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Abstract: A fusion detection methodology for infrared and visible spectra was presented based on deep

learning. First, a parameter transfer model for deep learning models was proposed. Then a pretraining

model for infrared object detection was extracted from a visible object detection model based on deep

learning and was fine鄄tuned on a collected infrared image dataset to obtain an infrared object detection

model based on deep learning. On this basis, a decision鄄level fusion model for infrared and visible

detection based on deep learning was established, and the model design, image registration and decision鄄

level fusion processes were discussed in detail. Finally, an experiment comparing single鄄band detection

and dual鄄band fusion detection during the daytime and nighttime was presented. Qualitatively, compared

with the results of single鄄band detection, the confidences and bounding boxes achieved through dual鄄band

fusion detection are superior, owing to the utility of their complementary information. Quantitatively, in

the daytime, the mAP of dual鄄band fusion detection is 86.0% and is higher than those of infrared

detection and visible detection by 9.9% and 5.3% , respectively; at nighttime, the mAP of dual鄄band

fusion detection is 89.4% and is higher by 3.1% and 14.4%, respectively. The experimental results show

that the dual鄄band fusion detection method proposed in this paper shows better performance and stronger

robustness than the single鄄band object detection methods do, thus verifying the effectiveness of the

proposed method.

Key words: object detection; decision鄄level fusion; dual band; deep learning

CLC number: TP391.4 Document code: A DOI院 10.3788/IRLA201948.0626001

基于深度学习的红外与可见光决策级融合检测

唐 聪 1,2,3，凌永顺 1,2,3，杨 华 1,2,3，杨 星 1,2,3，路 远 1,2,3

(1. 国防科技大学电子对抗学院，安徽 合肥 230037；

2. 脉冲功率激光技术国家重点实验室，安徽 合肥 230037；

3. 红外与低温等离子体安徽省重点实验室，安徽 合肥 230037)

摘 要院 提出了一种基于深度学习的红外与可见光决策级融合检测方法。首先，提出了一种介于深度

收稿日期院2018-09-20曰 修订日期院2018-10-17

基金项目院 国 家 自 然 科 学 基 金 (61405248袁61503394)曰 安 徽 省 自 然 科 学 基 金 (1708085MF137)

作者简介院 唐 聪 (1989-)袁 男 袁 博 士 生 袁 主 要 从 事 计 算 机 视 觉 尧 深 度 学 习 尧 模 式 识 别 等 方 面 的 研 究 遥 Email:tangcong_eei@163.com

导师简介院 凌 永 顺 (1937-)袁 男 袁 中 国 工 程 院 院 士 袁 教 授 袁 博 士 生 导 师 袁 主 要 从 事 光 电 工 程 等 方 面 的 研 究 遥 Email:lys@126.com

0626001-1

第 48卷第 6期 红外与激光工程 2019年 6月

Vol.48 No.6 Infrared and Laser Engineering Jun.2019



红外与激光工程

第 6期 www.irla.cn 第 48卷

学习模型之间的参数传递模型，进而从基于深度学习的可见光物体检测模型上抽取了用于红外物体

检测的预训练模型，并在课题组实地采集的红外数据集上进行 fine鄄tuning，从而得到基于深度学习的

红外物体检测模型。在此基础上，提出了一种基于深度学习的红外与可见光决策级融合检测模型，并

对模型设计、图像配准、决策级融合过程进行了详细地阐述。最后，进行了白天和傍晚条件下基于深

度学习的单波段检测实验和双波段融合检测实验。定性分析上，由于波段之间的信息互补性，相比于

单波段物体检测，双波段融合物体检测在检测结果上具有更高的置信度和更精确的物体框；定量分析

上，白天时，双波段融合检测的 mAP为 86.0%，相比于红外检测和可见光检测分别提高了 9.9%和

5.3%；傍晚时，双波段融合检测的 mAP为 89.4%，相比于红外检测和可见光检测分别提高了 3.1%和

14.4%。实验结果表明：基于深度学习的双波段融合检测方法相比于单波段检测方法具有更好的检测

性能和更强的鲁棒性，同时也验证了所提出方法的有效性。

关键词院 物体检测； 决策级融合； 双波段； 深度学习
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0 Introduction

