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Abstract: In the compressive sensing theory, the robust reconstruction of signals can be obtained from far
fewer measurements than those obtained by the Nyquist theorem. Thus, it has a great potential in the
onboard compression of hyperspectral images using minimal computational resources and storage memory.
In this paper, a compressive-sensing-based hyperspectral image compression method was presented using
spectral unmixing. At the encoder, the original image was compressed acquired by spatial sampling and
spectral sampling, respectively. Then, the spectral and spatial correlation of the compressed data were
studied. To improve the compression performance, spectral linear prediction was used to remove the
spectral correlation, and the predictive errors were compressed by JPEG-LS in a lossless manner to
generate the final bit-streams. At the decoder, the bit-streams were first decoded to obtain the sampled
data. Then, a spectral unmixing technique was employed to reconstruct the original hyperspectral image,
which can avoid the defect of conventional compressed sensing reconstruction. Experiments on data from
the Airborne Visible/Infrared Imaging Spectrometer sensor show that the proposed algorithm provides
better compression performance than JPEG2000 and DCT -JPEG2000 with a lower computational
complexity.
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0 Introduction

hundreds of

spectral bands for each pixel, each of which contains

Hyperspectral imaging records
values that correspond to the reflected light in a
defined range of the electromagnetic spectrum. With
the increase in spectral and spatial resolutions, the
data volume of hyperspectral images rapidly increases.
This immense data volume engenders significant
challenges for onboard storage and transmission. To
solve this problem, efficient compression of the
hyperspectral image has received considerable attention
in recent years. Recent lossy compression methods
have increasingly attracted attention because lossless
compression methods are unable to provide the desired
compression ratio. In general, the satellite platforms
have limited

capacity for storage memory and

computational resources; therefore, these systems
usually employ a simple technique to perform data
compression.

Although low-complexity KLT schemes, such as
the spectral decorrelator, have been proposed!'~, the
complexity has not been significantly reduced to an
acceptable degree for hardware implementation.
Moreover, transform-based algorithms always require a
volume

considerable of memory, as they are

simultaneously performed on all spectral vectors.
Meanwhile, compressive sensing (CS)™ is a relatively
new theory for signal acquisition and reconstruction.
Compared with traditional methods, this scheme can
significantly reduce the

consumption of imaging

resources. Several hyperspectral compressive sensing

Ktk RiEMRR

(HCS) methods have been proposed. Fowler proposed
compressive-projection principal component analysis
(CPPCA)P!, which is driven by projections at the sensor
onto randomly chosen lower-dimensional subspaces.
Given only these random projections, the CPPCA
decoder recovers not only the coefficients associated
with the PCA transform but also an approximation to
the PCA transform basis. Experimental results on
hyperspectral data showed that CPPCA outperformed a
multiple-vector variant of compressed sensing for the
although HCS

methods significantly reduce the costs of imaging,

reconstruction  quality. However,

storage, and transmission, a means of precisely

reconstructing the original image from a few
measurements remains challenging. Jia proposed an
efficient reconstruction approach for compressive
sensors by exploiting four important priors: spatial
piecewise smoothness, adjacent spectrum correlation,
low rank, and a structure similarity property!®’. Chen
proposed multi-hypothesis prediction (MH) to exploit
the spatial correlation of neighboring pixels for the
compressive-projection hyperspectral image™. Based on
the correlation coefficients between bands, a two-
phase hypothesis generation procedure was used to
recover the hyperspectral image. However, the MH
computational complexity was extremely high, and the
algorithm was invalid when the sampling rate was less
than 0.2.
Meanwhile, of linear mixture
model (LMM) was introduced for HCS. Li compressed

the hyperspectral image along the spatial domain and

the hypothesis

unmixed the hyperspectral image into a spatially
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continuous abundance matrix with a given endmember
matrix'®!. Zhang compressed the hyperspectral image
along the spectral domain and estimated an abundance
matrix by a locally similar sparsity prior with a
redundant endmember library™. However, it is difficult
to obtain the endmember or endmember library
through this approach while collecting compressed
hyperspectral data. Wang proposed a spatio-spectral
hybrid compressive sensing (SSHCS) scheme based on
spectral unmixing, which estimates endmembers and
the corresponding abundance fraction from spatial and
spectral sampled data, respectively™”. In Ref.[11], the
hierarchical reweighted Laplace prior was proposed for

reconstruction, and a latent variable-based Bayesian

model was employed to learn the optimal
configuration of the reweighted Laplace prior.
Experimental results showed that the reweighted

