[1] Du Y, Zhao K, Zhu Z L, et al. Research and application of ultrafast laser precision manufacturing technology [J]. Laser & Infrared, 2020, 50(12): 1419-1425. (in Chinese) doi:  10.3969/j.issn.1001-5078.2020.12.001
[2] Yue D M, Sun H L, Yang X, et al. Annular drilling process and quality control neural network model of stainless steel micro-hole with femtosecond laser [J]. Infrared and Laser Engineering, 2021, 50(10): 20200446. (in Chinese) doi:  10.3788/IRLA20200446
[3] Long J Y, Wu Y C, Gong D W, et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties [J]. Chinese Journal of Lasers, 2015, 42(7): 0706002. (in Chinese) doi:  10.3788/CJL201542.0706002
[4] Li G L, Hu S S, Tang H Q, et al. Laser repeat drilling of alumina ceramics in static water [J]. International Journal of Advanced Manufacturing Technology, 2018, 96(5-8): 2885-2891. doi:  10.1007/s00170-018-1749-8
[5] Liu B, Yan Y J, Zhao J, et al. Research on hole depth in femtosecond laser deep micropore processing technology based on filament effect [J]. Optik, 2022, 249: 168307. doi:  10.1016/j.ijleo.2021.168307
[6] Bernard O, Audouard E, SchÖps B, et al. Efficient micro processing with high power femtosecond lasers by beam engineering and modelling [J]. Procedia Cirp, 2018, 74: 310-314. doi:  10.1016/j.procir.2018.08.121
[7] Zheng C L, Shen H. Ablation mechanism in underwater drilling by an ultrafast laser with pulse energy below the water breakdown threshold [J]. Journal of Manufacturing Processes, 2022, 73: 354-363. doi:  10.1016/j.jmapro.2021.11.020
[8] Liu Y Z. Coaxial waterjet-assisted laser drilling of film cooling holes in turbine blades [J]. International Journal of Machine Tools & Manufacture, 2020, 150: 103510.
[9] Ren N F, Xia K B, Yang H Y, et al. Water-assisted femtosecond laser drilling of alumina ceramics [J]. Ceramics International, 2021, 47(8): 11465-11473. doi:  10.1016/j.ceramint.2020.12.274
[10] Zhai Z Y, Wang W J, Mei X S, et al. Influence of plasma shock wave on the morphology of laser drilling in different environments [J]. Optics Communications, 2017, 390: 49-56. doi:  10.1016/j.optcom.2016.12.066
[11] Chen Q, Wang H J, Lin D T, et al. Characterization of hole taper in laser drilling of silicon nitride ceramic under water [J]. Ceramics International, 2018, 44(11): 13449-13452. doi:  10.1016/j.ceramint.2018.04.173
[12] Feng D C, Shen H. Hole quality control in underwater drilling of yttria-stabilized zirconia using a picosecond laser [J]. Optics and Laser Technology, 2019, 113: 141-149. doi:  10.1016/j.optlastec.2018.12.019
[13] Wang H X, Xu Y, Liu J, et al. Magnet-assisted laser hole-cutting in magnesium alloys with and without water immersion [J]. Journal of Manufacturing Processes, 2021, 61: 539-560. doi:  10.1016/j.jmapro.2020.11.026
[14] Wang W J, Song H W, Liao K, et al. Water-assisted femtosecond laser drilling of 4H-SiC to eliminate cracks and surface material shedding [J]. International Journal of Advanced Manufacturing Technology, 2020, 112(1-2): 553-562.
[15] Nguyen T T P, Tanabe R, Ito Y. Comparative study of the expansion dynamics of laser-driven plasma and shock wave in in-air and underwater ablation regimes [J]. Optics and Laser Technology, 2017, 100: 21-26.
[16] Kruusing A. Underwater and water-assisted laser processing: Part 1-general features, steam cleaning and shock processing [J]. Optics and Lasers in Engineering, 2004, 41(2): 307-327. doi:  10.1016/S0143-8166(02)00142-2
[17] Ren N F, Gao F Q, Wang H X, et al. Water-induced effect on femtosecond laser layered ring trepanning in silicon carbide ceramic sheets using low-to-high pulse repetition rate [J]. Optics Communications, 2021, 496: 127040. doi:  10.1016/j.optcom.2021.127040
[18] Varlamova O, Costache F, Ratzke M, et al. Control parameters in pattern formation upon femtosecond laser ablation [J]. Applied Surface Science, 2007, 253(19): 7932-7936. doi:  10.1016/j.apsusc.2007.02.067
[19] Wang Y F, Zhang Z, Zhang G Y, et al. Study on immersion waterjet assisted laser micromachining process [J]. Journal of Materials Processing Technology, 2018, 262: 290-298. doi:  10.1016/j.jmatprotec.2018.07.004
[20] Long J Y, Eliceiri M H, Wang L T, et al. Capturing the final stage of the collapse of cavitation bubbles generated during nanosecond laser ablation of submerged targets [J]. Optics and Laser Technology, 2020, 134: 106647.
[21] Zhang D S, Ranjan B, Tanaka T, et al. Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring [J]. International Journal of Extreme Manufacturing, 2020, 2(1): 015001. doi:  10.1088/2631-7990/ab729f
[22] Stan C A, Milathianaki D, Laksmono H, et al. Liquid explosions induced by X-ray laser pulses [J]. Nature Physics, 2016, 12(10): 966-971. doi:  10.1038/nphys3779
[23] Požar T, Agrež V, Petkovšek R. Laser-induced cavitation bubbles and shock waves in water near a concave surface [J]. Ultrasonics Sonochemistry, 2021, 73: 105456. doi:  10.1016/j.ultsonch.2020.105456