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Decision-level fusion detection for infrared and visible spectra

based on deep learning

Tang Cong'*?, Ling Yongshun"*?, Yang Hua'?*?, Yang Xing"**, Lu Yuan'*?

(1. College of Electronic Countermeasure Institute, National University of Defense Technology, Hefei 230037, China;
2. State Key Laboratory of Pulsed Power Laser Technology, Hefei 230037, China;
3. Key Laboratory of Infrared and Low Temperature Plasma of Anhui Province, Hefei 230037, China)

Abstract: A fusion detection methodology for infrared and visible spectra was presented based on deep
learning. First, a parameter transfer model for deep learning models was proposed. Then a pretraining
model for infrared object detection was extracted from a visible object detection model based on deep
learning and was fine-tuned on a collected infrared image dataset to obtain an infrared object detection
model based on deep learning. On this basis, a decision-level fusion model for infrared and visible
detection based on deep learning was established, and the model design, image registration and decision-
level fusion processes were discussed in detail. Finally, an experiment comparing single-band detection
and dual-band fusion detection during the daytime and nighttime was presented. Qualitatively, compared
with the results of single-band detection, the confidences and bounding boxes achieved through dual-band
fusion detection are superior, owing to the utility of their complementary information. Quantitatively, in
the daytime, the mAP of dual-band fusion detection is 86.0% and is higher than those of infrared
detection and visible detection by 9.9% and 5.3%, respectively; at nighttime, the mAP of dual-band
fusion detection is 89.4% and is higher by 3.1% and 14.4%, respectively. The experimental results show
that the dual-band fusion detection method proposed in this paper shows better performance and stronger
robustness than the single-band object detection methods do, thus verifying the effectiveness of the
proposed method.
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0 Introduction

Object detection is a significant focus of research
in the field of computer vision"""?, with applications in
driverless cars, robotics, video surveillance and
pedestrian detection®™. In object detection, the utilization
of multisensor data or information fusion can yield
object detection results that cannot be achieved with a
single sensor and can improve object detection
performance. In traditional fusion methods for object
detection, fusion detection is commonly performed on
the basis of infrared and visible spectra, making full
use of the complementarity of visible and infrared
images. At present, fusion detection for infrared and
visible spectra relies primarily on traditional methods,
such as multiresolution fusion'”!, edge feature fusion™
and Dempster-Shafer (DS) evidence theory™. However,
few studies have investigated fusion detection for
infrared and visible spectra based on deep learning.
Moreover, at present, research on deep-learning-based
object detection is primarily focused on the visible
spectrum, while little research has been done on the
infrared spectrum.

There are three methods of fusion detection for
infrared and visible spectra: pixel-level fusion
detection, feature-level fusion detection and decision-
level fusion detection™. In pixel-level fusion detection,

the images must be fused at the pixel level prior to

RIEF 3]

object detection; in feature-level fusion detection,
feature extraction must be performed before feature
fusion, and object detection is then performed based
on the fused feature vectors; in decision-level fusion
detection, different sensors are independently used for
object detection, and the detection results are then
fused. Because deep learning models are data-driven
models, when either of the first two fusion detection
methods is adopted, a massive amount of image data
is needed for model training. At present, visible

datasets can be obtained from public sources;

however, infrared datasets are difficult to obtain.

Furthermore, the visible and infrared datasets should
be acquired from the same scenes for the training of
and feature-level fusion

models for pixel-level

detection, which makes it even harder to obtain
suitable training data. By contrast, when decision-level
fusion detection is employed, the visible spectrum
detection model can be extracted from current models
with no further additional training, and the infrared
spectrum detection model can be obtained through
fine-tuning ™ based on the visible spectrum detection
model, thus significantly reducing the required amount
of training data. Erhan et al. have conducted extensive
simulations with the existing algorithms and have
found that pretrained networks can learn qualitatively
different features and perform better than traditionally

[12]

trained networks do'”!. Fine-tuning is a crucial stage
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in refining models to adapt them to specific tasks and
datasets™. Therefore, we adopt the decision-level fusion
approach and apply pretraining and fine-tuning to
carry out research on fusion detection for infrared and

visible spectra based on deep learning in this paper.

