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Particle auto-statistics and measurement of the spherical powder for

3D printing based on deep learning

Wang Yichao'?, Zhang Zheng', Huang Haizhou', Lin Wenxiong'

(1. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;

2. University of the Chinese Academy of Sciences, Beijing 100049, China)

Abstract: With the development of metal powder 3D printing technology, how to accurately extract the particle
size and spheroidization rate information of powder particles from microscopic images has gained much more
importance. In this paper, a particle auto-statistics and measurement system on microscopic imaging of the
spherical powder was presented, based on one deep learning framework—Mask R-CNN. The proposed model can
efficiently detect more than 1 000 particles in a microscopy image, even under the existence of many occlusion
particles, and provide statistical results of particle size distribution, degree of sphericity and spheroidization ratio,
simultaneously. Compared with traditional image segmentation method, the particle recognition accuracy was
improved by 23.6%. Moreover, smaller particles that stuck on big particles can be recognized, according to the
comparison in particle size distribution between proposed method and the laser diffraction technique.
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0 Introduction

Powder properties are of great importance in powder
bed fusion(PBF), one of the popular metal additive

manufacturing (also called 3D printing) methods

currently'

. Typically, spherical particles with proper
size distribution support high flowability and density of
the powder. A dense powder layer with uniform thickness
can significantly improve the dimension accuracy during
the melting process of PBF!.

Commonly, preparation method of the spherical
powder includes plasma rotating electrode
process(PREP), gas atomization (GA) and plasma
spheroidization(PS)“™\. Properties of the prepared powder
based on the above methods can be characterized by the
particle size distribution(PSD), degree of sphericity(DS,
alsocalleddegreeofcircularityin2-dimentional),andspheroi-
dization ratio(SR)*”".

One of the most used methods to measure the PSD of
metal powder is laser diffraction(LD), which detects and
analyses the angular distribution of the scattered light
produced by a laser beam passing through a diluted
powder layer™®. However, all the particles are assumed to
perfectly spherical in the LD method, which is usually not
the truth. Thus, shape information of the particles cannot
be provided. Another method is by image analysis™,
where the morphology of particles can be clearly observed
by scanning electron microscopy(SEM), before the
calculations of the degree of sphericity and PSD with
assistant software!”. However, this method demands all
particles to be spread sparsely, where the number of
particles in the visual scope is limited. Meanwhile, the
overlapped particle targets cannot be analyzed, resulting
in the deviation in statistics!'”. Moreover, it is very time-
consuming to count the non- spheres among total particles
manually, which makes a challenge to the measurement of
the spheroidization ratio!''~'*.

With the advance in SEM technology, abundant
particle information can be withdrawn from the

microscopy image with the existing image processing

tools, such as Imagel™ and cisTEM"*. However, these

tools, mostly based on conventional edge-based and
thresholding algorithms, are hard to discriminate
overlapped particles and require considerable human
working, which results in inconsistent processing results.
In this work, the Mask R-CNN!, one of the
remarkable instance segmentation convolutional neural
networks, was employed to implement auto-statistics and
the measurement of microscopy images of the spherical
powder. In the past few years, the Mask R-CNN has been
used in many complex vision tasks!"*?", Compared with
traditional algorithms, the proposed model here is
powerful in detecting the morphology of different
particles, even though they are overlapped by upper

particles.
1 Methodology and process

Figure 1 depicts flow chart of the developed system,
based on the instance segmentation results from the Mask
R-CNN algorithm, which consists of particle size
distribution, degree of sphericity and spheroidization ratio
modules.

1.1 Training dataset preparation

To train the Mask R-CNN model, powder
microscopy images are collected with the requirement that
powders with varied size and shape should be contained.
The wun-sifted Ti-6Al-3Nb-2Zr-1Mo alloy powder
(provided by High Performance Powder Synthesis Lab,
Fujian Innovation Academy, Chinese Academy of
Sciences), prepared by radio frequency plasma
spheroidization, was selected to construct the dataset.
Before SEM, the powder sample is dispersed on the
conductive tape and then blown to remove the unstuck
powder by rubber suction bulb. Each SEM(using Phenom
XL) image is magnified by 300 times to allow sufficient
particles in a clear image with view field of 895 um. The
images were saved with a size of 2048x2048 pixel.

To increase the detection accuracy and facilitate the
use of Mask R-CNN, the original SEM image, is then

cropped into 16 sub-images with equal-size of 512x

512 pixel (Fig.2(a)). LabelMe is selected as the tool to
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Fig.1 Flowchart of the powder microscopy image automatic analysis system

Fig.2 (a) Original SEM image (2 048x2 048 pixel), which is cropped into 16 parts; (b) Characteristic image labeled with LabelMe(512x512 pixel); (c)

The corresponding image mask of (b)
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manual label the sub-images®"). Region of each particle is
marked by a polygon with all vertex coordinates recorded
in pixel dimension.

