[1] Cao F, Liu L, Li L. Short-wave infrared photodetector [J]. Materials Today, 2023, 62: 327-349. doi:  10.1016/j.mattod.2022.11.003
[2] Follansbee J, Wiley L, Leslie P, et al. Drone detection performance in the reflective bands: visible, near infrared, short wave infrared, and extended short wave infrared [J]. Optical Engineering, 2022, 61(9): 095106.
[3] Huo N, Konstantatos G. Recent progress and future prospects of 2D-based photodetectors [J]. Advanced Materials, 2018, 30(51): 1801164. doi:  10.1002/adma.201801164
[4] Hansen M P, Malchow D S. Overview of SWIR detectors, cameras, and applications[C]//Thermosense XXX. SPIE, 2008, 6939: 94-104.
[5] De Cea M, Van Orden D, Fini J, et al. High-speed, zero-biased silicon-germanium photodetector [J]. APL Photonics, 2021, 6(4): 041302.
[6] Li X L, Liu Z, Peng L Z, et al. High-performance germanium waveguide photodetectors on silicon [J]. Chinese Physics Letters, 2020, 37(3): 038503. doi:  10.1088/0256-307X/37/3/038503
[7] Ma Xu, Li Yunxue, Huang Runyu, et al. Development and application of short wave infrared detectors (invited) [J] Infrared and Laser Engineering , 2022, 51 (1): 20210897. (in Chinese)
[8] Ma Runze, Zhang Xiaoming, Feng Shuai, et al. Research status and prospects of infrared photoelectric detection technology (invited) [J] Journal of Photonics , 2021, 50 (10): 1004006. (in Chinese)
[9] Shin D, Park Y, Jeong H, et al. Exploring the potential of colloidal quantum dots for near-infrared to short-wavelength infrared applications[J]. Advanced Energy Materials , 2024, 2304550.
[10] Wang Qilong, Li Yupei, Zhai Yusheng, et al. Progress in plasmon enhanced gold silicon Schottky junction near-infrared photodetectors [J] Infrared and Laser Engineering , 2019, 48 (2): 0203002. (in Chinese)
[11] Tang Yan, Li Jiaxiang, Chen Qin, et al. Surface plasmon enhanced silicon-based near-infrared photoconductive detectors [J] Chinese Journal of Lasers , 2020, 47 (11): 1113002. (in Chinese)
[12] Kiziroglou M E, Li X, Zhukov A A, et al. Thermionic field emission at electrodeposited Ni–Si Schottky barriers [J]. Solid-State Electronics, 2008, 52(7): 1032-1038. doi:  10.1016/j.sse.2008.03.002
[13] Chen H, Su L, Jiang M, et al. Highly desirable photodetectors derived from versatile plasmonic nanostructures [J]. Advanced Functional Materials, 2017, 27(45): 1704181. doi:  10.1002/adfm.201704181
[14] Li W, Valentine J G. Harvesting the loss: surface plasmon-based hot electron photodetection [J]. Nanophotonics, 2017, 6(1): 177-191. doi:  10.1515/nanoph-2015-0154
[15] Zheng B Y, Zhao H, Manjavacas A, et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry [J]. Nature Communications, 2015, 6(1): 7797. doi:  10.1038/ncomms8797
[16] Sobhani A, Knight M W, Wang Y, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device [J]. Nature Communications, 2013, 4(1): 1643. doi:  10.1038/ncomms2642
[17] Sundararaman R, Narang P, Jermyn A S, et al. Theoretical predictions for hot-carrier generation from surface plasmon decay [J]. Nature Communications, 2014, 5(1): 5788. doi:  10.1038/ncomms6788
[18] García de Arquer F P, Mihi A, Konstantatos G. Large-area plasmonic-crystal–hot-electron-based photodetectors [J]. ACS Photonics, 2015, 2(7): 950-957. doi:  10.1021/acsphotonics.5b00149
[19] Uskov A V, Protsenko I E, Ikhsanov R S, et al. Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects [J]. Nanoscale, 2014, 6(9): 4716-4727. doi:  10.1039/c3nr06679g
[20] Gerislioglu B, Ahmadivand A, Adam J. Infrared plasmonic photodetectors: the emergence of high photon yield toroidal metadevices [J]. Materials Today Chemistry, 2019, 14: 100206. doi:  10.1016/j.mtchem.2019.100206
[21] Gosciniak J, Atar F B, Corbett B, et al. Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride [J]. Scientific Reports, 2019, 9(1): 6048. doi:  10.1038/s41598-019-42663-3
[22] Zhai Y, Li Y, Ji J, et al. Hot electron generation in silicon micropyramids covered with nanometer-thick gold films for near-infrared photodetectors [J]. ACS Applied Nano Materials, 2020, 3(1): 149-155. doi:  10.1021/acsanm.9b01840
[23] Tang H, Chen C J, Huang Z, et al. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective[J]. The Journal of Chemical Physics , 2020, 152(22): 220901.