Object detection is a significant focus of research

in the field of computer vision[1-2], with applications in

driverless cars, robotics, video surveillance and

pedestrian detection[3-5]. In object detection, the utilization

of multisensor data or information fusion can yield

object detection results that cannot be achieved with a

single sensor and can improve object detection

performance[6]. In traditional fusion methods for object

detection, fusion detection is commonly performed on

the basis of infrared and visible spectra, making full

use of the complementarity of visible and infrared

images. At present, fusion detection for infrared and

visible spectra relies primarily on traditional methods,

such as multiresolution fusion[7], edge feature fusion[8]

and Dempster鄄Shafer (DS) evidence theory[9]. However,

few studies have investigated fusion detection for

infrared and visible spectra based on deep learning.

Moreover, at present, research on deep鄄learning鄄based

object detection is primarily focused on the visible

spectrum, while little research has been done on the

infrared spectrum.

There are three methods of fusion detection for

infrared and visible spectra: pixel鄄level fusion

detection, feature鄄level fusion detection and decision鄄

level fusion detection[10]. In pixel鄄level fusion detection,

the images must be fused at the pixel level prior to

object detection; in feature鄄level fusion detection,

feature extraction must be performed before feature

fusion, and object detection is then performed based

on the fused feature vectors; in decision鄄level fusion

detection, different sensors are independently used for

object detection, and the detection results are then

fused. Because deep learning models are data鄄driven

models, when either of the first two fusion detection

methods is adopted, a massive amount of image data

is needed for model training. At present, visible

datasets can be obtained from public sources;

however, infrared datasets are difficult to obtain.

Furthermore, the visible and infrared datasets should

be acquired from the same scenes for the training of

models for pixel鄄level and feature鄄level fusion

detection, which makes it even harder to obtain

suitable training data. By contrast, when decision鄄level

fusion detection is employed, the visible spectrum

detection model can be extracted from current models

with no further additional training, and the infrared

spectrum detection model can be obtained through

fine鄄tuning [11] based on the visible spectrum detection

model, thus significantly reducing the required amount

of training data. Erhan et al. have conducted extensive

simulations with the existing algorithms and have

found that pretrained networks can learn qualitatively

different features and perform better than traditionally

trained networks do [12]. Fine鄄tuning is a crucial stage
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Fig.1 Infrared object detection with a visible object detection model (a), (b) and (c) represent three scenes

in refining models to adapt them to specific tasks and

datasets[13]. Therefore, we adopt the decision鄄level fusion

approach and apply pretraining and fine鄄tuning to

carry out research on fusion detection for infrared and

visible spectra based on deep learning in this paper.

1 Infrared object detection model based

on deep learning

At present, most object detection models based

on deep learning are designed for visible detection and

are not applicable for the detection of objects in

infrared images or video sequences. Therefore, the

design and training of an infrared object detection

model based on deep learning must first be

implemented in preparation for fusion detection.

The main difference between infrared object

detection and visible object detection is that they are

performed in different optical bands. However, they

are both methods of object detection based on image

data. Here, the results of applying a visible object

detection model to a set of infrared pedestrian images

are shown in Fig.1.

When the visible detection model is applied for

object detection in the infrared images, the pedestrians

in Fig.1(a) and Fig.1(b) can be successfully detected,

demonstrating that a visible object detection model can

achieve detection in infrared images to a certain

extent. The reason for this capability may be that

compared with visible images, infrared images have

similar contour features, which serve as effective

appearance features[14-15] for object detection. However,

the classification scores of the pedestrians in Fig.1 (a)

and Fig.1 (b) are not very high, meaning that the

visible object detection model has only a weak

capability for infrared object detection. Moreover, one

person is erroneously classified as a dog in Fig.1 (b),

while no person is detected in Fig.1 (c) ; instead, in

this last case, the model merely outputs a result

classifying the entire image into the train class, with a

score of 0.2.

Hence, the visible object detection model can

achieve infrared object detection to some degree, but

its detection accuracy is poor. Therefore, this

experiment offers a theoretical and experimental basis

for the possibility that a visible object detection model

could be fine鄄tuned to obtain an infrared object

detection model.

