[1] Ouchi T, Kajiki K, Koizumi T, et al. Terahertz imaging system for medical applications and related high efficiency Terahertz devices [J]. J Infrared Millim Terahertz Waves, 2014, 35(1): 118-130. doi:  10.1007/s10762-013-0004-5
[2] Chen Z, Ma X Y, Zhang B, et al. A survey on Terahertz communications [J]. China Commun, 2019, 16(2): 1-35.
[3] Ge H Y, Lv M, Lu X J, et al. Applications of THz spectral imaging in the detection of agricultural products [J]. Photonics, 2021, 8(11): 518. doi:  10.3390/photonics8110518
[4] Liu Xinyuan, Zeng Haomin, Tian Xin, et al. Transmission simulation and safety analysis of terahertz radiation in skin [J]. Optics and Precision Engineering, 2021, 29(5): 999-1007. (in Chinese) doi:  10.37188/OPE.20212905.0999
[5] Wang Yuye, Jiang Bozhou, Xu Degang, et al. Continuous terahertz wave biological tissue imaging technology based on focal plane array [J]. Acta Optica Sinica, 2021, 41(7): 0711001. (in Chinese) doi:  10.3788/AOS202141.0711001
[6] Li Yashang, Zhao Guozhong, Wei Qingyun, et al. Study on the performance of terahertz passive imaging system [J]. Infrared and Laser Engineering, 2020, 49(4): 0404005. (in Chinese) doi:  10.3788/IRLA202049.0404005
[7] Li Y D, Hu W D, Zhang X, et al. Adaptive terahertz image super-resolution with adjustable convolutional neural network [J]. Opt Express, 2020, 28(15): 22200-22217. doi:  10.1364/OE.394943
[8] Zhang Saiwen, Deng Yaqi, Wang Chong, et al. Research on super-resolution fluorescence microscopy imaging based on multiple measurement vector compressed sensing [J]. Infrared and Laser Engineering, 2021, 50(11): 20210484. (in Chinese) doi:  10.3788/IRLA20210484
[9] Zhao Haoguang, Qu Hanshi, Wang Xin, et al. Super-resolution reconstruction of micro-scanning images [J]. Optics and Precision Engineering, 2021, 29(10): 2456-2464. (in Chinese) doi:  10.37188/OPE.20212910.2456
[10] Liu Mingxin, Zhang Xin, Wang Lingjie, et al. Optimization of matching coded aperture with detector based on compressed sensing spectral imaging technology [J]. Chinese Optics, 2020, 13(2): 290-301. (in Chinese) doi:  10.3788/CO.20201302.0290
[11] Li W, Li B, Li P F. Image super-resolution via sparse representation and local texture constrain[C]//12th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2017: 1044-1049.
[12] Wu Y Q, Pan S H, Bi S J, et al. Kurdyka-Lojasiewicz property of zero-norm composite functions [J]. J Optim Theory Appl, 2020, 188(1): 94-112.
[13] Xu M X, Yang Y, Sun Q S, et al. Image super-resolution reconstruction based on adaptive sparse representation [J]. Concurr Comput -Pract Exp, 2018, 30(24): e4968. doi:  10.1002/cpe.4968
[14] Wang M J, Feng Z D, Wu J G. Pixel super-resolution lensless in-line holographic microscope with hologram segmentation [J]. Chin Opt Lett, 2019, 17(11): 110901.
[15] Aamir M, Rehmanp Z, Pu Y F, et al. Image enhancement in varying light conditions based on wavelet transform[C]//16th IEEE International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2019: 317-322.
[16] Chen Tianze, Ge Baozhen, Luo Qijun. Pose estimation for free binocular cameras based on reprojection error optimization [J]. Chinese Optics, 2021, 14(6): 1400-1409. (in Chinese) doi:  10.37188/CO.2021-0105
[17] Wu L Y, Zhang X G, Deng J F. Making a “Completely blind” image quality analyzer [J]. IEEE Signal Process Lett, 2013, 20(3): 209-212. doi:  10.1109/LSP.2012.2227726
[18] Li Q H, Fang Y M, Lin W S, et al. Gradient-weighted structural similarity for image quality assessments[C]//IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, IEEE, 2015: 2165-2168.
[19] Shi Z F, Zhang J P, Cao Q J, et al. Full-reference image quality assessment based on image segmentation with edge feature [J]. Signal Process, 2018, 145: 99-105. doi:  10.1016/j.sigpro.2017.11.015