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Fig.1 (a) Schematic diagram of the optical path structure of the double beam-double scattering principle (LD: laser, SMF: single-mode fiber, Splitter:

beam splitter, Collimator: collimator, Focus Lens: focusing lens, DSO: digital oscilloscope, PC: computer); (b) Sea test photos of the optical

system prototype
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Fig.2 (a) Peak search error of different algorithms; (b) Standard deviation of peak search for different algorithms
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Abstract:
Objective In the field of physical oceanographic research, seawater flow velocity is one of the key parameters,
primarily measured using acoustic Doppler velocimeters. In recent years, laser Doppler technology has made
significant advancement in seawater flow velocity measurement. Laser Doppler velocimetry, with its simple and
integrable structure, is expected to be a complementary technique with acoustic Doppler velocimeters in marine
applications. Compared to acoustic velocity measurement techniques, laser Doppler velocimeters offer several

advantages: their shorter wavelength (in the micron range) allows for the study of smaller-scale water features,
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and they can resist noise interference generated by underwater vehicles when used with unmanned underwater
vehicles. However, due to seawater absorption and scattering, the detected signal is extremely weak and buried in
strong noise, posing challenges for Doppler signal demodulation. Moreover, limited by the sampling frequency,
there exists an error between the peak position of the obtained data spectrum and the true frequency. Therefore,
effectively removing noise interference and improving measurement accuracy are crucial for laser Doppler
velocimeters. In this paper, an adaptive filtering algorithm is employed to denoise the collected signal, followed
by fast Fourier transform to enhance the signal-to-noise ratio. Three peak-finding algorithms are compared, and
the Gaussian-LM algorithm is selected to process the power spectrum of the signal, bringing the peak position
closer to the real peak value and thereby improving the demodulation accuracy of the Doppler signal and

significantly reducing the error caused by noise.

Methods The principle of laser Doppler velocimetry is illustrated in Fig.1(a). A laser beam is split into two
equal beams by an optical fiber splitter after passing through a single-mode optical fiber. These two beams are
then collimated into parallel beams by a collimator and directed onto a plano-convex lens at the end, which
focuses the parallel beams onto a specific point outside the instrument, generating interference fringes at this focal
point. When particles in the water pass through these interference fringes, they scatter light, which is collected by
the plano-convex lens and converted into parallel light. This scattered light is then collected by an avalanche
photodetector and converted into an electrical signal, which is acquired by an oscilloscope. The acquired signal
undergoes algorithm processing to demodulate the flow velocity. Fig. 1(b) is a field photo of the optical system
prototype being tested in the Marine environment off Qingdao. The key to signal processing is accurately
extracting the Doppler frequency shift from a large amount of noise, and the noise in the Doppler signal is non-
stationary. Therefore, the least mean square error algorithm can be utilized to effectively denoise the Doppler
signal. Fast Fourier transform shifts the focus of the research from the time domain to the frequency domain,
where it is easier to analyze the regularity of the Doppler frequency. Further, the Gaussian-LM algorithm is

employed to perform peak finding on the Doppler signal, obtaining accurate frequency information.

Results and Discussions Through simulation, the optimal peak finding algorithm was selected. The Monte
Carlo algorithm, Gaussian fitting algorithm, and Gaussian-LM algorithm were employed to perform peak finding
on Gaussian signals with added noise, and their measurement accuracies were compared, as shown in Fig.2(a).
Peak finding calculations were conducted on multiple datasets, and their standard deviations are illustrated in
Fig.2(b). The results indicate that the Monte Carlo algorithm exhibited the lowest peak finding accuracy, while the
Gaussian-LM algorithm demonstrated the highest accuracy. Moreover, the Gaussian-LM algorithm exhibited
smaller standard deviation compared to other algorithms, with a lower fluctuation range, indicating greater
stability. Therefore, the Gaussian-LM algorithm was chosen for peak finding in the Doppler signal. A
comparative experiment on seawater velocity was conducted at the Zhongyuan Tourist Dock in Qingdao, China,
using a home-made optical Doppler velocimetry (LDV) and an acoustic Doppler velocimeter (ADV model:
SonTek Argonaut-ADV). Algorithmic research was carried out on the obtained seawater velocity measurement
data. Considering the different sampling rates of the two instruments, the data were first averaged over 30
minutes. From Fig.3(a), it can be observed that the data before algorithm processing roughly align with the trend
of velocity values measured by ADV, but there are still discrepancies. However, the data after algorithm
processing shows a higher degree of fitting with the data measured by ADV. Fig.3(b) illustrates the errors
obtained by ADV for the data before and after processing, and presents the calculation of the average error.
Througherroranalysis,itshowsthattheaverageerrorbetweenthepre-processedLD VandAD Vvelocitymeasurementswas

0.2905 cm/s, while the average error between the post-processed LDV and ADV velocity measurements was
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0.2163 cm/s, indicating a reduction in error of 25.5%.

Conclusions The signal of light scattering from suspended particles in seawater is extremely weak. Extracting
signals submerged in noise and demodulating them to obtain velocity information poses a challenge for accurate
measurements with laser Doppler velocimeters. In this paper, demodulation algorithms based on velocity data
obtained from experiments in the near-shore of Qingdao were studied. Initially, through simulation and
optimization, the Gaussian-LM algorithm was selected as the peak finding algorithm. Subsequently, signal
denoising was performed based on the Least Mean Square (LMS) algorithm on the actual velocity data obtained
during sea trials, combined with the Gaussian-LM algorithm for peak finding, achieving high-precision
demodulation. Comparative experiments between home-made laser Doppler velocimeter and a well-known
commercial acoustic Doppler velocimeter indicate that the post-processed velocity measurement error based on
this algorithm is 0.21 cm/s, representing a 25.5% error reduction compared to the pre-processing velocity

measurement error.

Key words: laser Doppler velocity measurement; adaptive filtering; peak search algorithm; signal

demodulation
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