1.1 Pretraining model for infrared object detection

based on deep learning

In general, pretraining models for visible object

detection are established on the basis of models

trained on the ImageNet dataset [16] or the Pascal VOC

dataset [ 17 ] ; one example is the Single Shot Detector

(SSD) model[18]. When the SSD model(VGG VOC0712_

SSD_300 伊300_ iter_240000 . caffemodel ) is directly

adopted as the pretraining model for the development

of our new model, because the classes in the

classification layer of the new model are mismatched

with those in the SSD model, the parameters of the

classification convolution layers in the SSD model are

unsuitable to be transferred to the new model. In this

paper, it is assumed that the research objects of
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interest for infrared detection are typical objects found

at road intersections, including bicycles, buses, cars,

motorbikes and people. Because the VOC dataset

already contains bicycles, buses, cars, motorbikes and

people, the relevant feature extraction weights of the

model for these five classes and for background class

(six object classes in all) can be extracted from the

VOC -trained models. Meanwhile, as the object

location is only related to the four coordinate value

information, and is independent of the number of

classes, it can still inherit the visible model to locate

the object by parameter sharing. Therefore, the

effective method of parameter transfer is essential to

achieve a perfect pretraining model, which will rapidly

complete the training and more easily acquire good

detection performance. In addition, the classification

layer of the model must be redesigned and combined

with the convolution layers to obtain the pretraining

model.

1.1.1 Parameter transfer model

In the design of the infrared pretraining model,

the initial model is first initialized according to the

parameters of the model structure. To make full use

of the object detection ability of the visible model

(VOC -trained SSD model), the parameters of the

layers in the visible model are transferred to the

convolution layer corresponding to the infrared model,

which realizes the parameter sharing. The parameters

transferred between the convolution layers include

convolution kernel parameters and bias parameters,

which are considered matrices. The parameter matrices

of the visible model and infrared model are W1 and

W2 respectively. W1 represents a four鄄dimensional

matrix of (M伊r)伊c伊k伊k, and W2 represents a four鄄

dimensional matrix of (M伊r)伊c伊k伊k, where, M and N

represent the number of object classes of the visible

model and the infrared model respectively, r represents

the index of the default bounding boxes, c represents

the channel number of the convolution layers, and k is

the size of the convolution kernel. The biasing

matrices of the visible model and infrared model are

b1 and b2 respectively, and they are both one鄄

dimensional matrices of (4伊r)伊1.

In the parameter transfer, the relationship

between W1 and W2 is

W2[j+N伊r]=W1[i+M伊r, 噎] (1)

In addition, the relationship between b1 and b2 is

b2[j+N伊r]=b1W1[i+M伊r] (2)

where, i and j represent the class index of visible

model and infrared model respectively.

1.1.2 Implementation of parameter transfer

The pretraining infrared model designed in this

paper is based on the SSD model structure. The

convolution layers of which need to implement the

parameter transfer: conv4_3_norm_mbox_conf, fc7_

mbox_conf, conv6_2_mbox_conf, conv7_2_mbox_

conf, conv8_2_mbox_conf, conv9_2_mbox _conf. The

layers of conv4_3_norm_mbox_conf, conv8_2_ mbox_

conf and conv9_2_mbox_conf have four anchors in

the feature map, which means that the value of r can

equal 0, 1, 2 and 3, and the anchor index set R={0,

1, 2, 3}. The layers of conv4_3_norm_mbox_conf,

conv8_2_mbox_conf and conv9_2_mbox_conf have six

anchors in the feature map, which means that the

value of r can be 0, 1, 2, 3, 4 and 5, and the anchor

index set R ={0, 1, 2, 3, 4, 5}. The object classes

chosen are bicycle, bus, car, motorbike, people and

background, whose indexes in the classification layers

of the visible model are 2, 6, 7, 14, 15 and 0, respectively,

and whose indexes in the classification layers of the

infrared model are 1, 2, 3, 4, 5 and 0, respectively.

Therefore, the class index set I of the visible model is

equal to {2, 6, 7, 14, 15, 0} and the class index set J of

the infrared model is equal to {1, 2, 3, 4, 5, 0}. The

parameter transfer process between two convolution

layers of the two models is shown in algorithm 1.