1 Infrared object detection model based

on deep learning

At present, most object detection models based
on deep learning are designed for visible detection and

are not applicable for the detection of objects in

infrared images or video sequences. Therefore, the
design and training of an infrared object detection
model based on deep learning must first be
implemented in preparation for fusion detection.

The main difference between infrared object
detection and visible object detection is that they are
performed in different optical bands. However, they
are both methods of object detection based on image
data. Here, the results of applying a visible object
detection model to a set of infrared pedestrian images

are shown in Fig.1.

— 5.8

- [ 2017-12-18
H 6:00 pm

Fig.1 Infrared object detection with a visible object detection model (a), (b) and (c) represent three scenes

When the visible detection model is applied for
object detection in the infrared images, the pedestrians
in Fig.1(a) and Fig.1(b) can be successfully detected,
demonstrating that a visible object detection model can
achieve detection in infrared images to a certain
extent. The reason for this capability may be that
compared with visible images, infrared images have
similar contour features, which serve as effective
appearance features'™' for object detection. However,
the classification scores of the pedestrians in Fig.1 (a)
and Fig.1 (b) are not very high, meaning that the
visible object detection model has only a weak
capability for infrared object detection. Moreover, one
person is erroneously classified as a dog in Fig.1(b),
while no person is detected in Fig.1(c); instead, in
this last case, the model merely outputs a result
classifying the entire image into the train class, with a
score of 0.2.

Hence, the visible object detection model can

achieve infrared object detection to some degree, but

its detection accuracy is poor. Therefore, this
experiment offers a theoretical and experimental basis
for the possibility that a visible object detection model
could be fine-tuned to obtain an infrared object
detection model.
1.1 Pretraining model for infrared object detection

based on deep learning

In general, pretraining models for visible object
detection are established on the basis of models
trained on the ImageNet dataset™ or the Pascal VOC
dataset!"!; one example is the Single Shot Detector
(SSD) model™. When the SSD model(VGG VOC0712_
SSD_300 x300_ iter_240000 . caffemodel )

adopted as the pretraining model for the development

is directly

of our new model, because the classes in the
classification layer of the new model are mismatched
with those in the SSD model, the parameters of the
classification convolution layers in the SSD model are
unsuitable to be transferred to the new model. In this

paper, it is assumed that the research objects of
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interest for infrared detection are typical objects found
at road intersections, including bicycles, buses, cars,
motorbikes and people. Because the VOC dataset
already contains bicycles, buses, cars, motorbikes and
people, the relevant feature extraction weights of the
model for these five classes and for background class
(six object classes in all) can be extracted from the
VOC —trained models.

location is only related to the four coordinate value

Meanwhile, as the object
information, and is independent of the number of
classes, it can still inherit the visible model to locate
the object by parameter sharing. Therefore, the
effective method of parameter transfer is essential to
achieve a perfect pretraining model, which will rapidly
complete the training and more easily acquire good
detection performance. In addition, the classification
layer of the model must be redesigned and combined
with the convolution layers to obtain the pretraining
model.
1.1.1 Parameter transfer model

In the design of the infrared pretraining model,
the initial model is first initialized according to the
parameters of the model structure. To make full use
of the object detection ability of the visible model
(VOC —trained SSD model), the parameters of the
layers in the visible model are transferred to the
convolution layer corresponding to the infrared model,
which realizes the parameter sharing. The parameters
transferred between the convolution layers include
convolution kernel parameters and bias parameters,
which are considered matrices. The parameter matrices
of the visible model and infrared model are W, and
W, respectively. W, represents a four-dimensional
matrix of (Mxr)xcxkxk, and W, represents a four-
dimensional matrix of (Mxr)xcxkxk, where, M and N
represent the number of object classes of the visible
model and the infrared model respectively, r represents
the index of the default bounding boxes, ¢ represents
the channel number of the convolution layers, and k is
the size of the convolution kernel. The biasing

matrices of the visible model and infrared model are

b, and b, respectively, and they are both one-

dimensional matrices of (4xr)x1.