[24] Uskov A V, Khurgin J B, Smetanin I V, et al. Landau damping in hybrid plasmonics [J]. The Journal of Physical Chemistry Letters, 2022, 13(4): 997-1001. doi:  10.1021/acs.jpclett.1c04031
[25] Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices [J]. Nature Photonics, 2014, 8(2): 95-103. doi:  10.1038/nphoton.2013.238
[26] Huang J, Zhao X, Huang X, et al. Understanding the mechanism of plasmon-driven water splitting: hot electron injection and a near field enhancement effect [J]. Physical Chemistry Chemical Physics, 2021, 23(45): 25629-25636. doi:  10.1039/D1CP03509F
[27] Lv L, Yu J, Hu M, et al. Design and tailoring of two-dimensional Schottky, PN and tunnelling junctions for electronics and optoelectronics [J]. Nanoscale, 2021, 13(14): 6713-6751. doi:  10.1039/D1NR00318F
[28] Hu C, Liu T, Liu K, et al. Lightwave nano-converging enhancement by an arrayed optical antenna based on metallic nano-cone-tips for CMOS imaging detection [J]. Scientific Reports, 2022, 12(1): 15761. doi:  10.1038/s41598-022-20077-y
[29] Jin H, Kahk J M, Papaconstantopoulos D A, et al. Plasmon-induced hot carriers from interband and intraband transitions in large noble metal nanoparticles [J]. PRX Energy, 2022, 1(1): 013006. doi:  10.1103/PRXEnergy.1.013006
[30] Shao W, Yang Q, Zhang C, et al. Planar dual-cavity hot-electron photodetectors [J]. Nanoscale, 2019, 11(3): 1396-1402. doi:  10.1039/C8NR05369C
[31] Frydendahl C, Grajower M, Bar-David J, et al. Giant enhancement of silicon plasmonic shortwave infrared photodetection using nanoscale self-organized metallic films [J]. Optica, 2020, 7(5): 371-379. doi:  10.1364/OPTICA.379549
[32] Lin K T, Lin H, Jia B. Plasmonic nanostructures in photodetection, energy conversion and beyond [J]. Nanophotonics, 2020, 9(10): 3135-3163. doi:  10.1515/nanoph-2020-0104
[33] Linic S, Chavez S, Elias R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures [J]. Nature Materials, 2021, 20(7): 916-924. doi:  10.1038/s41563-020-00858-4
[34] Wen H, Augel L, Knobbe J. Approaches for optimizing near infrared Si photodetectors based on internal photoemission[C]//2021 International Conference on IC Design and Technology (ICICDT). IEEE, 2021: 1-4.
[35] Zhou L, Zhang C, Li L, et al. Nanobowls-assisted broadband absorber for unbiased Si-based infrared photodetection [J]. Optics Express, 2021, 29(10): 15505-15516. doi:  10.1364/OE.423897
[36] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology [J]. Nature Nanotechnology, 2015, 10(1): 25-34. doi:  10.1038/nnano.2014.311
[37] Zhang C, Luo Y, Maier S A, et al. Recent progress and future opportunities for hot carrier photodetectors: from ultraviolet to infrared bands [J]. Laser & Photonics Reviews, 2022, 16(6): 2100714.
