Design and experimental investigation of unstable resonator for discharge initiated repetitive–pulsed HF laser

Zhou Songqing, Huang Ke, Shen Yanlong, Yi Aiping, Qu Pubo

(State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi’an 710024, China)

Abstract: In order to realize the long distance transmission of discharge initiated repetitive–pulsed HF laser, and produce a high quality laser of large volume in the shorter resonant cavity, the structural design, simulation calculation and experimental study of the passive branch confocal unstable resonant cavity were carried out. The simulation results show that with the increase of the magnification M, the energy of far–field light focal spot was gradually increased with the increase of magnification, and the energy transferred to the light spot center. In addition, the light spot size and the divergence angle of far–field were gradually decreased as well. The experimental results show that with the increase of the magnification M, the variation of the far–field intensity distribution, the light spot size and the divergence angle were consistent with the simulation results. But the output laser energy actually increases first and then decreases. Considering the requirements of high beam quality and high energy, in the case of normal flow field, the far–field divergence angle of repetitive–pulsed HF laser was 2.37 times diffraction limit magnification when M was 3, and the laser energy was slightly lower than the stable resonant cavity (about 94.6% of stable resonant cavity), which satisfies the requirements of long distance transmission.

Key words: discharge initiated repetitive–pulsed HF laser; unstable resonant cavity; flow field; beam quality
0 引言

电激励重频氯化氢(HF)激光器可实现高功率输出，高重频运行，且具有光束质量好，运行安全可控，结构紧凑，便于小型化和可搭载多种运动平台等优点。HF激光器的中红外宽波段输出是研究物质组分和分子结构的有效工具，中心波长2.7 μm处于导电红外导引头的响应波段，因此在激光光谱学、激光医学、大气吸收监测和光电对抗等领域有很好的应用前景。近年来在国际上也受到越来越多的关注。电激励重频HF激光器属于气体放电类激光器，该类激光器的模体积大，采用稳腔输出激光高阶模多，发散角大，激光束质量较差，不能满足激光远距离传输需求。在实际应用中，为获得高能量和高光束质量的激光输出，实现激光远距离传输，一般采用正支虚共焦非稳腔作为激光器谐振腔，有利于在较短的谐振腔内产生大模体积的高质量激光束。在电激励重频HF/DF激光器非稳腔研究中，法国Brunet等人采用了放大率M=3.4正支共焦腔型，获得了激光能量稍低于稳腔的结论；俄罗斯Apollonov等人采用了M=3.0正支共焦腔型，获得了发散角小于4倍衍射极限的激光输出；中国科学院长春光学精密机械与物理研究所谭改娟等人在电激励脉冲DF激光器非稳腔设计中，选用了放大率M=1.89的正支虚共焦腔型，获得了发散角小于2倍衍射极限的激光输出。

文中重点开展了针对电激励重频HF激光器非稳腔的结构设计、仿真计算和实验研究，分析了非稳腔输出激光传输特性，近/远场光强分布和远场发散角变化规律，开展了8种放大率条件下的非稳腔输出激光质量比较的仿真计算和实验研究，实验结果与仿真结果相吻合，最后综合考虑光束质量和能量等指标要求，选取了满足激光远距离传输需求的非稳腔型结构参数。

1 非稳腔设计及输出激光近远场光强分布仿真

1.1 非稳腔设计

电激励重频HF激光器正支虚共焦非稳腔结构示意及光束质量测量光路见图1所示。

该谐振腔主要由放电电极，反射镜，布儒斯特窗镜，光刀镜和可调谐光阑等组成，反射镜R1为金高反,K9材质，反射镜R2镀2.7 μm波段高反膜，CaF2材质，布儒斯特窗镜用于密封腔体和抵消激光光线垂直于光轴方向的位移，光刀镜为中心带孔(孔径d=5 mm)镀金高反镜，光阑孔径D为2~20 mm范围内可调谐。图1 中的透镜(f=2 m)和测试版(热敏相纸)用于激光远场光斑测试。

图1 正支虚共焦非稳腔结构及光束质量测量光路

Fig.1 Structure of positive-branch confocal unstable resonator and light path chart of beam quality testing