By parameter transfer, the parameter sharing of

the object location and recognition between pretraining

infrared model and visible model has been realized,

which allows the pretraining infrared model to have a

certain capability for object detection.
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Algorithm 1: PT (Parameter transfer)

Input: Object class number M, object class number N, class index

set I, class index set J, anchor index set R, convolution kernel

parameters matrix W1, and biasing parameters matrix b1
Output: Convolution kernel parameters matrix W2 and bias

parameters matrix b2
Initialize the convolution kernel parameters matrix and bias

parameters matrix b2 to all鄄zero matrices, W2=O ((M伊s)伊c伊k伊k),

b2=O((4伊r)伊1)

Foreach r in R do

Foreach [i,j] in {[I0,J0],[I1,J1],噎} do

W2[j+N伊r,噎]=W1[i+M伊r,噎]

b2[j+N伊r]=b1[i+M伊r]

0626001-5

(e) Person

Fig.2 Infrared dataset (examples)

(a) Bicycle

(b) Bus

(c) Car

(d) Motorbike

1.2 Model training on an infrared image dataset

Once the pretraining model has been obtained,

model training must be implemented on the collected

infrared dataset. Our research team collected infrared

images of objects in the above five classes on

campus, in plazas, at road intersections and at

pedestrian crosswalks, where many bicycles, buses,

cars, motorbikes and pedestrians can be found. In

total, we collected 1 800 infrared images, including

334 bicycle images, 205 bus images, 430 car images,

339 motorbike images and 492 pedestrian images. The

infrared camera used was a FLIR T630.

1.2.1 Collection of the Infrared Image Dataset

Examples from the collected infrared dataset are

shown in Fig.2.
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1.2.2 Model training

After 3 000 training iterations, the training loss on

the infrared dataset was approximately 2.5. The curve

of the training loss versus the number of iterations is

shown in Fig.3.

Fig.3 Curve of the training loss versus the number of iterations

During the training process, the accuracy was

tested once every 500 iterations, and the curve of the

test accuracy versus the number of iterations is shown

in Fig.4.

Fig.4 Curve of the test accuracy versus the number of iterations

The infrared object detection model obtained via

fine鄄tuning was applied to the whole infrared test

dataset for object detection. The average precision (AP)

values for the bicycle, bus, car, motorbike and person

classes and the mean average precision (mAP)[19-20] are

shown in Tab.1.

Tab.1 mAP for the five classes on the infrared

test datasets

When the AP values are considered, it is seen

that the infrared object detection model achieves the

best detection performances for buses, cars, and

motorbikes, with all of the APs for these classes being

above 80%; this is due to the larger scale and better

information response of these objects at all levels of

the feature maps in the deep鄄learning鄄based detection

model, which help to improve the precision and recall

of object detection.

1.3 Detection performance comparison between the

infrared and visible models on the datasets

in different bands

The infrared object detection model obtained after

fine鄄tuning still has some detection capability when

applied to visible images. Here, the performances of

the infrared and visible object detection models are

compared on both the infrared and visible test

datasets. The infrared test dataset is the test dataset

from the abovementioned infrared dataset, while the

visible test dataset was obtained by extracting the

images of objects in the five classes of interest

(bicycle, bus, car, motorbike and person) from the

VOC test dataset. The results of the infrared and visible

object detection models are compared in Tab.2.

Tab.2 Comparison of the results of infrared and

visible object detection

The results in Tab.2 show that the mAP achieved

on the infrared dataset by the infrared object detection

model is much higher than that of the visible object

detection model; meanwhile, the mAP on the visible

test dataset is 71.4% and is just lower 7.4% than that

of the visible object detection model, indicating that

the model retains a certain capability for object

detection in visible images.

0626001-6

mAP
AP

Bicycle

82.3% 78.8%

Bus

89.6%

Car Motorbike Person

86.4% 80.6% 75.8%

Test dataset

mAP

Visible model Infrared model

Infrared dataset 19.9% 82.3%

Visible dataset 78.8% 71.4%
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Fig.5 Decision鄄level fusion model for infrared and visible object detection based on deep learning
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2 Decision鄄level fusion model for infrared

and visible detection based on deep

learning

To enhance the object detection performance, the

infrared and visible object detection models are

combined to achieve dual鄄band object detection.