In the parameter transfer, the relationship
between W, and W, is
Wolj+Nxr]=W,[i+Mxr, ---] (1)
In addition, the relationship between b; and b, is
by[j+Nxr]=b,W\[i+Mxr] (2)

where, i and j represent the class index of visible
model and infrared model respectively.
1.1.2 Implementation of parameter transfer

The pretraining infrared model designed in this
paper is based on the SSD model structure. The
convolution layers of which need to implement the
conv4_3 norm_mbox_conf, fc7_

parameter transfer:
mbox_conf, conv6_2_mbox_conf, conv7_2_mbox_
conf, conv8_2_mbox_conf, convO_2_mbox _conf. The
layers of conv4_3_norm_mbox_conf, conv8_2_ mbox_
conf and conv9_2_mbox_conf have four anchors in
the feature map, which means that the value of r can
equal 0, 1, 2 and 3, and the anchor index set R={0,
1, 2, 3}. The layers of conv4_3_norm_mbox_conf,
conv8_2_mbox_conf and conv9_2_mbox_conf have six
anchors in the feature map, which means that the
value of r can be 0, 1, 2, 3, 4 and 5, and the anchor
index set R={0, 1, 2, 3, 4, 5}. The object classes
chosen are bicycle, bus, car, motorbike, people and
background, whose indexes in the classification layers
of the visible model are 2, 6, 7, 14, 15 and 0, respectively,
and whose indexes in the classification layers of the
infrared model are 1, 2, 3, 4, 5 and 0, respectively.
Therefore, the class index set I of the visible model is
equal to {2, 6, 7, 14, 15, 0} and the class index set J of
the infrared model is equal to {1, 2, 3, 4, 5, 0}. The
parameter transfer process between two convolution
layers of the two models is shown in algorithm 1.

By parameter transfer, the parameter sharing of
the object location and recognition between pretraining
infrared model and visible model has been realized,
which allows the pretraining infrared model to have a

certain capability for object detection.

0626001-4
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Algorithm 1: PT (Parameter transfer)

Input: Object class number M, object class number N, class index
set I, class index set J, anchor index set R, convolution kernel
parameters matrix W,, and biasing parameters matrix b,
Output: Convolution kernel parameters matrix W, and bias
parameters matrix b,
Initialize the convolution kernel parameters matrix and bias
parameters matrix b, to all-zero matrices, Wo=0 ((Mxs)xcxkxk),
by=0((4xr)x1)
Foreach r in R do
Foreach [i,j] in {[1,Jo],[1,J:],---} do
Walj+Nxr, - =W [i+Mxr,--]
by[j+Nxr]=b,[i+Mxr]

1.2 Model training on an infrared image dataset

Once the pretraining model has been obtained,

model training must be implemented on the collected
infrared dataset. Our research team collected infrared
images of objects in the above five classes on
campus, in plazas, at road intersections and at
pedestrian crosswalks, where many bicycles, buses,
cars, motorbikes and pedestrians can be found. In
total, we collected 1 800 infrared images, including
334 bicycle images, 205 bus images, 430 car images,
339 motorbike images and 492 pedestrian images. The
infrared camera used was a FLIR T630.
1.2.1 Collection of the Infrared Image Dataset
Examples from the collected infrared dataset are

shown in Fig.2.

(a) Bicycle

(e) Person

Fig.2 Infrared dataset (examples)

0626001-5
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1.2.2 Model training

After 3000 training iterations, the training loss on
the infrared dataset was approximately 2.5. The curve
of the training loss versus the number of iterations is

shown in Fig.3.
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Fig.3 Curve of the training loss versus the number of iterations

During the training process, the accuracy was
tested once every 500 iterations, and the curve of the

test accuracy versus the number of iterations is shown

in Fig.4.
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Fig.4 Curve of the test accuracy versus the number of iterations

The infrared object detection model obtained via
fine-tuning was applied to the whole infrared test
dataset for object detection. The average precision (AP)
values for the bicycle, bus, car, motorbike and person

19-20]

classes and the mean average precision (mAP)! are

shown in Tab.1.

Tab.1 mAP for the five classes on the infrared

test datasets

AP
mAP
Bicycle Bus Car Motorbike Person
82.3% 78.8%  89.6% 86.4% 80.6% 75.8%

When the AP values are considered, it is seen
that the infrared object detection model achieves the
best detection performances for buses, cars, and
motorbikes, with all of the APs for these classes being
above 80%; this is due to the larger scale and better
information response of these objects at all levels of
the feature maps in the deep-learning-based detection
model, which help to improve the precision and recall
of object detection.