[38] Brown A M, Sundararaman R, Narang P, et al. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry [J]. ACS Nano, 2016, 10(1): 957-966. doi:  10.1021/acsnano.5b06199
[39] Dubi Y, Sivan Y. “Hot” electrons in metallic nanostructures—non-thermal carriers or heating? [J]. Light: Science & Applications, 2019, 8(1): 89.
[40] Khurgin J B. Hot carriers generated by plasmons: where are they generated and where do they go from there? [J]. Faraday Discussions, 2019, 214: 35-58. doi:  10.1039/C8FD00200B
[41] Shi L, Chen K, Zhai A, et al. Status and outlook of metal–inorganic semiconductor–metal photodetectors [J]. Laser & Photonics Reviews, 2021, 15(1): 2000401.
[42] Jiang Zixiang, Liu Tingting, Sun Qingxin, et al. Research on injection efficiency of thermoelectronic devices based on monte carlo simulation [J] Laser&Optoelectronics Progress , 2021, 58 (5): 0504001. (in Chinese)
[43] Li X, Deng Z, Ma Z, et al. Demonstration of SWIR silicon-based photodetection by using Thin ITO/Au/Au nanoparticles/n-Si structure [J]. Sensors, 2022, 22(12): 4536. doi:  10.3390/s22124536
[44] Saavedra J R M, Asenjo-Garcia A, García de Abajo F J. Hot-electron dynamics and thermalization in small metallic nanoparticles [J]. Acs Photonics, 2016, 3(9): 1637-1646. doi:  10.1021/acsphotonics.6b00217
[45] Penn D R. Electron mean free paths for free-electron-like materials [J]. Physical Review B, 1976, 13(12): 5248. doi:  10.1103/PhysRevB.13.5248
[46] Brorson S D, Fujimoto J G, Ippen E P. Femtosecond electronic heat-transport dynamics in thin gold films [J]. Physical Review Letters, 1987, 59(17): 1962. doi:  10.1103/PhysRevLett.59.1962
[47] Quinn J J. Range of excited electrons in metals [J]. Physical Review, 1962, 126(4): 1453. doi:  10.1103/PhysRev.126.1453
[48] Zhang C, Qian Q, Qin L, et al. Broadband light harvesting for highly efficient hot-electron application based on conformal metallic nanorod arrays [J]. ACS Photonics, 2018, 5(12): 5079-5085. doi:  10.1021/acsphotonics.8b01389
[49] Scales C, Berini P. Thin-film Schottky barrier photodetector models [J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 633-643. doi:  10.1109/JQE.2010.2046720
[50] Zhang C, Huang B, Li H, et al. Plasmonic nanoneedle arrays with enhanced hot electron photodetection for near‐ir imaging [J]. Advanced Functional Materials, 2023, 33(45): 2304368. doi:  10.1002/adfm.202304368
[51] Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas [J]. Science, 2011, 332(6030): 702-704. doi:  10.1126/science.1203056
[52] Lin K T, Chen H L, Lai Y S, et al. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths [J]. Nature Communications, 2014, 5(1): 3288. doi:  10.1038/ncomms4288
[53] Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection [J]. Nano Letters, 2014, 14(6): 3510-3514. doi:  10.1021/nl501090w
[54] Zhang C, Wu K, Giannini V, et al. Planar hot-electron photodetection with tamm plasmons [J]. ACS Nano, 2017, 11(2): 1719-1727. doi:  10.1021/acsnano.6b07578
[55] Wen L, Chen Y, Liang L, et al. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites [J]. ACS Photonics, 2018, 5(2): 581-591. doi:  10.1021/acsphotonics.7b01156
[56] Govorov A O, Zhang H, Gun’ko Y K. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules [J]. The Journal of Physical Chemistry C, 2013, 117(32): 16616-16631. doi:  10.1021/jp405430m
[57] Manjavacas A, Liu J G, Kulkarni V, et al. Plasmon-induced hot carriers in metallic nanoparticles [J]. ACS Nano, 2014, 8(8): 7630-7638. doi:  10.1021/nn502445f
[58] Li X, Jia C, Ma B, et al. Substrate-induced interfacial plasmonics for photovoltaic conversion [J]. Scientific Reports, 2015, 5(1): 14497. doi:  10.1038/srep14497
[59] Zhang C, Cao G, Wu S, et al. Thermodynamic loss mechanisms and strategies for efficient hot-electron photoconversion [J]. Nano Energy, 2019, 55: 164-172. doi:  10.1016/j.nanoen.2018.10.051
[60] Duran J, Sarangan A. Schottky-barrier photodiode internal quantum efficiency dependence on nickel silicide film thickness [J]. IEEE Photonics Journal, 2019, 11(1): 1-15.