For ease of post-processing and statistical counting,
4 kinds of labels are adopted (Fig.1(f)): “ins_sphere” is
for more than half occluded spherical particle,
“inc_sphere ” for less than half occluded spherical
particle, “com_sphere” for complete spherical particle,
and “non_sphere” for non-spherical particle. Character-
istic image labeled by LabelMe is illustrated in Fig.2(b).
100 sub-images(Fig.1(d)), with total 14835 labeled
particles (“com_sphere”: 7073, “inc_sphere”: 4396,
“ins_sphere”: 1973, “non_sphere”: 1393), was applied
for training. Figure2(c) shows one mask image, which
generated from corresponding labeled image, as the input
data to training process.

1.2 Mask R-CNN

The Mask R-CNN, extended from Faster R-CNN@,
is a state-of-the-art two stage instance segmentation
architecture (Fig.1(e)). Firstly, based on the input image,
the proposals about the regions where there might be an
object is generated. Secondly, Mask R-CNN predicts the
class of the object, refines the bounding box, and
generates a mask in pixel level of the object based on the
proposals.

At the first stage, the input images are processed by a
feature extraction network, which also called backbone, to
construct feature maps containing spatial semantic
information at different scales. ResNet-101** was used in
this stage, which offers high accuracies at comparably low
computational costs, without facing the vanishment of
gradients”™. Then, a set of regions of interest (Rol) that
may contain objects, are proposed by the regional
proposal network(RPN), based on the feature maps.

At the second stage, feature maps for each Rol that
proposed by RPN, are cropped by the Rol alignment, and
resized with the same size for the following convolution
networks. The Rol alignment also fixes misaligned
features with low-resolution in the feature maps. Next,

cropped feature maps that contain objects are fed into a

classifier, which conducts classification and bounding box
regression. After that, one object is enclosed by each
bounding box. Finally, the original feature maps are
cropped again using these bounding boxes, after being
resized, the newly cropped feature maps are fed into a
fully convolution network to conduct semantic
segmentation and predict the binary mask.

After the prepared training image dataset is applied
to train model parameters by Mask R-CNN, a set of pre-
trained model weights on MS COCO dataset'*” is adopted
to fine-tune the developed model instead of training from
scratch. During the training, the kernel weights and bias
values are automatically altered to minimize the train loss,
which is the difference between the input labeled masks
and the network output masks. The batch size(the number
of samples that will be propagated through the network) is
set to 1, and the epoch(iteration times over all training
data) is 100. The epoch & train loss curve is shown in
Fig.3. This model was trained on an NVIDIA Quadro

RTX 4000 GPU, which took 123 hours in total.

3.0
2.5+
2‘ 20 |
g
s
& st
1.0 o
w"“%
0 20 40 60 80 100
Epoch

Fig.3 Loss-epoch curve during train process

1.3 Predict process

The raw input image size is 2048x2048 pixel, it is
cropped into 28 sub-images (Fig.1(b)), in which 16 sub-
images are with equal size (512x512 pixel) and 12 sub-
images are with border strips among the 16 sub-images
(Fig.2(a)), the green one is with 256x1024 pixel and the
blue one with 1024x256 pixel. The width of border strips

can be adjusted according to the maximum size of the
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powder in one image.

Before entering the 28 sub-images into the trained
model, each sub-image is transferred into 4 images by
maintaining itself, making a 180° rotation, flipping
horizontally, and flipping vertically. Next, 4 output
images are roughly merged into one sub-image. The
purpose of this step is to improve recognition rate of the
particle and reduce the wrong classification. Figure4
illustrates the transferring and merging process. In the
rough merging process, one particle’s 4 masks(maybe

less than 4) are merged simply depending on the

F lippea vertically

(a) Input sub-image (b) Transfered images

intersection-over-union(loU) and the intersection-

over-self(IoS) of their circumscribed rectangle
(Fig.5(a)). The usage of IoS here plays the role of
precenting the occurrence of mis-merging, as shown in
Fig.5(c). Each two masks satisfying the condition of
1oUg,>0.7 N 10Skec.4>0.7 N [0Sg,..5>0.7 will be merged.
Several unrecognized particles in Fig.4(c) are recognized
after rough merging. The merged image contains some
un-merged small masks, which are supposed to belong to
one same particle, will be merged correctly in the next

precise merging process.