1.3 Detection performance comparison between the
infrared and visible models on the datasets

in different bands

The infrared object detection model obtained after
fine-tuning still has some detection capability when
applied to visible images. Here, the performances of
the infrared and visible object detection models are
compared on both the infrared and visible test
datasets. The infrared test dataset is the test dataset
from the abovementioned infrared dataset, while the
visible test dataset was obtained by extracting the
images of objects in the five classes of interest
(bicycle, bus, car, motorbike and person) from the
VOC test dataset. The results of the infrared and visible

object detection models are compared in Tab.2.

Tab.2 Comparison of the results of infrared and

visible object detection

mAP

Test dataset

Visible model Infrared model

Infrared dataset 19.9% 82.3%

Visible dataset 78.8% 71.4%

The results in Tab.2 show that the mAP achieved
on the infrared dataset by the infrared object detection
model is much higher than that of the visible object
detection model; meanwhile, the mAP on the visible
test dataset is 71.4% and is just lower 7.4% than that
of the visible object detection model, indicating that
the model retains a certain capability for object

detection in visible images.
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2 Decision-level fusion model for infrared
and visible detection based on deep

learning

To enhance the object detection performance, the
infrared and visible object detection models are

combined to achieve dual-band object detection.

Because the results of deep-learning-based object

detection depend on dataset training, a massive
amount of fused data is needed to retrain the model
when pixel-level or feature-level fusion is adopted.

For this reason, the decision-level fusion approach is

adopted to merge the results of infrared and visible
object detection.
2.1 Model design

According to the previous findings, although the
infrared model after fine-tuning shows good detection
performance on visible images, its performance is still
weaker than that of the visible model. Hence, a good
solution is to apply the infrared model for object
detection in infrared images and the visible model for
object detection in visible images and then perform
decision-level fusion on the results. The decision-level

fusion model is shown in Fig.5.

Visible object
i detection model
) _(il]‘ﬂ_llﬂ-’ based on deep learning
visible images
Image Decision- Fusion
registration level detection
Sl fusion results
Capture ’
I—- o ek Infrared object
mbag ke detection model

based on deep learning

Fig.5 Decision-level fusion model for infrared and visible object detection based on deep learning

2.2 Image registration
Image registration is the process of overlaying two
or more images of the same scene acquired from
different viewpoints and/or by different sensors .
Consider an infrared camera and a visible camera that
are used to capture images. Suppose that they are
located side by side to ensure that their optical axes are
parallel and that the distance between the centers of the
camera lenses is 12 cm. In this case, for a scene that is
located one hundred meters from the camera, the
parallax between the cameras is negligible, and the
only differences are those that result from the
translation, rotation and scaling between the two images
captured by the two cameras'®!. Thus, the differences
between the images can be eliminated via affine
transformation. The affine transformation between the
benchmark image coordinates and the input image
coordinates can be expressed as
x|\ [a b
(\ y “)_ c d

X e

+ (3)
f

y

Here, (x,y) represents the benchmark image coordinates,

and (x,y) represents the input image coordinates. The

affine transformation between the two coordinate
systems is
X' x - x’] [a b e TR @)
R = Vi Y2 = W
i’y o'l le d f 11 o1
a b e

In the above formula, is an unknown

c
coefficient matrix, whose elements can be calculated
from the correspondence relationships between more

than three pairs of pixels in the input and benchmark

images.
. . xll le ot -xn’
With the notations A = , , o B =
N Y2 Y
X1 Xo X,
a
Yi Y2 " Yu|, and P= ], the formula can
c
11 -1
be expressed as
A=PB (5)
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When both sides of the equation are cameras remain unchanged, then the coefficient matrix
simultaneously multiplied by B", the formula becomes will not change. Thus, an input image can be

AB'=PBB" (6)
When the pairs of pixels in the input and
benchmark images do not form a straight line, BB" is
an invertible matrix, meaning that (BB")™' exists. By
simultaneously multiplying both sides of the equation
by (BB")™ and applying some transformations, P can
be expressed as
P=AB"(BB")™ @)
This formula shows how the coefficient matrix
can be obtained from the coordinate information of
more than three pairs of pixels in the input and
benchmark images that do not form a straight line.