Laplace prior-based HCS method was adaptive to the

unknown  noise scene. Despite  the  above
advancements, to the best of our knowledge, the CS
technique has not been effectively wused in
hyperspectral images compression. In most cases, it
has only been used to perform sampling and
reconstruction with no encoding of the sampled data.
The only work to date that applies CS in
hyperspectral image compression was presented in
Ref. [12],

spectral correlation to compress the CS hyperspectral

where a direct scheme that leverages the

image was proposed. In addition, a designed flexible
recovery strategy was presented to speed up the
reconstruction. However, its performance was not
comprehensively evaluated. In this paper, we therefore
propose a CS—based lossy compression technique for
hyperspectral images using spectral unmixing, whereby
spatio-spectral hybrid sampling is performed on the
original hyperspectral image to fully exploit its high
degree of correlation. Because a strong spectral
correlation continues to exist among the sampled
data, spectral linear prediction is used to further
remove the spectral correlation, followed by JPEG -

LS lossless compression. At the decoder, spectral

unmixing is performed on the decoded image to
reconstruct the original image based on a linear
mixture model. Experimental results show that the
proposed algorithm has competitive performance and
low complexity compared to the existing transform-

based algorithms.

1 Compressive-sensing-based

hyperspectral image compression

Compressed sensing technology mainly involves
sampling and recovering the original data. It should be
noted that the CS technique only reduces the volume
of original data; moreover, the dynamic range of the
sampled data is much larger than that of the original
data. For data storage or transmission, it is necessary
to employ an efficient compression technique to
encode the sampled data.

The solution of the convex /1 —norm is widely
used in CS recovery. For HCS recovery, some priors
are generally introduced, such as total variation (TV),
low rank, and structure similarity . However, the

optimal coefficients between multiple priors are
difficult to calculate, which may significantly reduce
the recovery accuracy. In addition, owing to the
constant iterative calculation, HCS recovery typically
has a high computational complexity from using the
solution of the convex [/l —norm. In the proposed
approach, the spectral unmixing is thus employed to
perform the HCS which

endmembers and the corresponding abundance from

recovery, estimates
the sampled data. It then recovers the original data
based on the LMM. A flowchart of the proposed
algorithm is shown in Fig.1, where the spatio-spectral
hybrid sampling is performed on the original data at
first to obtain the sampled data at the encoder. Then,
spectral linear prediction is used to remove the
spectral correlation of sampled data, followed by
JPEG -LS At the decoder,

spectral the decoded

lossless compression.

unmixing is performed on

sampled data to recover the original data.
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Channel
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Fig.1 Flowchart of the proposed algorithm

1.1 Spatio-spectral hybrid sampling

Unlike a natural image, the hyperspectral image
can be regarded as a three-dimensional data cube. To
represent the hyperspectral images, we define a matrix
X =[x;,x5, ---,x;], where x, (/=1,2, ---,L) is a one-
dimensional vector corresponding to the [/ —th band
(reshaped as a one-dimensional vector) with an MN
length.

The spatio-spectral hybrid compressive sampling
scheme is employed to perform hyperspectral CS. By
using this scheme, the observation data consists of two
parts, one part is the spatial compressive sampled data,

Y; =AX; the other part is the spectral compressive

T
sampled data Y,=XA,, where A, is the spatial measurement

matrix with a size of PxMN, and A, is the spectral
measurement matrix with a size of KxL. By the well-
known properties of the Kronecker product, '&X)’, the
total observed data Y is composed of spatial sampled
data Y, and spectral sampled data Y,, which can be

converted into a standard form as:

Y,
Y= }:AX (1)
Y,
Complete measurement matrix A can be written as:
LA,
= (2)
ARy

where [, and Iy denotes the identity matrix with
dimensions of L'L and N'N, respectively.

