2000 is a

widely employed lossy compression algorithm that

removes the spectral correlation using the discrete

cosine transform (DCT) followed by a spatial wavelet

transform with full post鄄compression rate鄄distortion

optimization (PCRD-opt). DWT-JPEG2000 is similar

to DCT-JPEG2000, with the only difference being the

spectral de鄄correlation, which removes the spectral

correlation by using the discrete wavelet transform

(DWT). The compression results on the AVIRIS raw

image through various algorithms are shown in Fig.5.

As shown in Fig.5, although JPEG2000 has a perfect

rate鄄distortion performance for the still image, its rate

distortion performance for the hyperspectral image is

not satisfactory on account of the lack of spectral

decorrelation. DWT-JPEG2000 provides the best rate

Fig.7 Comparison of rate distortion performance for AVIRIS raw data

distortion performance owing to its high performance

in spectral decorrelation. The performance of DCT -

JPEG2000 is lower than that of DWT -JPEG2000

because DCT is less efficient than DWT for spectral

decorrelation. With regard to the proposed algorithm,

the performance at low bitrates was the worst, even

lower than that of JPEG2000, which was because of

the inherent limitation of the prediction鄄based lossy

compression algorithm. However, this disadvantage

can be negligible at high bitrates. At the middle and

high bitrates, the performance of the proposed

algorithm was higher than that of JPEG2000. Even in

a partial range of bitrates, the proposed algorithm

outperformed DCT-JPEG2000. However, because the

coding technique of the proposed algorithm is simple

and much less powerful than that of PCRD-opt, the

performance of the proposed algorithm was less than

that of DWT -JPEG2000. In sum, the proposed

algorithm showed better performance than JPEG2000,

and even better performance than DCT-JPEG2000 at

some bitrates, whereas it showed a lower performance

than DWT-JPEG2000.

3.3 Complexity

In terms of complexity, the proposed algorithm

mainly employs spatio鄄spectral hybrid sampling and

linear prediction to realize hyperspectral image

compression, which provides lower encoder complexity

than the transform鄄based algorithm. Since the

sampling can be directly realized by optical devices,

this process does not cost any computing. As for the

prediction process, the proposed algorithm requires

approximately 6 additions and 3 multiplications per

pixel. To evaluate the complexity of the proposed

S126003-7
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algorithm, the runtime was employed to compare the

complexity of each algorithm, including both encoder

and decoder complexity. A comparison of complexity

for various algorithms is reported in Tab.1. Although

DWT -JPEG2000 shows the best performance, its

complexity is the highest. DCT-JPEG2000 has modest

complexity, which is lower than that of DWT -

JPEG2000 and higher than that of JPEG2000;

however, there is a performance gap between DCT

and DWT for spectral decorrelation. The proposed

algorithm shows better performance than JPEG2000;

however, its encoder complexity is lower.

Tab.1 Comparison of complexity of various

algorithms

4 Conclusion

Hyperspectral imaging has an immense data

volume; thus, traditional compression algorithms have

difficulty satisfying the related requirements of

onboard storage and transmission. In this paper, we

proposed a CS-based lossy compression technique for

hyperspectral images using spectral unmixing. The CS

technique can effectively reduce the data volume by

using a certain measurement matrix, which significantly

reduces the encoder complexity. The spatio鄄spectral

hybrid sampling is performed on the original

hyperspectral image at first. Then, the correlation of

the sampled data is studied, and spectral linear

prediction is employed to remove the spectral

correlation of sampled data followed by JPEG -LS

lossless compression. At the decoder, spectral

unmixing is performed on the decoded data to recover

the original hyperspectral image. Experimental results

showed that proposed algorithm has competitive

compression performance compared with the transform鄄

based compression algorithm. Moreover, the proposed

algorithm has low computational complexity of both the

encoder and decoder, which is suitable for the efficient

compression of the onboard hyperspectral image.

References:

[1] Penna B, Tillo T, Magli E, et al. Transform coding

techniques for lossy hyperspectral data compression[J]. IEEE

Transactions on Geoscience and Remote Sensing, 2007, 45

(5): 1408-1421.

[2] Blanes I, Serra鄄Sagrista J. Pairwise orthogonal transform for

spectral image coding[J]. IEEE Transactions on Geoscience

and Remote Sensing, 2011, 49(3): 961-972.

[3] Nian Y J, Liu Y, Ye Z. Pairwise KLT -based compression

for multispectral images [J]. Sensing and Imaging, 2016, 17

(1): 1-15.

[4] Donoho D L. Compressed sensing[J]. IEEE Transactions on

Information Theory, 2006, 52(4): 1289-1306.

[5] Fowler J E. Compressive鄄projection principal component

analysis [J]. IEEE Transactions on Image Processing, 2009,

18(10): 2230-2242.

[6] Jia Y B, Feng Y, Wang Z L. Reconstructing hyperspectral

images from compressive sensors via exploiting multiple

priors[J]. Spectroscopy Letters, 2015, 48(1): 22-26.

[7] Chen C, Li W, Tramel E W, et al. Reconstruction of

hyperspectral imagery from random projections using

multihypothesis prediction [J]. IEEE Transactions on

Geoscience and Remote Sensing, 2014, 52(1): 365-374.

[8] Li C B, Sun T, Kelly K F, et al. A compressive sensing and

unmixing scheme for hyperspectral data processing [J]. IEEE

Transactions on Image Processing, 2012, 21(3): 1200-1210.

[9] Zhang L, Wei W, Zhang Y, et al. Locally similar sparsity鄄

based hyperspectral compressive sensing using unmixing [J].

IEEE Transactions on Computational Imaging, 2016, 2 (2):

86-100.

[10] Zhang L, Wei W, Tian C N. Exploring structured sparsity by

a reweighted laplace prior for hyperspectral compressive

sensing [J]. IEEE Transactions on Image Processing, 2016,

25(10): 4974-4988.

[11] Wang Z L, Feng Y, Jia Y B. Spatio鄄spectral hybrid

compressive sensing of hyperspectral imagery [J]. Remote

Sensing Letters, 2015, 6(3): 199-208.

[12] Huo C F, Zhang R, Yin D. Compression technique for

compressed sensing hyperspectral images [J]. International

Journal of Remote Sensing, 2012, 33(5): 1586-1604.

[13] Dias J M B, Nascimento J M P. Hyperspectral subspace

identification [J]. IEEE Transactions on Geoscience and

Remote Sensing, 2008, 46(8): 2435-2445.

[14] Nascimento J M P, Dias J M B. Vertex component analysis:

a fast algorithm to unmix hyperspectral data [J]. IEEE

Transactions on Geoscience and Remote Sensing, 2005, 43

(4): 898-910.

Algorithm Encoder/ms Decoder/ms

JPEG2000 61 23

DCT-JPEG2000 126 30

DWT-JPEG2000 138 50

Proposed algorithm 39 15