If the relative positions of the infrared and visible

transformed into a new image with the same
coordinate system as that of the benchmark image by
taking

coefficient

the product of the
Then,

input image and the
matrix. registration with  the
benchmark image can be achieved via the necessary
interpolation in the transformed image.
2.3 Decision-level fusion

Decision-level fusion is performed on the basis of
dual-band region merging, which removes object boxes
with high overlap rates from the detection results of the
visible and infrared models while preserving
representative object boxes with high confidences as the

final detection results, as shown in Fig.6.

Person:infrared score |

| Person:infrared score 2

Bicycle:infrared score |
T TR A
ared score 2

Fig.6 Process of decision-level fusion (a) visualization of the results of infrared detection; (b) visualization of the results of

visible detection; (c) visualization of the results of dual-band region merging

(1) As illustrated by the examples of single-
object detection shown in Fig.6(a) and Fig.6(b), the
infrared model and the visible model each generate a
certain quantity of candidate boxes with different
confidences. All corresponding boxes are collected

into a candidate box group, and the object box with

the highest confidence is selected.
(2) The

calculated between the box with the

Intersection-over-Union  (IoU) is

highest
confidence and each other box in the candidate box
value exceeds the

to assess whether this

group
suppression threshold. If the IoU is greater than the

0626001-8
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suppression threshold, this means that the current box
is suppressed by the box with the highest confidence
and should be abandoned. At the end of each iteration
of this operation, the object boxes whose IoUs do not
reach the suppression threshold and the box with the
highest confidence remain.

(3) The object box with the highest confidence is
selected from among the boxes whose IoUs did not
reach the suppression threshold in the last iteration,
and step (2) is then repeated until the candidate box
set is empty. Thus, all suppressed object boxes are
rejected from the set of candidate object boxes, and
the remaining object boxes are treated as the results
of the fusion of the infrared and visible models, as
shown in Fig.6(c).

The detail of dual-band region merging is shown

in algorithm 2.

Algorithm 2: DRM (Dual-band region merging)

Input: Candidate bounding box set B; of infrared model detection,
B, of visible model detection

Output: Region-merged object box set Bpry of dual-band detection
Classify the candidate bounding boxes according to the label of
them in the infrared and visible detection results and obtain the

dual-band bounding box set of each class B; , where k is the

class index.

Obtain the set of dual-band bounding boxes Bj, BD:{BZ }.
Foreach k in B, do
Obtain the set of the indexes [/ according to the order of
candidate bounding boxes sorted by the score

k
Initialize the region-merged object box set B, , the index

set P of B:;RM , overlap threshold Ogpesoss P =6, B;RM =,
Oureoia=1(1>1)
While 7 is not null do
Obtain the first index i of I: i=I[0]
Append the last index i to P: PUi
Foreach index n in I do
Jj=1n]
Calculate the overlap O(B;(i),(Bi(j)) using the theory
of ToU
If O(Bi(i),(Bi(j))>Oguesioa do
Append the index n to the set S: S=SUn
Remove the suppressing bounding box set S in I: I=I/S
Foreach p in P do

Extract the object bounding boxes B;RM: B;RM =BkDRM UBZ [p]

Obtain the Region-merged object box set Bppy: BDRM:{B;RM}

2.4 Theoretical analysis on fusion detection
performance
The mAP is the average AP across all classes,
and the calculation of the AP is directly related to the
area under the precision-recall curve; therefore, the
mAP value is also directly related to the area under
the precision-recall curve. The formulas for calculating

the recall and precision are as follows:

N N
R=—_fm__ _Aw 8
Np+New N ®)
N 1
p=—"r__— 9
NN 1, N i
N

where TP denotes the true positives and represents the

detection results that are correctly classified as
belonging to the ground-truth class and whose IoUs
are higher than the IoU threshold, FP denotes the
false positives and represents the detection results that
are incorrectly classified as belonging to the ground-
truth class and whose IoUs are higher than the IoU
threshold, FN denotes the false

represents the detection results that are incorrectly

negatives and

classified as belonging to other classes or whose IoUs
are lower than the IoU threshold, and N denotes the
number of ground-truth objects in the scene.