[61] Lin K T, Chan C J, Lai Y S, et al. Silicon-based embedded trenches of active antennas for high-responsivity omnidirectional photodetection at telecommunication wavelengths [J]. ACS Applied Materials & Interfaces, 2019, 11(3): 3150-3159.
[62] Jin Y, Seok J, Yu K. Highly efficient silicon-based thin-film schottky barrier photodetectors [J]. ACS Photonics, 2023, 10(5): 1302-1309. doi:  10.1021/acsphotonics.2c01923
[63] Seok J, Jin Y, Yu K. Enhancing the external quantum efficiency of Schottky barrier photodetectors through thin copper films [J]. Optics Express, 2023, 31(23): 38578-38588. doi:  10.1364/OE.501753
[64] Bernardi M, Mustafa J, Neaton J B, et al. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals [J]. Nature Communications, 2015, 6(1): 7044. doi:  10.1038/ncomms8044
[65] Gong T, Munday J N. Materials for hot carrier plasmonics [J]. Optical Materials Express, 2015, 5(11): 2501-2512. doi:  10.1364/OME.5.002501
[66] Knight M W, Wang Y, Urban A S, et al. Embedding plasmonic nanostructure diodes enhances hot electron emission [J]. Nano Letters, 2013, 13(4): 1687-1692. doi:  10.1021/nl400196z
[67] Lee Y K, Lee H, Park J Y. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers [J]. Scientific Reports, 2014, 4(1): 4580. doi:  10.1038/srep04580
[68] Goykhman I, Sassi U, Desiatov B, et al. On-chip integrated, silicon–graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain [J]. Nano Letters, 2016, 16(5): 3005-3013. doi:  10.1021/acs.nanolett.5b05216
[69] Gusken N A, Lauri A, Li Y, et al. TiO2– x-enhanced IR hot carrier based photodetection in metal thin film–Si junctions [J]. ACS Photonics, 2019, 6(4): 953-960. doi:  10.1021/acsphotonics.8b01639
[70] Goykhman I, Desiatov B, Khurgin J, et al. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band [J]. Optics Express, 2012, 20(27): 28594-28602. doi:  10.1364/OE.20.028594
[71] Grajower M, Levy U, Khurgin J B. The role of surface roughness in plasmonic-assisted internal photoemission schottky photodetectors [J]. Acs Photonics, 2018, 5(10): 4030-4036. doi:  10.1021/acsphotonics.8b00643
[72] Shuklin F A, Smetanin I V, Protsenko I E, et al. Hot electron photoemission in metal–semiconductor structures aided by resonance tunneling[J]. Applied Physics Letters , 2021, 118(18).
[73] Feng B, Zhu J, Lu B, et al. Achieving infrared detection by all-Si plasmonic hot-electron detectors with high detectivity [J]. ACS Nano, 2019, 13(7): 8433-8441. doi:  10.1021/acsnano.9b04236
[74] Kim C, Yoo T J, Chang K E, et al. Highly responsive near-infrared photodetector with low dark current using graphene/germanium Schottky junction with Al2O3 interfacial layer [J]. Nanophotonics, 2021, 10(5): 1573-1579. doi:  10.1515/nanoph-2021-0002
[75] Ji P, Yang S, Wang Y, et al. High-performance photodetector based on an interface engineering-assisted graphene/silicon Schottky junction [J]. Microsystems & Nanoengineering, 2022, 8(1): 9.