Because the results of deep鄄learning鄄based object

detection depend on dataset training, a massive

amount of fused data is needed to retrain the model

when pixel鄄level or feature鄄level fusion is adopted.

For this reason, the decision鄄level fusion approach is

adopted to merge the results of infrared and visible

object detection.

2.1 Model design

According to the previous findings, although the

infrared model after fine鄄tuning shows good detection

performance on visible images, its performance is still

weaker than that of the visible model. Hence, a good

solution is to apply the infrared model for object

detection in infrared images and the visible model for

object detection in visible images and then perform

decision鄄level fusion on the results. The decision鄄level

fusion model is shown in Fig.5.

2.2 Image registration

Image registration is the process of overlaying two

or more images of the same scene acquired from

different viewpoints and/or by different sensors [21].

Consider an infrared camera and a visible camera that

are used to capture images. Suppose that they are

located side by side to ensure that their optical axes are

parallel and that the distance between the centers of the

camera lenses is 12 cm. In this case, for a scene that is

located one hundred meters from the camera, the

parallax between the cameras is negligible, and the

only differences are those that result from the

translation, rotation and scaling between the two images

captured by the two cameras[22]. Thus, the differences

between the images can be eliminated via affine

transformation. The affine transformation between the

benchmark image coordinates and the input image

coordinates can be expressed as

x

y
蓸 蔀 = a b

c d
蓘 蓡 x

y
蓘 蓡 + e

f
蓘 蓡 (3)

Here, (x,y) represents the benchmark image coordinates,

and (x,y) represents the input image coordinates. The

affine transformation between the two coordinate

systems is

x1忆 x2忆 噎 xn忆

y1忆 y2忆 噎 yn忆
蓘 蓡 = a b e

c d f
蓘 蓡

x1 x2 噎 xn

y1 y2 噎 yn

1 1 噎 1

杉

删

山
山
山
山
山
山
山
山
山
山

煽

闪

衫
衫
衫
衫
衫
衫
衫
衫
衫
衫

(4)

In the above formula,
a b e

c d f
蓘 蓡 is an unknown

coefficient matrix, whose elements can be calculated

from the correspondence relationships between more

than three pairs of pixels in the input and benchmark

images.

With the notations A =
x1忆 x2忆 噎 xn忆

y1忆 y2忆 噎 yn忆
蓘 蓡 , B =

x1 x2 噎 xn

y1 y2 噎 yn

1 1 噎 1

杉

删

山
山
山
山
山
山
山
山
山
山

煽

闪

衫
衫
衫
衫
衫
衫
衫
衫
衫
衫

, and P =
a b e

c d f
蓘 蓡 , the formula can

be expressed as

A=PB (5)
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Fig.6 Process of decision鄄level fusion (a) visualization of the results of infrared detection; (b) visualization of the results of

visible detection; (c) visualization of the results of dual鄄band region merging

When both sides of the equation are

simultaneously multiplied by BT, the formula becomes

ABT=PBBT (6)

When the pairs of pixels in the input and

benchmark images do not form a straight line, BBT is

an invertible matrix, meaning that (BBT) -1 exists. By

simultaneously multiplying both sides of the equation

by (BBT) -1 and applying some transformations, P can

be expressed as

P=ABT(BBT)-1 (7)

This formula shows how the coefficient matrix

can be obtained from the coordinate information of

more than three pairs of pixels in the input and

benchmark images that do not form a straight line.

If the relative positions of the infrared and visible

cameras remain unchanged, then the coefficient matrix

will not change. Thus, an input image can be

transformed into a new image with the same

coordinate system as that of the benchmark image by

taking the product of the input image and the

coefficient matrix. Then, registration with the

benchmark image can be achieved via the necessary

interpolation in the transformed image.

2.3 Decision鄄level fusion

Decision鄄level fusion is performed on the basis of

dual鄄band region merging, which removes object boxes

with high overlap rates from the detection results of the

visible and infrared models while preserving

representative object boxes with high confidences as the

final detection results, as shown in Fig.6.