To compare the precision-recall curves of single-
band detection and fusion detection, the precision
values corresponding to a given recall are considered.
(8) and (9), when the R

values for detection are the same, the Np values will

According to equations

also be the same; therefore, the value of P is
determined only by N, and the smaller Ng is, the
larger P will be. Consequently, when fewer objects
have IoUs below the IoU threshold, better detection
results will be obtained. According to the definition of
N, N represents the number of incorrect detection
results. Generally, because fusion detection integrates
the detection results from two bands, fusion detection
will yield fewer incorrect detection results than single-
band detection does, which means that fusion detection
is expected to achieve a higher mAP value and better

performance than those of single-band detection.

0626001-9
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especially for objects without obvious infrared
3 Fusion detection experiments, results features. Thus, the decision-level fusion of the

and analysis

Visible images reflect the reflection characteristics
of objects and infrared images reflect their radiation
characteristics.  Generally, the imaging contents
acquired according to the reflection characteristic and
radiation characteristic of an object and its background
are not completely consistent; therefore, visible images
and infrared images exhibit complementarity. Infrared
object detection is more advantageous at night, while

visible object detection behaves better in the daytime,

information from the visible and infrared bands will
increase the probability of successful object detection.
We collected images of pedestrians and cars at
an intersection in Hefei city with an infrared camera
and a visible camera. The time periods for collection
were 13:00 —15:00 (daytime) and 18:00 —19:00
(nighttime). We collected 105 pairs of infrared and
visible images during both daytime and nighttime.

Firstly, infrared images and visible images need

registration operation, the results of which are shown
in Fig.7 and Fig.8.

(a) Infrared image

(b) Visible image

(c) Visible image after registration

Fig.7 Image registration of infrared and visible bands (daytime)

(a) Infrared image

(b) Visible image

(c) Visible image after registration

Fig.8 Image registration of infrared and visible bands (nighttime)

From Fig.7 and Fig.8, it can be seen that there
are black block regions in the registered visible image
whose contents are not exactly the same with the
infrared images. Therefore, region capture needs to be
implement to reconcile the infrared images and visible
images. For the convenience of capturing, the infrared
images and visible images are all added by 0.5
weight, as shown in Fig.9 (a). After the common

region of infrared image and registered visible image

is captured, a pair of dual band images with the same
region are obtained, which are shown in Fig.9(b) and

Fig.9(c).

(a) Fusion image before capturing

0626001-10
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(al)

(c) Visible image

Fig.9 Capturing of infrared and visible images
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3.1 Qualitative analysis

After the collection of the dual-band dataset of
infrared and visible spectra, the infrared and visible
object detection models were applied to detect objects
in the infrared and visible images, respectively.
Meanwhile, the decision-level fusion results between
the two bands are implemented. Examples of the
results are visualized in Fig.8 and Fig.10.

Figure 10 and Fig.11 demonstrate the following
phenomena: (1) Infrared object detection and visible
object detection are complementary, and this
complementarity is fully exploited in the results of
dual-band fusion detection; (2) Compared with the

results of single-band detection, the confidences and

.Can0.43| i

Car:0.23 M
¢ 1 Car0.96

(a) Visible object detection

(b) Infrared object detection

(c) Fusion detection

Fig.10 Visualization of the results of single-band and dual-band detection (daytime)
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(b) Infrared object detection

(¢) Fusion detection

Fig.11 Visualization of the results of single-band and dual-band detection (nighttime)

bounding boxes achieved through dual-band fusion
detection are superior. These will allow dual-band
fusion to detect more objects and locate more accurate
than infrared and visible models, which increases the
true positives in the detection results. According to
equation (8) and (9), the precision-recall curve of
dual-band fusion will more ideal than those of
infrared and visible models, which allows the AP of
dual-band fusion to be higher than those of infrared
and visible models. Thus, dual-band fusion detection
has obvious advantages over single-band detection.

3.2 Quantitative analysis
Table 3 and Tab.4 present the object detection

results and the corresponding mAP evaluations for the

two different time periods.