For matrix A,, a special kind of measurement
matrix is employed, where each row of the
measurement matrix contains only one "1" element,
while the others are "0". Owing to the special
characteristic of A,, the range of Y, is the same as X.

For the spectral measurement matrix, we chose the

As noted, the hyperspectral image has both

spatial and spectral correlations. To achieve high
compression performance, the above correlation must
be considered. For the proposed algorithm, there are
two sampling approaches: spatial sampling and
spectral sampling. Before the compression algorithm is
used on the sampled data, it is necessary to exploit
the spectral and spatial correlations of the sampled
hyperspectral image.

Figure 2 (a) provides the spectral correlation of
the hyperspectral image sampled by spatial sampling
with SR, =0.01. Figure 2 (b) presents the spectral
correlation of the hyperspectral image sampled by
spectral sampling with SR,=0.2. As shown, a strong
spectral correlation exists in the sampled hyperspectral
image. Thus, to achieve high performance, an efficient

algorithm should be employed to remove the spectral

correlation.
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(a) Spatial sampling(SR,=0.01) (b) Spectral sampling (SR,=0.2)

Fig.2 Spectral correlation of the sampled hyperspectral image

Figure 3 depicts the spatial correlation of each

band sampled in the above two approaches.
Regardless of which sampling manner is employed, it
is apparent that the sampled data still has a strong
spatial correlation that should be removed by an
effective compression algorithm. With respect to
onboard hyperspectral image compression, the sampled

elements must be encoded by a certain compression
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technique to be transmitted to the decoder in the
ground. On the other hand, the values of the sampled
elements are usually much larger than those of the
original elements since each sampled element is
obtained by weighting all original elements using each
row of the measurement matrix. Therefore, it is

necessary to compress the sampled elements to
achieve real-time transmission with limited bandwidth

for the onboard hyperspectral image.
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(a) Spatial sampling(SR,=0.01)  (b) Spectral sampling(SR,=0.2)

Fig.3 Spatial correlation of the sampled hyperspectral image

1.3 Prediction-based compression for sampled data

Information loss occurs in HCS; thus, to ensure
the reconstructed quality, lossless compression is
selected to encode the sampled data. In particular,
linear prediction is employed to remove the spectral
correlation since the prediction-based algorithm can
provide perfect performance for lossless compression
with low complexity.

For the hyperspectral image obtained by spectral
sampling, each band is divided into non-overlapping
blocks with a size of sxs for adaptation to the local
features. Let x;;; denote the pixel of the current block
in the i—th line, j—th pixel, and k—th band, with k=
1,2,---, K and i,j=1,2,--- 5. The pixel x;,; is linearly
predicted from the decoded pixels x;_;; of the previous
block. Let w; be the average value of the current
block and let w.; be the average value of the co-located
block in the (k—1)—th band. The predicted value of

the current block can be expressed as:

X = 0(Xner i = Macr) + (3)
where «, is the prediction coefficient, which can be

computed by the least-squares estimator as:

z Z (k1,65 Macr) (K= )

a1 ] )

z z (= ) (= )

i=1 j=1

The predictive error can be calculated as:

€ri = Xni~Xkij (5)

The error samples of each block are compressed

in a lossless manner by JPEG —-LS to generate the
final bit-stream because JPEG -LS can effectively
remove the spatial correlation of each block and

achieve better lossless compression performance.

2 Recovery of the hyperspectral images

At the decoder, we can easily obtain the sampled
data by using JPEG -LS and inverse spectral linear
prediction. For CS recovery, the application of matrix
decomposition has been proven as an effective
technique®™. In this paper, we employ spectral unmixing
to reconstruct original data from the compressive
sampled data. It is known that the hyperspectral image
is usually regarded as a linear mixture model (LMM)
for spectral unmixing. Based on LMM, hyperspectral

images X can be written as:
P
X= Y, se=SE (6)
i=1

where the matrix X =[x;,xs, - ,x;] represents the
hyperspectral images, and the endmember matrix E=
[e1,es+,¢,]" is a pxL matrix consisting of p endmember
signatures, and abundance matrix S=[s,85,:*+,5,]" is an
NxP matrix consisting of the corresponding fraction of
each endmember.