非稳腔前后反射镜曲率半径分别为R1、R2，输出镜R1为凸面镜，曲率半径为正，而高反射镜R2为凹面镜，曲率半径为负。有效孔径大小分别为D、L，光束在谐振腔内经历一次往返并形成输出束的放大率M=D/L，遮拦比为τ=1/M。对于正分支共焦非稳腔，反射镜曲率半径R1、R2和前反射镜发出的球面波每次通过后反射镜边缘的功率输出耦合率Δ分别为：

$$R_1 = \frac{-2L}{M-1}$$

$$R_2 = \frac{2ML}{M-1}$$

$$\Delta = \frac{M^2 - 1}{M^2}$$

式中：放大率M与反射镜曲率半径有关，也与反射镜的有效使用尺寸有关，而与镜子的实际尺寸无关。放大率不能设计得太小，即输出耦合率不能设置的太低，因为当M=1时，非稳腔的优点就不存在了。

1.2 非稳腔输出激光近场光强分布

非稳腔输出激光近场光斑为一个被均匀平面波照亮的圆环，近场光斑由一个中心亮斑外加多个衍射环组成，如图2所示。近场光斑含有衍射环，且中心区光强度为零，远场光斑通常需要在距离激光器输出
出窗口足够远处得到，在实际测量中通常采用透镜聚焦的方法得到。

![图像](image_url)

图 2 非稳腔近场和远场光斑
Fig.2 Near-field light spot and far-field light spot of unstable resonator

由衍射理论可知，非稳腔远场光强分布可以按照平面波经环形光阑形成的夫琅和费衍射场分布给出，其公式如下：

$$I(\Phi) = \left(\frac{M^2}{M^2 - 1} \left[\frac{2J_1(\Phi)}{\Phi} - \frac{2J_1\left(\frac{\Phi}{M}\right)}{M\Phi} \right] \right)^2 I(0) \quad (4)$$

式中：$\Phi = k\theta a, a$ 为环形光阑外半径($a = D/2$), $k = 2\pi/\lambda$, 激光中心波长 λ 取 2.7 μm。

实验室电激励非链式 HF 激光器中放电间隙垂直于光轴方向的横截面尺寸为 14 mm×17 mm, 使得正分支虚共焦非稳腔 D 的尺寸受限，选择大的 M，会致输出凸面镜的尺寸很小。以 17 mm 为例, 当 M 的取值为 3~4 时, 对应的输出凸面镜的尺寸约为 4.3~5.7 mm，继续增大 M，输出镜的尺寸将变得更小，将大大增加谐振腔的加工难度与造价和谐振腔的准直复杂度。取 M 分别等于 1.5, 2.0, 2.5, 3.6 非稳腔进行仿真得到远场相对光强剖面分布，仿真结果如图 3 所示。

由图 2~3 可知, 随着放大率 M 的增大，远场光斑图中的中央亮斑包含的能量逐渐增大，能量向中心转移。由此可知，选择大的 M，不仅有利于获得高光束质量输出，而且有利于提高远场激光能量集中度。当放大率 M 足够大时, 公式(4)中的第二项可以忽略, 中央亮斑接近艾里斑, 这对高能激光系统的应用具有重要意义。

![图像](image_url)

图 3 非稳腔远场光强分布剖面
Fig.3 Far-field light intensity distribution profile of unstable resonator

在 GLAD 软件环境下, 选取八组非稳腔参数(M...
取值 1.5~3.6 之间) 进行输出激光近场和远场光斑形状的仿真。表 1 给出了 8 组参数仿真计算结果。

由此可知，非稳腔放大率 M 在 1.5~3.6 范围内都能实现激光稳定输出，同时验证了随着放大率 M 的增大，近场环形光斑光强分布逐渐趋于平滑，远场光斑尺寸和远场发散角逐渐减小，其值的大小与非稳腔放大率 M、前后反射镜曲率半径 R_1, R_2、腔长 L 和腔外透镜聚焦 f 有关。