Tab.3 Comparison of single-band and dual-band

object detection (daytime)

AP

Detection mAP

Bicycle  Bus Car  Motorbike Person

Infrared 20 10, 80.3% 725% 792% 13.0%  66.7%
model
Visible g, 20, 813% 88.0% 90.2% 65.9%  75.1%
model
Fusion g6 0% 92.0% 88.2% 91.0% 17.1%  81.5%
model
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Tab.4 Comparison of single-band and dual-band
object detection (nighttime)

AP

Detection mAP

Bicycle  Bus Car  Motorbike Person
. 86.8% 92.0% 99.7% 76.9% 88.6%  16.7%
Infrared
model o6 3% 02.0% 99.7% 76.9% - 76.7%
. 68.9% 82.7% 91.5% 64.7% 44.5%  61.2%
Visible
model oo 0 82.7% 91.5% 64.7% - 61.2%
. 87.1% 95.7% 99.8% 81.2% 17.9%  80.7%
Fusion
model 09 4% 95.7% 99.8% 81.2% - 80.7%

For daytime detection, both the infrared detection
model and the visible detection model perform well.
In the daytime experiment, the mAPs of the infrared
and visible detection models are 76.1% and 80.7%,
respectively, while the mAP of the fusion detection
model is 86.0%. And the results show that although
the mAP of the visible detection model is higher than
that of the infrared detection model, the APs of the
visible detection model are not higher than those of
the infrared detection model in all the classes. In this
case, the advantages of fusion detection compared to
single-band detection are apparent. For nighttime
detection, because the infrared detection model is not
affected by darkness, its mAP is 86.8%. However, the
mAP of the visible detection model is only 68.9%
due to the dimness, blurring, and noise in the visible
images. When we apply the fusion detection model,
because of the poor detection performance of the
visible object detection model for motorbikes, the
mAP is 87.1%, which is nearly the same as that of
the infrared detection model. In contrast to the
motorbike results, the APs of the visible model for the
nighttime detection of bicycles, buses, cars, and
people are also lower than those of the infrared
model, but they are all over 60.0% , which indicates
that the detection performance remains acceptable.
When motorbike detection is not included, the mAPs

of the infrared and visible detection models are 87.1%

and 75.0%, respectively, while the mAP of the fusion
detection model is 89.4%. Under these conditions, the
performance of the fusion detection model is still
better than that of the infrared object detection model,
making it the best of the three. And the results show
that although the APs of the visible detection model
are lower than those of the infrared detection model
in all the classes, the mAP of fusion model is the
highest in the three detection models. The reason is
that the visible model can detect some objects which
can’t detect by the infrared model, which is helpful to
increase the true positives in the fusion results.
However, if the detection performance of single model
is too poor, much more false negatives will be
obtained and the performance of fusion detection will
become worse, such as the motorbike in Tab.4.
Therefore, the detection performance of fusion
model is determined to some extent by those of
infrared and visible models. As long as the detection
performance of the single-band model is not too poor,
dual-band decision-level fusion detection has an

obviously beneficial effect.

4 Conclusions

In this paper, we proposed a fusion detection
methodology for infrared and visible spectra based on
deep learning. The visible spectrum detection model
can be extracted from current models with no further
additional training, and the infrared spectrum detection
model can be obtained through fine-tuning based on
the visible spectrum detection model, thus significantly
reducing the required amount of training data.

As few researches on deep-learning-based object
detection has been done on the infrared spectrum, we
need to establish an infrared object detection model
based on deep learning. First, we proposed a
parameter transfer model for deep learning models.
Then a pretraining model for infrared object detection
based on deep learning was first obtained by
extracting the shared weights of the five specified

object classes and background class from a visible
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object detection model based on deep learning, and
redesigning the classification layer of the model. Then
the model was fine-tuned on a collected infrared
image dataset with the five object classes to obtain an
infrared object detection model based on deep
learning. The fine-tuned infrared model demonstrated
a good object detection performance in infrared
images and even retained a certain capability for
in visible However, the

object detection images.

detection performance of the fine-tuned infrared
detection model was poorer than that of the visible
detection model on some scenes, especially under
good lighting conditions. To take advantage of their
complementary information, a fusion detection model
for infrared and visible spectra based on deep learning
was established. Experimental results demonstrate that
the dual-band decision-level fusion detection model
proposed in this paper offers better performance and
stronger robustness than the single-band detection
models do. Therefore, the approach proposed in this
paper offers an excellent solution for improving the
dual-band fusion detection capabilities of deep
learning models.

In addition, the applicability of the proposed
approach is not restricted to two bands; the model can
be applied for the combination of detection results
from multiple bands using deep learning models.
Thus, the proposed approach can enable the full use
of the complementarity of multiple bands in object
detection and further improve the performance and

robustness of deep learning models.
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