Rough
Flipped horizontally ——
Merge

Rotate 180°

Flipped vertically

(c) Predicted outputs (d) Merged results

Fig.4 Flowchart of transferring and rough merging process of one sub-image

(2)

Aprea N By
10Uy = AA UBA
Area

Area

A,..NB

Area. Area.

108 00 =

IoUg,. = 1,1084,.,=0.02, I0Sg,.5 = 1

(b) ©

Fig.5 Illustration of two kinds of IoU & IoS in rough merging and precise merging processes, respectively. (a) IoU & IoS of two circumscribed

rectangles; (b) IoU & IoS of two masks; (c) One example of the usage of [0S

The next step is to merge all the 28 predicted sub-
images(Fig.1(f)) via precisely merging. The IoU and IoS
of two masks instead of their circumscribed rectangles are
adopted to conduct more precisely merging(Fig.5(b)),

which consumes much more computation resources than

the IoU & IoS with circumscribed rectangles, especially
when thousands of particles are in one input image. In this
process, each two masks that satisfy the condition of
10U > 0.4 U108 ya-a > 0.6 U108 - > 0.6 will be

merged. 16 sub-images were stunk by 12 border strips
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stick in a tape-like style to reunite back the separated half
particles at the border of two adjacent sub-images.
1.4 Measurement error and compensation

The error of the particle measurement comes from
two facts. One is the deviation of boundary calculation
due to the aliasing effect by the square pixels
tessellation™. Another is the residual prediction result
and ground truth, comprising errors of the labeled region
and the predict model. The B-spline curve is introduced to
smooth boundary of the particle mask and reduce the
former error, which can be described as the following

parameterized function®”:

n+k

Sp(t)= " pNiD) (1)

i=0
where k is the degree of spline curve, p; is the coordinate
of ith control point, N¥(¢) is the ith B-spline basis function
with degree of k, it can be computed as follows:

0,t; <t <ty
Nf’(t) = .
1, otherwise

2

t—t; Liger —1
Mm=7——M%W%iﬂ——MW0

ik~ fikir =y

where #; is the ith element in a uniformly distributed knot
sequence that ranges from 0 to 1. During the smoothing
process, the contour points of the mask are extracted and
each 5 points of them is selected to be the control points.
As shown in Fig.6(a), the green points are the contour
points, the red one the control points, and the red curve
the B-spline curve.

To compensate the second residual error, a set of
standard circles with evenly spaced diameter from 5 um to
100 pm are predicted before predicting the input image.
The deviation of output result and ground truth of these
standard circles can be calculated, and the residual
function can be fitted using the scattered deviation values.
Figure6(b) shows the fitted residual function curves of
perimeter and area. The residual value(perimeter or
arca) will be compensated during the statistical
process for corresponding mask’s equivalent projected

area diameter according to the residual function.

Predicted mask area
Standard circle area
—e— Calculated boundary

—e— B-spline boundary

—— Standard boundary

20.0 |- »=0.177x2.280 o g0 |- 270792013467 o
e Sampling points ’0' o Sampling points ¢*
§ 17.5 "; 70 /d‘/.
= / NE 60 o,/
% 15.0 /.p EL /o
S S 50 é
g 12.5 .,.’ z " ”‘f
5 100 Ny £ o
E I g 30 0’/
= 7.5 b Z Y
d‘j ‘. 20 ’0
d
S0 s 10 |
é
2.5 L 0 L
0 20 40 60 80 100 0 20 40 60 80 100

Diameter/pm Diameter/pm

(b)
Fig.6 (a) Illustration of particle boundary smoothing and error
compensation; (b) Fitted perimeter and area residual function

based on scattered deviation values of standard circles

1.5 Statistical analysis

Except for the particles at the edge of the image,
each particle in the original image (2 048x2 048 pixel)
is classified, and their masks’ information is extracted.
There are two methods to calculate the size of a
particular particle. One is to calculate the equivalent
projected area diameter, corresponding to the diameter
of a circle with the same projected area as the particle.
However, as nearly 30% particles are occluded in one
image, it’s inaccurate to use equivalently projected
area diameter. Another is to calculate the minimum
circumscribed circle diameter. This descriptor can
provide the diameter for the “inc_sphere” particles,
which account for 90% of the occluded particles. The

“ins_sphere ” particles, accounting for 3% in all

2021G004-6
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particles, are abandoned in the statistics of PSD due to
the limitation of 2-dimensional images.

The particle’s degree of sphericity is calculated
using the following formula (also called root of form

factor)™;

_ 2VnA
P

DS 3)

where A is the projected area of the particle, and P is the
perimeter of the particle periphery. This index, sensitive
to boundary irregularity, represents how the shape of the
particle deviates from a standard circle.