表 1 非稳腔仿真参数和仿真结果

<table>
<thead>
<tr>
<th>No.</th>
<th>Magnification M</th>
<th>Cavity length L/mm</th>
<th>Curvature radius R_1/mm</th>
<th>Curvature radius R_2/mm</th>
<th>Far-field spot radius r/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>900</td>
<td>-3 600</td>
<td>5 400</td>
<td>0.863</td>
</tr>
<tr>
<td>2</td>
<td>1.8</td>
<td>1 200</td>
<td>-3 000</td>
<td>5 400</td>
<td>0.710 5</td>
</tr>
<tr>
<td>3</td>
<td>1.9</td>
<td>1 278</td>
<td>-2 842</td>
<td>5 400</td>
<td>0.702 5</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>900</td>
<td>-1 800</td>
<td>3 600</td>
<td>0.676 2</td>
</tr>
<tr>
<td>5</td>
<td>2.2</td>
<td>981</td>
<td>-1 636</td>
<td>3 600</td>
<td>0.582 8</td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
<td>900</td>
<td>-1 200</td>
<td>3 000</td>
<td>0.532 0</td>
</tr>
<tr>
<td>7</td>
<td>3.0</td>
<td>1 000</td>
<td>-1 000</td>
<td>3 000</td>
<td>0.431 8</td>
</tr>
<tr>
<td>8</td>
<td>3.6</td>
<td>1 300</td>
<td>-1 000</td>
<td>3 600</td>
<td>0.403 9</td>
</tr>
</tbody>
</table>

2 光束质量优化实验

2.1 激光光束质量评价方法

光束质量是重要的激光器输出性能指标，它从质的方面体现了激光束的传输特性，衍射极限倍数 β 是评价光束系统能量传输性能的重要指标之一，能够较合理地评价光束质量，反映了实际激光束能量传输效率和可聚焦能力。其定义如下：

$$\beta = \frac{\theta_{\text{real}}}{\theta_{\text{ideal}}} \quad (5)$$

$$\theta_{\text{real}} = \frac{a}{f} \quad (6)$$

$$\theta_{\text{ideal}} = \frac{\lambda k}{D} \quad (7)$$

式中：光束质量 β 主要受谐振腔内光路流场的气动光学效应、腔镜倾斜和腔镜热变形引起的激光波前畸变以及大气传输的影响，用实际光束远场发散角 θ_{real} 和理想光束远场发散角 θ_{ideal} 的比值来表示；D 为近场光斑直径实测值，a 的大小与非稳腔设计参数 (包括谐振腔前后反射镜曲率半径 R_1, R_2、非稳腔放大率 M、腔长 L 和激光器增益区截面大小等) 有关；a 为激光远场光斑直径实测值。λ 的大小除了与激光波前畸变和大气传输有关之外，还与非稳腔设计参数以及透镜焦距 f 有关；k 为归一化零级衍射斑角半径，其取值与输出环形激光的遮拦比 ϵ 有关，而遮拦比 ϵ 与激光器输出口光斑直径 D 和刮刀镜孔径大小有关；λ 为 HF 激光中心波长。

2.2 实验结果分析

实验设定激光器工作气体总气压 20 kPa，工作气体配比为 SF6:CH4=92:8，实验测量了 8 组不同非稳腔放大率条件下输出激光近场光斑，测量和计算结果见表 2 所示。图 4 给出了不同放大率条件下输出激光能量变化曲线，图 5 给出了典型的近远场光斑形态实验结果 $(M=3.0, \epsilon=0.42)$。

从光束质量计算结果可以看出，远场光斑尺寸和远场发散角实验测量结果与模拟仿真结果变化规律基本一致，即增大放大率 M 将减小远场光斑尺寸和远场发散角。由于增加光阑限制了初始光斑大小的缘故，衍射极限倍数 β 随着 M 值的增大呈先增大后减小的趋势变化。从实验结果还可以看出，以上 8 组非稳腔的输出激光远场发散角均小于 3 倍衍射极限。由图 5 激光能量变化曲线可知，放大率在 1.5~3.0 范围内，激光器输出激光能量随放大率的增大而增大，当放大率等于 3.6 时，由于谐振腔腔长的增...
表 2 非稳腔输出光束的远场发散角和衍射极限倍数