By using LMM, the spatial sampled data Y, can
be described as A,SE. Since the special structure of
matrix A;, A,S has the same structure as S. Therefore,
the spectral unmixing algorithm can be performed on
the compressed sampled data to extract endmembers
and abundance. Before endmember extraction, the
number of endmembers in the hyperspectral images
should be estimated. Hyperspectral signal identification
by the minimum error (HySime) ™' is employed to

estimate the endmember number, p, and the vertex
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component analysis (VCA) ™ algorithm is used to
extract the endmembers from the spatial sampled data,
Y,. The VCA to obtain the endmember matrix is as
follow.

The p endmember spectra are first extracted from
Y, and stored in endmember matrix E. Then an
intermediate vector v is chosen such that no object is
orthogonal to it. Next, all objects are projected into v
and the first endmember corresponding to the
maximum of the projection. The succeeding endmembers
are iteratively projected to a subspace orthogonal to
the span of the endmembers already determined. This
is done until the p endmembers are found.

Since both Y, and Y, are obtained from the same
scenario, the endmembers extracted from Y, can also
be regarded as the endmembers of Y,. Thus, the spectral
sampled data Y, can be expressed by introducing a
new matrix, B, as follows:

Y,=SB (7
where B:EA: is the compressed endmembers matrix.

Since E and A, are known, B is known. Our goal is

to find the abundance matrix, S, from spectral
sampled data Y,. Note that the p value presented in a
given scenario is usually much smaller than the
number of L values; however, the p value may be
smaller than the J value when SR, is large. In this
case, the least squares method can be used to estimate
S from the spectral sampled data, Y,, because B is a
full-rank matrix. Once we obtain endmember matrix E
and abundance matrix S, the original hyperspectral
image can be reconstructed from the sampled data

according to Eq.(6).

3 Experimental results and discussion

The proposed algorithm was evaluated on both
raw and calibrated datasets collected in 2005 by an
Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) sensor, which was pioneered by the Jet
Propulsion Laboratory of the US National Aeronautics

and Space Administration. All sequences comprised

224 bands recorded at different wavelengths in the
range of 380 to 2 500 nm, with a spectral resolution of
10 nm. The tested datasets were represented in 16 bits,
and each image had 512lines, 224 bands, and 512 pixels
per line.
3.1 Reconstruct performance

We demonstrate the reconstruct performance of
proposed  compressed  sensing  algorithm.  For
comparison purposes, we also show results obtained
with state-of-the-art CPPCAP. We let the total sampling
rate vary from 0.1 to 0.5. Figure 4 shows the average
SNR(signal-to-noise ratio) of the recovered hyperspectral
imagery(aviris_scO.raw and aviris_sc3.raw) with different
sampling rates. We can see that the reconstruct
average SNR ascends with the increase of the
oversampling rate. The reconstruct performance of
proposed algorithm outperforms the CPPCA. CPPCA
lacks stability when the number of measurements is
bellow the true signal subspace. However, the
proposed algorithm still keeps a higher reconstruct

precision when the sampling rate is less than 0.2.

55
50
45t
40}
g 35}
E 30
w 25
201 ,' -e- CPPCA-SCO
I -+- CPPCA-SC3
e —e—Proposed-SCO
10,/ —e—Proposed-SC3
3 0.15 0.25 0.35 0.45