(1) As illustrated by the examples of single鄄

object detection shown in Fig.6 (a) and Fig.6 (b), the

infrared model and the visible model each generate a

certain quantity of candidate boxes with different

confidences. All corresponding boxes are collected

into a candidate box group, and the object box with

the highest confidence is selected.

(2) The Intersection鄄over鄄Union (IoU) is

calculated between the box with the highest

confidence and each other box in the candidate box

group to assess whether this value exceeds the

suppression threshold. If the IoU is greater than the
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Algorithm 2: DRM (Dual鄄band region merging)

Input: Candidate bounding box set B1 of infrared model detection,

Bv of visible model detection

Output: Region鄄merged object box set BDRM of dual鄄band detection

Classify the candidate bounding boxes according to the label of

them in the infrared and visible detection results and obtain the

dual鄄band bounding box set of each class B
k

D , where k is the

class index.

Obtain the set of dual鄄band bounding boxes BD, BD={B
k

D }.

Foreach k in BD do

Obtain the set of the indexes I according to the order of

candidate bounding boxes sorted by the score

Initialize the region鄄merged object box set B
k

DRM , the index

set P of B
k

DRM , overlap threshold Othreshold, P = , B
k

DRM = ,

Othreshold=t(t跃1)

While I is not null do

Obtain the first index i of I: i=I[0]

Append the last index i to P: P胰i

Foreach index n in I do

j=I[n]

Calculate the overlap O(Bk(i), (Bk(j)) using the theory

of IoU

If O(Bk(i),(Bk(j))跃Othreshold do

Append the index n to the set S: S=S胰n

Remove the suppressing bounding box set S in I: I=I/S

Foreach p in P do

Extract the object bounding boxes B
k

DRM : B
k

DRM=B
k

DRM胰B
k

D [p]

Obtain the Region鄄merged object box set BDRM: BDRM={B
k

DRM }

0626001-9

suppression threshold, this means that the current box

is suppressed by the box with the highest confidence

and should be abandoned. At the end of each iteration

of this operation, the object boxes whose IoUs do not

reach the suppression threshold and the box with the

highest confidence remain.

(3) The object box with the highest confidence is

selected from among the boxes whose IoUs did not

reach the suppression threshold in the last iteration,

and step (2) is then repeated until the candidate box

set is empty. Thus, all suppressed object boxes are

rejected from the set of candidate object boxes, and

the remaining object boxes are treated as the results

of the fusion of the infrared and visible models, as

shown in Fig.6(c).

The detail of dual鄄band region merging is shown

in algorithm 2.

2.4 Theoretical analysis on fusion detection

performance

The mAP is the average AP across all classes,

and the calculation of the AP is directly related to the

area under the precision鄄recall curve; therefore, the

mAP value is also directly related to the area under

the precision鄄recall curve. The formulas for calculating

the recall and precision are as follows:

R= NTP

NTP+NFN

= NTP

N
(8)

P= NTP

NTP+NFP

= 1

1+ NFP

NTP

(9)

where TP denotes the true positives and represents the

detection results that are correctly classified as

belonging to the ground鄄truth class and whose IoUs

are higher than the IoU threshold, FP denotes the

false positives and represents the detection results that

are incorrectly classified as belonging to the ground鄄

truth class and whose IoUs are higher than the IoU

threshold, FN denotes the false negatives and

represents the detection results that are incorrectly

classified as belonging to other classes or whose IoUs

are lower than the IoU threshold, and N denotes the

number of ground鄄truth objects in the scene.

To compare the precision鄄recall curves of single鄄

band detection and fusion detection, the precision

values corresponding to a given recall are considered.

According to equations (8) and (9), when the R

values for detection are the same, the NTP values will

also be the same; therefore, the value of P is

determined only by NFP, and the smaller NFP is, the

larger P will be. Consequently, when fewer objects

have IoUs below the IoU threshold, better detection

results will be obtained. According to the definition of

NFP, NFP represents the number of incorrect detection

results. Generally, because fusion detection integrates

the detection results from two bands, fusion detection

will yield fewer incorrect detection results than single鄄

band detection does, which means that fusion detection

is expected to achieve a higher mAP value and better

performance than those of single鄄band detection.
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From Fig.7 and Fig.8, it can be seen that there

are black block regions in the registered visible image

whose contents are not exactly the same with the

infrared images. Therefore, region capture needs to be

implement to reconcile the infrared images and visible

images. For the convenience of capturing, the infrared

images and visible images are all added by 0.5

weight, as shown in Fig.9 (a). After the common

region of infrared image and registered visible image

is captured, a pair of dual band images with the same

region are obtained, which are shown in Fig.9(b) and

Fig.9(c).