<table>
<thead>
<tr>
<th>Magnification M</th>
<th>Near-field spot diameter D/mm</th>
<th>Obstruction ratio ε</th>
<th>Normalization diffraction spot angular radius k</th>
<th>Far-field spot angular radius a/μm</th>
<th>Actual far-field divergence angle θ/μrad</th>
<th>Diffraction limit magnification β</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>7.60</td>
<td>0.66</td>
<td>0.92</td>
<td>2.40</td>
<td>0.60</td>
<td>1.836</td>
</tr>
<tr>
<td>1.8</td>
<td>9.40</td>
<td>0.53</td>
<td>0.98</td>
<td>2.42</td>
<td>0.605</td>
<td>2.149</td>
</tr>
<tr>
<td>1.9</td>
<td>9.80</td>
<td>0.51</td>
<td>1.00</td>
<td>2.36</td>
<td>0.590</td>
<td>2.142</td>
</tr>
<tr>
<td>2.0</td>
<td>10.20</td>
<td>0.48</td>
<td>1.00</td>
<td>2.38</td>
<td>0.595</td>
<td>2.248</td>
</tr>
<tr>
<td>2.2</td>
<td>11.16</td>
<td>0.43</td>
<td>1.02</td>
<td>2.32</td>
<td>0.580</td>
<td>2.35</td>
</tr>
<tr>
<td>2.5</td>
<td>11.80</td>
<td>0.42</td>
<td>1.06</td>
<td>2.34</td>
<td>0.585</td>
<td>2.412</td>
</tr>
<tr>
<td>3.0</td>
<td>11.80</td>
<td>0.42</td>
<td>1.06</td>
<td>2.30</td>
<td>0.575</td>
<td>2.370</td>
</tr>
<tr>
<td>3.6</td>
<td>11.80</td>
<td>0.42</td>
<td>1.06</td>
<td>2.26</td>
<td>0.565</td>
<td>2.329</td>
</tr>
</tbody>
</table>

2.3 流场优化对光束质量的影响

为实现电激励重复 HF 激光稳定输出，需要启动循环系统轴流风机来更换放电区的气动介质，以满足气动循环参数的最优气流速度和流场分布均匀性[9]。图 6 表示了流场优化对重频激光远场光斑形态的影响（重频 5 Hz），其中图 6(a), (b) 为无流场工作情况下移动探测靶面和固定探测靶面的远场光斑，图 6(c), (d) 为流场工作情况下移动探测靶面和固定探测靶面的远场光斑。

图 4 不同放大率情况下激光能量曲线

Fig.4 Laser energy curves with different magnifications

图 5 非稳腔实验近场光斑和远场光斑形态(M=3, ε=0.42)

Fig.5 Actual near-field light spot and far-field light spot of unstable resonator(M=3, ε=0.42)

综合考虑输出激光高束质量和高能量的指标要求，当 $M=3.0, R1=1 000 \text{ mm}, R2=3 000 \text{ mm}, L=1 000 \text{ mm}, D=12 \text{ mm}, d=5 \text{ mm}$ 时，激光器输出激光能量为 481.3 mJ，相对较大（约为相同状态条件下稳定腔输出激光能量的 94.6%），远场发散角衍射极限倍数为 2.37，满足激光远距离传输需求。

图 6 流场优化对远场光斑形态的影响

Fig.6 Effects of flow field optimization on far-field spot pattern
实际发散角（半角）为 0.58 mrad。当固定探测面时，远场光斑中心位置无漂移，光斑轮廓无变化，尤其是在流场工作情况下，光斑形态仍保持完整圆形，因此，有效的流场设计满足最低气流速度和流场分布均匀性，可有效提高输出激光的光轴稳定性。

3 结 论

实验表明，正交共焦非稳腔输出激光远场光斑尺寸和发散角随着放大率 M 增大而减小，且实验测量结果与仿真结果一致。通过对实验室电激励重频 HF 激光器非稳腔结构和循环系统流场的优化设计，实现了远场发散角均小于 2π 倍衍射极限倍数的激光输出。综合考虑光束质量和能量等指标要求，在腔型结构和流场优化条件下，选取 $M=3.0$，$R_1=1000 \text{ mm}，R_2=3000 \text{ mm}，L=1000 \text{ mm}，D=12 \text{ mm}，d=5 \text{ mm}$，获得了远场发散角等于 2π 倍衍射极限倍数和激光能量稍低于稳定腔（约为稳定腔激光能量的 94.6%）的重频激光稳定输出，为下一步开展激光器非稳腔模块化设计和激光远距离传输打靶试验提供了技术支持。

参考文献：