[76] Huang Z, Mao Y, Lin G, et al. Low dark current broadband 360-1650 nm ITO/Ag/n-Si Schottky photodetectors [J]. Optics Express, 2018, 26(5): 5827-5834. doi:  10.1364/OE.26.005827
[77] Yoo T J, Kim S Y, Kwon M G, et al. A facile method for improving detectivity of graphene/p‐type silicon heterojunction photodetector [J]. Laser & Photonics Reviews, 2021, 15(8): 2000557.
[78] Okamoto S, Kusada K, Nomura Y, et al. Facilely fabricated Zero-Bias silicon-based plasmonic photodetector in the near-infrared region with a Schottky barrier properly controlled by nanoalloys[J]. ACS Applied Materials & Interfaces , 2024,16(7): 8984-8992.
[79] Kumari K, Kumar S, Mehta M, et al. Laser-crystallized epitaxial germanium on silicon-based near-infrared photodetector [J]. IEEE Sensors Journal, 2022, 22(12): 11682-11689. doi:  10.1109/JSEN.2022.3174736
[80] Zhang L, Han X, Wen P, et al. Weyl-semimetal TaIrTe4/Si nanostructures for self-powered Schottky photodetectors [J]. ACS Applied Nano Materials, 2022, 5(5): 6523-6531. doi:  10.1021/acsanm.2c00613
[81] Li H, Ali W, Wang Z, et al. Enhancing hot-electron generation and transfer from metal to semiconductor in a plasmonic absorber [J]. Nano Energy, 2019, 63: 103873. doi:  10.1016/j.nanoen.2019.103873
[82] Sistani M, Bartmann M G, Güsken N A, et al. Plasmon-driven hot electron transfer at atomically sharp metal–semiconductor nanojunctions [J]. ACS Photonics, 2020, 7(7): 1642-1648. doi:  10.1021/acsphotonics.0c00557
[83] Zhang X, Wang M, Tang F, et al. Transient electronic depletion and lattice expansion induced ultrafast bandedge plasmons [J]. Advanced Science, 2020, 7(2): 1902408. doi:  10.1002/advs.201902408
[84] Wu J, Chen Y, Wu J, et al. Perspectives on thermoelectricity in layered and 2D materials [J]. Advanced Electronic Materials, 2018, 4(12): 1800248. doi:  10.1002/aelm.201800248
[85] Li D, Gong Y, Chen Y, et al. Recent progress of two-dimensional thermoelectric materials [J]. Nano-Micro Letters, 2020, 12: 1-40. doi:  10.1007/s40820-019-0337-2
[86] Yu Zehao, Zhang Zhangfa, Wu Jing , et al. Research progress in two-dimensional layered thermoelectric materials [J]. Acta Physica Sinica , 2023, 72 (5): 135-155. (in Chinese)
[87] Ma Q, Ren G, Xu K, et al. Tunable optical properties of 2D materials and their applications [J]. Advanced Optical Materials, 2021, 9(2): 2001313. doi:  10.1002/adom.202001313
[88] Massicotte M, Soavi G, Principi A, et al. Hot carriers in graphene–fundamentals and applications [J]. Nanoscale, 2021, 13(18): 8376-8411. doi:  10.1039/D0NR09166A
[89] Castilla S, Terrés B, Autore M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction [J]. Nano Letters, 2019, 19(5): 2765-2773. doi:  10.1021/acs.nanolett.8b04171
[90] Lan G, Tang L, Dong J, et al. Enhanced asymmetric light-plasmon coupling in graphene nanoribbons for high-efficiency transmissive infrared modulation [J]. Laser & Photonics Reviews, 2024, 18(1): 2300469.
[91] Liu T, Zhang C, Li X. 2D MXenes for hot-carrier photodetection [J]. Advanced Optical Materials, 2022, 10(20): 2201153. doi:  10.1002/adom.202201153