(a) Fusion image before capturing

(a) Infrared image (b) Visible image (c) Visible image after registration

Fig.7 Image registration of infrared and visible bands (daytime)

(a) Infrared image (b) Visible image (c) Visible image after registration

Fig.8 Image registration of infrared and visible bands (nighttime)

0626001-10

3 Fusion detection experiments, results

and analysis

Visible images reflect the reflection characteristics

of objects and infrared images reflect their radiation

characteristics. Generally, the imaging contents

acquired according to the reflection characteristic and

radiation characteristic of an object and its background

are not completely consistent; therefore, visible images

and infrared images exhibit complementarity. Infrared

object detection is more advantageous at night, while

visible object detection behaves better in the daytime,

especially for objects without obvious infrared

features. Thus, the decision鄄level fusion of the

information from the visible and infrared bands will

increase the probability of successful object detection.

We collected images of pedestrians and cars at

an intersection in Hefei city with an infrared camera

and a visible camera. The time periods for collection

were 13:00 -15:00 (daytime) and 18:00 -19:00

(nighttime). We collected 105 pairs of infrared and

visible images during both daytime and nighttime.

Firstly, infrared images and visible images need

registration operation, the results of which are shown

in Fig.7 and Fig.8.
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(c) Fusion detection

Fig.10 Visualization of the results of single鄄band and dual鄄band detection (daytime)

(a) Visible object detection

(b) Infrared object detection

0626001-11

(b) Infrared image

(c) Visible image

Fig.9 Capturing of infrared and visible images

3.1 Qualitative analysis

After the collection of the dual鄄band dataset of

infrared and visible spectra, the infrared and visible

object detection models were applied to detect objects

in the infrared and visible images, respectively.

Meanwhile, the decision鄄level fusion results between

the two bands are implemented. Examples of the

results are visualized in Fig.8 and Fig.10.

Figure 10 and Fig.11 demonstrate the following

phenomena: (1) Infrared object detection and visible

object detection are complementary, and this

complementarity is fully exploited in the results of

dual鄄band fusion detection; (2) Compared with the

results of single鄄band detection, the confidences and
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(c) Fusion detection

Fig.11 Visualization of the results of single鄄band and dual鄄band detection (nighttime)

(a) Visible object detection

(b) Infrared object detection

Detection mAP

Infrared

model
76.1%

AP

Bicycle

89.3%

Motorbike Person

73.0% 66.7%

Bus

72.5%

Car

79.2%

Visible

model
80.7% 84.3% 65.9% 75.1%88.0% 90.2%

Fusion

model
86.0% 92.0% 88.2% 91.0% 77.1% 81.5%

0626001-12

bounding boxes achieved through dual鄄band fusion

detection are superior. These will allow dual鄄band

fusion to detect more objects and locate more accurate

than infrared and visible models, which increases the

true positives in the detection results. According to

equation (8) and (9), the precision鄄recall curve of

dual鄄band fusion will more ideal than those of

infrared and visible models, which allows the AP of

dual鄄band fusion to be higher than those of infrared

and visible models. Thus, dual鄄band fusion detection

has obvious advantages over single鄄band detection.

3.2 Quantitative analysis

Table 3 and Tab.4 present the object detection

results and the corresponding mAP evaluations for the

two different time periods.