The spheroidization ratio is defined as follow:

SR=(1—%)><100% )

all

where N,,, is the number of “non_phere” particles, and

N,y is the number of all particles.
2 Results and discussion

2.1 Output image comparation

The output image of our model is shown in Fig.7(d).
Each recognized particle is labeled and colored, where
the label describes the class and probability that the
particle belongs to. The color represents the class
intuitively. Here, green is for “com_sphere”, blue for
“inc_sphere”, orange for “ins_sphere”, and red for
“non_sphere 7, respectively. We use the Phenom
ProSuite Software Particlemetric, a professional
microscopy image processing software, to compare
our proposed method with traditional image
segmentation method (Fig.7(c) and 7(e)). Recognition
accuracy of the proposed method is 96.95%, higher than
that of 78.44% by Particlemetric.

As the non-sphere particles have complicated
random surface texture and shape, traditional method
shows poor recognition ability on them. In comparison,
the proposed model can recognize these non-sphere
particles correctly via learning deeply the complex
feature, where some small spherical particles adhering to

the non-sphere particle can also be detected. Moreover, it

is hard to separate two particles with position closed to or

Fig.7 Predicted results and comparation with the Phenom ProSuite
Software Particlemetric. (a) Raw image; (b) Output segmentation
result of Particlemetric; (c) Four enlarged details region of (b);
(d) Output result of proposed method; (¢) Four enlarged details

region of (d)

overlapped to each other by the traditional method
(Fig.7(c)), which can be easily segmented by our system
and tell which one is un-occluded.
2.2 Statistical results comparation

The statistics results of 8§ raw images in PSD and
DSD are shown in Fig.8. Total 9374 particles were
detected by the Particlemetric, less than that of 12192 by
our methods. Most of the small particles are attached and
detected as one part of the big ones in the traditional
method (Fig.7(e)), which can be solved by our method.
Non-sphere particles were recognized as many tiny small
particles with less than 5 pm by the traditional method
(Fig.7(c)), which was not shown in in the corresponding

PSD results (Fig.8(a)). This inconsistence is due to the

2021G004-7
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fact that the particle with smaller size will be considered
as noise, according to the image resolution of the
software.

Obvious difference in PSD is shown between
methods by laser diffraction (using LS 13 320 Tornado)
and microscopy image particle segmentation (Fig.8(a)).
This is attributed to the satellite particle, observed in the
formation of small particles”, which can adhere to the
larger particles. However, all separated particles are

treated as the perfect sphere by the laser diffraction

method, even though the separated particles are with
many tiny appendages. In this respect, satellite ratio of the
powder can be evaluated according to the deviation of
PSD measured by the proposed segmentation method and
laser diffraction, since that there is no good method to
characterize the satellite ratio now. As the in-complete
sphere particles are not calculated during the statistical
process of degree of sphericity, significant difference in
the statistical results of degree of sphericity are shown

between the traditional method and our model (Fig.8(b)).

25%
(@) [1PSD measured by Particlemetric
[ PSD measured by proposed method|
20% | [ PSD measured by laser diffraction
o 15%
E
(]
- 10% |
5%
0% I ——
70 80 90
Diameter/um
50%
(b) 7] PSD measured by Particlemetric
40% | [ PSD measured by proposed method
o 30% f
E
(]
= 20%
10% t
0% L L - i = e I N I
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Degree of sphericity

Fig.8 Statistical analysis results and comparation. (a) PSD results measured by the Particlemetric, our method and laser diffraction technique,

respectively; (b) Degree of sphericity distribution (DSD) results measured by Particlemetric and proposed method

Unlike the other two methods, spheroidization ratio
can be provided by the proposed model, where 646 non-
sphere particles among total 12192 particles in the 8 raw
images can be calculated, corresponding to a SR value of
94.70%.

3 Conclusion

In this study, a spherical particle image segmentation

and auto-statistics system is proposed by employing deep
learning and mask merging techniques. The proposed
method can recognize particles with four typical shapes
and extract their feature and size information, before
providing the particle size distribution, degree of
sphericity and spheroidization ratio of the powder.
Superior to the existing method of image analysis and

laser diffraction, the proposed method can also detect

2021G004-8
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overlapped spherical

particles with high accuracy,

automatically calculating the spheroidization ratio of

powder, and providing an orientation in the measurement

of satellite ratio of the spherical powder. Besides

providing accurate particle size and shape information

during the production process of spherical power, the

proposed method can also be extended to a large variety

of particles.
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