Sampling rate

Fig.4 SNR curves of different methods on AVIRIS raw data

3.2 Compression performance

In this study, we used the bit per pixel per band
(bpppb) and the SNR to evaluate the compression
performance. The block size sxs was selected as 32x
32 for the proposed algorithm. The final bpppb was
determined by the spatial sampling rate, spectral
sampling rate, and lossless compression method. We
compared the results of the proposed algorithm with
JPEG2000, DCT —-JPEG2000 and DWT —JPEG2000

using a large range of bitrates. Note that JPEG2000 is

S126003-6
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a well-known compression standard that is primarily
used for still image compression. DCT-JPEG2000 is a
widely employed lossy compression algorithm that
removes the spectral correlation using the discrete
cosine transform (DCT) followed by a spatial wavelet
transform with full post-compression rate-distortion
optimization (PCRD-opt). DWT-JPEG2000 is similar
to DCT-JPEG2000, with the only difference being the
spectral de-correlation, which removes the spectral
correlation by using the discrete wavelet transform
(DWT). The compression results on the AVIRIS raw
image through various algorithms are shown in Fig.5.
As shown in Fig.5, although JPEG2000 has a perfect
rate-distortion performance for the still image, its rate
distortion performance for the hyperspectral image is
not satisfactory on account of the lack of spectral

decorrelation. DWT —JPEG2000 provides the best rate
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Fig.7 Comparison of rate distortion performance for AVIRIS raw data

distortion performance owing to its high performance
in spectral decorrelation. The performance of DCT —
JPEG2000 is lower than that of DWT —JPEG2000
because DCT is less efficient than DWT for spectral
decorrelation. With regard to the proposed algorithm,
the performance at low bitrates was the worst, even
lower than that of JPEG2000, which was because of
the inherent limitation of the prediction-based lossy
compression algorithm. However, this disadvantage
can be negligible at high bitrates. At the middle and
high bitrates, the proposed
algorithm was higher than that of JPEG2000. Even in
a partial range of bitrates, the proposed algorithm
outperformed DCT —JPEG2000. However, because the
coding technique of the proposed algorithm is simple

and much less powerful than that of PCRD —opt, the

performance of the

performance of the proposed algorithm was less than
that of DWT —-JPEG2000. In sum,
algorithm showed better performance than JPEG2000,
and even better performance than DCT -JPEG2000 at
some bitrates, whereas it showed a lower performance
than DWT-JPEG2000.

3.3 Complexity

the proposed

In terms of complexity, the proposed algorithm
mainly employs spatio-spectral hybrid sampling and
linear prediction to realize hyperspectral image
compression, which provides lower encoder complexity
than the transform-based algorithm. Since the
sampling can be directly realized by optical devices,
this process does not cost any computing. As for the
prediction process, the proposed algorithm requires
approximately 6 additions and 3 multiplications per

pixel. To evaluate the complexity of the proposed
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algorithm, the runtime was employed to compare the
complexity of each algorithm, including both encoder
and decoder complexity. A comparison of complexity
for various algorithms is reported in Tab.1. Although
DWT —-JPEG2000 shows the best performance, its
complexity is the highest. DCT—-JPEG2000 has modest
complexity, which is lower than that of DWT -
JPEG2000 and higher than that of JPEG2000;
however, there is a performance gap between DCT
and DWT for spectral decorrelation. The proposed
algorithm shows better performance than JPEG2000;

however, its encoder complexity is lower.

Tab.1 Comparison of complexity of various

algorithms
Algorithm Encoder/ms Decoder/ms
JPEG2000 61 23
DCT-JPEG2000 126 30
DWT-JPEG2000 138 50
Proposed algorithm 39 15

4 Conclusion

Hyperspectral imaging has an immense data
volume; thus, traditional compression algorithms have
difficulty satisfying the related requirements of
onboard storage and transmission. In this paper, we
proposed a CS—based lossy compression technique for
hyperspectral images using spectral unmixing. The CS
technique can effectively reduce the data volume by
using a certain measurement matrix, which significantly
reduces the encoder complexity. The spatio-spectral
hybrid
hyperspectral image at first. Then, the correlation of

studied, and

sampling is performed on the original

the sampled data is spectral linear

prediction is employed to remove the spectral
correlation of sampled data followed by JPEG -LS
lossless compression. At the decoder, spectral
unmixing is performed on the decoded data to recover
the original hyperspectral image. Experimental results
showed that proposed algorithm has competitive
compression performance compared with the transform-
based compression algorithm. Moreover, the proposed
algorithm has low computational complexity of both the

encoder and decoder, which is suitable for the efficient

compression of the onboard hyperspectral image.
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