Tab.3 Comparison of single鄄band and dual鄄band

object detection (daytime)
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Detection mAP

Infrared

model

86.8%

AP

Bicycle

92.0%

Motorbike Person

88.6% 76.7%

Bus

99.7%

Car

76.9%

86.3% 92.0% - 76.7%99.7% 76.9%

Visible

model

68.9% 82.7% 91.5% 64.7% 44.5% 61.2%

75.0% 82.7% 91.5% 64.7% - 61.2%

Fusion

model

87.1% 95.7% 99.8% 81.2% 77.9% 80.7%

89.4% 95.7% 99.8% 81.2% - 80.7%

Tab.4 Comparison of single鄄band and dual鄄band

object detection (nighttime)

For daytime detection, both the infrared detection

model and the visible detection model perform well.

In the daytime experiment, the mAPs of the infrared

and visible detection models are 76.1% and 80.7% ,

respectively, while the mAP of the fusion detection

model is 86.0% . And the results show that although

the mAP of the visible detection model is higher than

that of the infrared detection model, the APs of the

visible detection model are not higher than those of

the infrared detection model in all the classes. In this

case, the advantages of fusion detection compared to

single鄄band detection are apparent. For nighttime

detection, because the infrared detection model is not

affected by darkness, its mAP is 86.8%. However, the

mAP of the visible detection model is only 68.9%

due to the dimness, blurring, and noise in the visible

images. When we apply the fusion detection model,

because of the poor detection performance of the

visible object detection model for motorbikes, the

mAP is 87.1% , which is nearly the same as that of

the infrared detection model. In contrast to the

motorbike results, the APs of the visible model for the

nighttime detection of bicycles, buses, cars, and

people are also lower than those of the infrared

model, but they are all over 60.0% , which indicates

that the detection performance remains acceptable.

When motorbike detection is not included, the mAPs

of the infrared and visible detection models are 87.1%

and 75.0%, respectively, while the mAP of the fusion

detection model is 89.4%. Under these conditions, the

performance of the fusion detection model is still

better than that of the infrared object detection model,

making it the best of the three. And the results show

that although the APs of the visible detection model

are lower than those of the infrared detection model

in all the classes, the mAP of fusion model is the

highest in the three detection models. The reason is

that the visible model can detect some objects which

can't detect by the infrared model, which is helpful to

increase the true positives in the fusion results.

However, if the detection performance of single model

is too poor, much more false negatives will be

obtained and the performance of fusion detection will

become worse, such as the motorbike in Tab.4.

Therefore, the detection performance of fusion

model is determined to some extent by those of

infrared and visible models. As long as the detection

performance of the single鄄band model is not too poor,

dual鄄band decision鄄level fusion detection has an

obviously beneficial effect.

4 Conclusions

In this paper, we proposed a fusion detection

methodology for infrared and visible spectra based on

deep learning. The visible spectrum detection model

can be extracted from current models with no further

additional training, and the infrared spectrum detection

model can be obtained through fine鄄tuning based on

the visible spectrum detection model, thus significantly

reducing the required amount of training data.

As few researches on deep鄄learning鄄based object

detection has been done on the infrared spectrum, we

need to establish an infrared object detection model

based on deep learning. First, we proposed a

parameter transfer model for deep learning models.

Then a pretraining model for infrared object detection

based on deep learning was first obtained by

extracting the shared weights of the five specified

object classes and background class from a visible
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object detection model based on deep learning, and

redesigning the classification layer of the model. Then

the model was fine鄄tuned on a collected infrared

image dataset with the five object classes to obtain an

infrared object detection model based on deep

learning. The fine鄄tuned infrared model demonstrated

a good object detection performance in infrared

images and even retained a certain capability for

object detection in visible images. However, the

detection performance of the fine鄄tuned infrared

detection model was poorer than that of the visible

detection model on some scenes, especially under

good lighting conditions. To take advantage of their

complementary information, a fusion detection model

for infrared and visible spectra based on deep learning

was established. Experimental results demonstrate that

the dual鄄band decision鄄level fusion detection model

proposed in this paper offers better performance and

stronger robustness than the single鄄band detection

models do. Therefore, the approach proposed in this

paper offers an excellent solution for improving the

dual鄄band fusion detection capabilities of deep

learning models.

In addition, the applicability of the proposed

approach is not restricted to two bands; the model can

be applied for the combination of detection results

from multiple bands using deep learning models.

Thus, the proposed approach can enable the full use

of the complementarity of multiple bands in object

detection and further improve the performance and

robustness of deep learning models.
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